Are magnetic field-lines always identifiable with $1\frac{1}{2}D$ Hamiltonian systems ?

Nathan Duignan¹ David Perrella² David Pfefferlé²

 $^1 \rm School$ of Mathematics and Statistics, University of Sydney, NSW 2050, Australia $^2 \rm The$ University of Western Australia, Perth WA 6009, Australia

Simons Hidden Symmetries and Fusion Energy Collaboration Australian Retreat Canberra, December 14, 2023

Hamiltonian allows

• "nice" magnetic representation, used as starting point in many optimisation exercises

$$\boldsymbol{B} = \nabla \psi_t \times \nabla \theta + \nabla \varphi \times \nabla \psi_p(\psi_t, \theta, \varphi)$$

• Noether theorem to be invoked for integrability of field-lines

(hidden) symmetry \rightleftharpoons flux-surfaces

- in $oldsymbol{B}$ above $\psi_p=\psi_p(\psi_t)$ so that $oldsymbol{B}\cdot
 abla\psi_t=0$
- methods of perturbation theory, KAM theorem to interpret "near"-integrability, magnetic islands, chaotic field-lines

Consider canonical coordinates $(q,p) \in \Sigma \subset \mathbb{R}^2$ and time-dependent Hamiltonian H(t,q,p) with $t \in S^1$. Hamilton's equations read

$$\frac{dq}{dt}(t) = \frac{\partial H}{\partial p}(t, q(t), p(t))$$
$$\frac{dp}{dt}(t) = -\frac{\partial H}{\partial q}(t, q(t), p(t))$$

An embedding $F:S^1\times\Sigma\hookrightarrow\mathbb{R}^3$, $(t,q,p)\mapsto(x,y,z)$ yields a magnetic field

$$\boldsymbol{B} = \nabla p \times \nabla q + \nabla t \times \nabla H$$

Consider canonical coordinates $(q, p) \in \Sigma \subset \mathbb{R}^2$ and time-dependent Hamiltonian H(t, q, p) with $t \in S^1$. Field-line equations read

$$\frac{dq}{dt}(t) = \frac{\partial H}{\partial p}(t, q(t), p(t)) = \frac{\boldsymbol{B} \cdot \nabla q}{\boldsymbol{B} \cdot \nabla t}$$
$$\frac{dp}{dt}(t) = -\frac{\partial H}{\partial q}(t, q(t), p(t)) = \frac{\boldsymbol{B} \cdot \nabla p}{\boldsymbol{B} \cdot \nabla t}$$

An embedding $F:S^1\times\Sigma\hookrightarrow\mathbb{R}^3$, $(t,q,p)\mapsto(x,y,z)$ yields a magnetic field

$$\boldsymbol{B} = \nabla p \times \nabla q + \nabla t \times \nabla H$$

Example of Hamiltonian dynamics

Example of Hamiltonian dynamics

Example of Hamiltonian dynamics

- Field-lines in \mathbb{R}^3 are images of Hamiltonian dynamics on $S^1 \times \Sigma$ through F
- time is forward $\Rightarrow \boldsymbol{B} \cdot \nabla t > 0$
- $B \cdot \nabla t = (\nabla p \times \nabla q) \cdot \nabla t = -1/J_F$ where J_F is Jacobian of embedding F

Necessary conditions for ${\boldsymbol B}$ being Hamiltonian

but not sufficient

If arbitrary magnetic field ${\pmb B}$ on domain $\Omega\subset \mathbb{R}^3$ originated from a $1\frac{1}{2}D$ Hamiltonian system, then

• necessary for B to have Poincaré sections, namely there exists

 $t: \Omega \to S^1$, such that $\boldsymbol{B} \cdot \nabla t > 0$

• necessary for ${m B}
eq 0$ (nowhere vanishing)

Counter-examples

- two loops with opposite (unit) currents
- B(0) = 0
- no (global) Hamiltonian formulation

Theorem (Poincaré-Hopf*)

 $\boldsymbol{B} \neq 0$ on $\Omega \Rightarrow$ the Euler characteristic $\chi(\Omega) = 0$.

- $\chi(\text{surface}) = \text{vertices} \text{edges} + \text{faces}$
- $\chi(\mathsf{ball}) = 1$
- $\chi(\text{circle}) = 0$
- $\chi(M \times N) = \chi(M)\chi(N)$
- $\chi(M \cup N) \approx \chi(M) + \chi(N) \chi(M \cap N)$
- * $\boldsymbol{B} \cdot \boldsymbol{n}|_{\partial\Omega} = 0$ but $\boldsymbol{B} \times \boldsymbol{n}|_{\partial\Omega} \neq 0$

Topology matters: more counter-examples

- removing loops (coils) from a ball still makes $\chi=1$

$$\chi(B) = \chi(B \setminus S^1) + \chi(S^1) - \chi(\mathcal{P}^2)$$

- removing loops (coils) from a ball still makes $\chi=1$

$$\chi(B) = \chi(B \setminus S^1) + \chi(S^1) - \chi(\mathcal{P}^2)$$

- technically, none of the fields in magnetic confinement are (globally) Hamiltonian
- toroidal domains have $\chi(S^1 \times \Sigma) = 0$

ball \ CNT coils [Pedersen and Boozer, 2002]

- removing loops (coils) from a ball still makes $\chi = 1$

$$\chi(B) = \chi(B \setminus S^1) + \chi(S^2) - \chi(\mathcal{P}^2)$$

- technically, none of the fields in magnetic confinement are (globally) Hamiltonian
- toroidal domains have $\chi(S^1 \times \Sigma) = 0$
- not obvious that toroidal surface on which $\boldsymbol{B}\cdot\boldsymbol{n}=0$ exists

Integrable is not the same as Hamiltonian+symmetry

Reversed-Field Pinch (RFP)

- can display flux-surfaces (and straight-field line coordinates)
- toroidal field reverses

$$\begin{split} & \boldsymbol{B} \cdot \nabla \varphi > 0, \quad r < r_c \\ & \boldsymbol{B} \cdot \nabla \varphi < 0, \quad r > r_c \end{split}$$

- \Rightarrow toroidal angle φ cannot be used as time
- Beltrami states $abla imes {f B} = \mu {f B}$ feature reversals

In order to identify B with $1\frac{1}{2}D$ Hamiltonian system, we work with conditions 1 toroidal domain (trivial bundle over the circle, planar section)

$$\Omega \cong S^1 \times \Sigma, \qquad \Sigma \subset \mathbb{R}^2, \qquad t: \Omega \to S^1$$

② tangential fields on the boundary
$$oldsymbol{B}\cdotoldsymbol{n}ig|_{\partial\Omega}=0$$

3 fields with Poincaré section

 $dt(\boldsymbol{B}) > 0$

Theorem (Darboux, variant)

On a neighbourhood U of any point $x \in \Omega$ where $B(x) \neq 0$, there exists coordinates such that

$$\boldsymbol{B}|_U = \nabla \boldsymbol{\alpha} \times \nabla \boldsymbol{\beta}$$

[D'Haeseleer et al., 1991]

- topological obstructions to realising Clebsch representation globally
- flow box theorem: *every field-line can be locally straightened*
- usual procedure to identify 1¹/₂D Hamiltonian system is local [Cary and Littlejohn, 1983; Boozer, 1983; Meiss, 1992; Helander, 2014]

A global procedure to identify $1\frac{1}{2}$ D Hamiltonian system 💆

Recalling (1) $\Omega \cong S^1 \times \Sigma$, $\Sigma \subset \mathbb{R}^2$; (2) $\boldsymbol{B} \cdot \boldsymbol{n}|_{\partial\Omega} = 0$; (3) $dt(\boldsymbol{B}) > 0$.

Theorem (Duignan, Perrella and P.)

Assuming (1)-(3), there exists a (global) diffeomorphism $\Psi : \Omega \to S^1 \times \Sigma$ with $t = t \circ \Psi$ and a (global) Hamiltonian function \mathcal{H} with $\mathcal{H}|_{\partial\Omega} = \text{const such that}$

$$\boldsymbol{B} = \boldsymbol{B}_T + \nabla t \times \nabla \mathcal{H}$$

with $\nabla \cdot \boldsymbol{B}_T = 0$, $\boldsymbol{B}_T \propto \partial_t$.

In fact, on a solid torus ST $\cong S^1 \times D^2$ and on hollow torus HT $\cong S^1 \times S^1 \times [0,1]$, toroidal coordinates (ψ, θ, φ) allows to write

$$\boldsymbol{B} =
abla \psi imes
abla heta +
abla arphi imes
abla \mathcal{H}$$

On domains $\Omega \cong S^1 \times \Sigma$ where $\Sigma = D^2 \setminus \{p_1, \ldots, p_n\}$ is a disk with $n \ge 2$ holes, there are no (global) *toroidal coordinates*, but B_T plays the role of a symplectic form on levels of t.

Summary

- not all magnetic fields are Hamiltonian
- which fields are best confining ?

- T. S. Pedersen and A. H. Boozer, Physical Review Letters 88, 205002 (2002).
- W. D. D'Haeseleer, W. N. G. Hitchon, J. D. Callen, and J. L. Shohet, *Flux Coordinates and Magnetic Field Structure* (Springer, Berlin, Heidelberg, 1991), ISBN 978-3-642-75597-2 978-3-642-75595-8.
- J. R. Cary and R. G. Littlejohn, Annals of Physics 151, 1 (1983).
- A. H. Boozer, Physics of Fluids (1958-1988) 26, 1288 (1983).
- J. D. Meiss, Reviews of Modern Physics 64, 795 (1992), publisher: American Physical Society, URL https://link.aps.org/doi/10.1103/RevModPhys.64.795.
- P. Helander, Reports on Progress in Physics 77, 087001 (2014), publisher: IOP Publishing.

Example where flux coordinates cannot exist globally

WESTERN AUSTRALIA

despite presence of nested flux-surfaces (no islands)

In cylindrical coordinates (R, φ, Z) , consider

 $B = \nabla \psi \times \nabla \varphi + f \nabla \varphi$

where

$$\begin{split} \psi &= (\tilde{R}^2 + Z^2 - 1)(1 + Z^2(\tilde{R}^2 + Z^2 - 2)) \\ f &= Z + (\tilde{R}^2 + Z^2 - 1) \end{split}$$

and $\tilde{R} = R - 2$.

1 $\psi = \text{const}$ are nested toroidal surfaces \checkmark 2 $|B| > 0 \checkmark$

Poloidal cross-section of ψ levels. Critical surface (green) at $\psi = 0$ where $\tilde{R}^2 + Z^2 = 1$.

 $\psi = 0$. The toroidal surface $\tilde{R}^2 + Z^2 = 1$ does not have straight field-line coordinates!

 $\psi = 0.01$

 $\psi = 0.1$

