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Based on

joint works with M. Bershtein, P. Gavrylenko and M. Semenyakin,
natural development of my talk Cluster integrable systems and supersymmetric
gauge theories at Baxter2020: Frontiers in Integrability.

Cluster Reductions, Mutations, and q-Painlevé Equations, with MB-PG-MS,
arXiv:2411.00325

preceeding

Cluster integrable systems, q-Painleve equations and their quantization, with
MB-PG, JHEP 1802:077, 2018, arXiv:1711.02063;
Cluster Toda chains and Nekrasov functions, with MB-PG,
L. Faddeev’s volume in TMPh, arXiv:1804.10145;
Cluster integrable systems and spin chains, with MS, JHEP 2019, 100 (2019),
arXiv:1905.09921
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Newton polygons

A convex hull of integer points in N ⊂ Z2 ⊂ R2

defines a plane curve Σ ⊂ C× × C×

λ

µ

endowed with $ = dλ
λ ∧

dµ
µ

Defines an integrable system modulo

SA(2,Z) = SL(2,Z) n Z2 action;
Less obvious equivalence: (example of) polygon mutation

Ц
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NP & GK system

From NP

Lr

Д

О

g моГV
7

8 -

to Thurston diagram

i L

ТY
.7

N x

z

w

y

1

and bipartite graph Γ ⊂ T2.

Andrei Marshakov Dept. Math. HSE and Theory Dept. LPIDecorated Newton polygons and cluster reductions September, 2025 4 / 18



Goncharov-Kenyon construction

Γ is (consistent) bipartite (oriented edges!) graph on T2;

Dimer: cover D ⊂ E (Γ) and model wt : E (Γ)→ C∗;
Partition function: Z =

∑
D ±wt(D)

Dimers 7→ loops: ∂D =
∑
• −

∑
◦

D − D0 = ∂f + γ (∈ H1(T2))

Edge weights {wt(e)} 7→ {xf = wt(f )|q =
∏

xf = 1; (λ, µ) ∈ H1(T2)}
Spectral curve equation: Z(x|λ, µ) = 0, C ⊂ C× × C×
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Duality

Zig-zag paths {ζ|
∑

a ζa = 0}, ζ 6= 0 in H1(T2)

Γ ⊂ T2 as ribbon graph, dual ribbon graph ΓD ⊂ ΣD ' C (faces ↔ zig-zags)
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Dual cluster structures

Intersection form 〈•, •〉C on H1(C): Poisson quiver Q

Poisson bracket in cluster seeds:

{xi , xj} := {xi , xj}Q = εijxixj , {xi} ∈
(
C×
)dimX

(1)

Mutations of Q: bi-rational maps

µj : xj →
1

xj
, xi → xi

(
1 + x

sgn(εij )
j

)εij
, i 6= j

glueing seeds into cluster variety X .
Intersection form 〈•, •〉T2 on H1(T2): dual zig-zag quiver QD :

# of arrows a→ b = ζa × ζb
rank QD = 2: Darboux variables $ = dλ

λ
∧ dµ

µ
;

Mutations of QD : rational transform of (λ, µ), preserving $;
Strictly defined only for decorated polygons.
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GK Integrable system

Poisson variety:

Hamiltonians and Casimirs {{Hk ,Ca} ∈ Fun(X )|{Hi ,Hk} = 0, {Ca, •} = 0});

Liouville-Arnold: dimX = B − 2 + 2I , a = 1, . . . ,B − 2, k = 1, . . . , I ;

Proof: V − E + F = 0 for Γ ⊂ T2, and V − E + B = 2− 2I for Γ ⊂ C, hence
F = E − V = B − 2 + 2I .

λ

µ

Extra: cluster structure
XN F(q = 1)

{
Coeff. of C

}
Jac(C ) N  XN cluster variety.

dimX = 2 AreaN, dim Jac C = I ,

]
{

Coeff. of C
}

= I + B − 3

XN = ∪sXs union of charts (tori)

s quiver Qs, [Qs]µ  XN
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Q-mutations and spider moves

Mutations in 4-valent Q-vertices: spider moves of Γ ⊂ T2

x x3x1

x2

x4

⇒ x−1 x3(1 + x−1)−1x1(1 + x−1)−1

x2(1 + x)

x4(1 + x)

Figure: 4-gon face mutation (spider move)

Mutations in 2l-valent vertices with l ≥ 3: out of the GK class

⇒

Figure: Mutation in 6-gon face
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Dual polygon mutation

x1 x2

x3x4

z1 z2

z3z4

Newton polygon

x1 x2

x3x4

“Face” quiver

z1, z3

z4 z2

“Zigzag” quiver

Mutations in 2l-valent vertices with l ≥ 3: out of the class of regular curves.
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Decorated Newton polygons

Definition

A decorated Newton polygon is a pair (N,H)

Convex integral polygon N

Set H = (HE | E ∈ sides of N) of partitions HE = {hE ,i} of |E |Z.

Decorations prescribe singularities on C of type xhE,i = yhE,i

(1,1,1,1)

(1,1,1,1)

(2)(2)

genus(C) = I −
∑

E ,i
hE ,i (hE ,i − 1)/2 (2)
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Polynomial mutations

Decorated Newton polygons ⇔ Curves with reduction conditions

Multicross singularity with h branches on C ⇔ exists SL2(Z) frame where

P(λ, µ) =
∑h

k=−h′
µkPk(λ) ∃c : (1 + cλ−1)k divides Pk(λ), ∀k > 0 (3)

Definition

1 Mutation of the polynomial P is polynomial P̃ defined by

P̃(λ, ν) = P(λ, µ), where µ = ν/(1 + cλ−1)

2 Mutation of the polygon is a corresponding transformation of N.

3 For decorated polygon (N,H), k ∈ HE , decoration mutates.

⇒ ⇒
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Dual quivers and their mutations

For a (N,H) dual quiver QD is

`(HE ) vertices for every side E of N;

Number of edges between vertices of E and of E ′ is
det(E ,E ′)

|E |Z|E ′|Z
,

(or εDaa′ = ζa × ζa′ between each pair of vertices).

Lemma

Mutations of (N,H) give rise to mutation of QD .

Remark
Mutations of Q preserve N.

Conjecture

“Dual” mutations are isomorphisms of cluster varieties XN,H and XÑ,H̃.
They induce isomorphisms of reduced GK integrable systems.
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Main proposal

Conjecture

Under the certain conditions on (N,H) there exists integrable system such that

It is a reduction of GK integrable system corresponding to N

The phase space is given by q = 1 in the X -cluster variety XN,H (remark:
q =

∏
x =

∏
w#)

dimXN,H = 2Area(N)−
∑

E ,i (h
2
E ,i − 1)

rk{·, ·}XN,H
= 2I −

∑
E ,i hE ,i (hE ,i − 1)

Conjecture

There exists a seed in which reduction ideal if generated by binomials m
(I )
y + 1.
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Example E
(1)
7

(1,1,1,1)

(1,1,1,1)

(2)(2)
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C1 = x1x3x5x7 = 1, C2 = x9x11x13x15 = 1 (4a)

H1 = 1 + x1(1 + x3(1 + x5)) = 0, H2 = 1 + x9(1 + x11(1 + x13)) = 0 (4b)
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Example E
(1)
7

Reduction conditions
y1 = y3 = y9 = y11 = −1. (5)

Cluster variables after reduction

w1 = y7, w2 = y10y5y13, w3 = y2y5y13, w4 = y14, w5 = y6,

w6 = y15, w7 = y12, w8 = y4, w9 = y16, w10 = y8.
(6)

y9

y10

y1

y2

y11

y12

y3

y4

y13

y14

y5

y6

y15

y16

y7

y8

w2,w3,w4,w5

w7,w8,w9,w10 w1

w6

Figure: Quiver after mutation and quiver after reduction
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q-Painlevé E
(1)
7

Results in:

q =
∏
f

xf = w2
1w2w3w4w5w

2
6w7x7w9w10

the Hamiltonian:
H = 1√

w1w2w3w4w5w6w7w8w9
(1 + w2

1w2w3w4w5w
3
6w7w8w9((1 + w7)(1 + w9) +

w8(1 + w7 + (1 + w7 + w1w7)w9)) + w6(1 + w7 + w9 + w7w9 + w1w7w9 +
w8(1 + w7 + w1w7 + (1 + w1 + w7 + w2

1 (1 + w2)(1 + w3)(1 + w4)(1 +
w5)w7 + w1(2 + w2 + w3 + w4 + w5)w7)w9)) + w2

1w
2
6w7w8w9((w2 +

w3)w4w5 + w2w3(w4 + w5 + w4w5(2 + w7 + w8 + w9))))

Invariant wrt W (E
(1)
7 ), generated by

s1 = (2, 3), s2 = (3, 4), s3 = (4, 5), s4 = µ5(5, 7)µ5,

s5 = (7, 8), s6 = (8, 9), s7 = (9, 10), s0 = µ6(1, 6)µ6.
(7)
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Outline

A class of integrable systems on Poisson cluster varieties is defined by convex
Newton polygons, they come from GK dimer construction;

There exists an extension of the class of Goncharov-Kenyon integrable
systems by their Hamiltonian reductions;

Isomorphisms of such reductions are mutations in a “dual” cluster structure;

Remark
All q-Painlevé equations are deautonomizations of reduced GK integrable systems.
They correspond to 5d supersymmetric gauge theories, and – when 4d limit exists
– are solved by dual Nekrasov partition functions.
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