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Few words about Rodney James Baxter:

He was a pioneer, a founder of the field of integrable models.
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Example: pioneering work:

His classic book has inspired all of us and continue to influence many generations of researchers.

It deals with 1D-Ising model, spherical model, ice-type models, 8-vertex model, Potts model,...
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How I Met Rodney Baxter:

• First encountered his work in 1990 during my PhD:

My advisor asked me to read his book before any

discussion.

• Met him in person in 1997 at a conference in Australia,

and after in many other conferences.

• Had the privilege of joining him for lunches at ANU in 2013

during my sabbatical, arranged by Murray Batchelor.

• Met him again at the conferences: Baxter2015 and

Baxter2020.
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I - What I Learned from Rodney Baxter:

• His work shaped my approach to theoretical physics.

• Inspired me to value clarity, relevance, and elegance.

• And not only that... His quote:

“ You don’t necessarily make progress by thinking all the time

when you should take a sabbatical.”

— R. J. Baxter

is a reminder that stepping back can also lead to insight.
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II - What I Learned from Rodney Baxter:

“Basically, I suppose the justification for studying these models

is very simple: they are relevant and they can be solved, so why

not do so and see what they tell us?”

— R. J. Baxter

• This famous quote guided my research.

• Baxter left us more than models — he left a way of

thinking.

• His influence continues to inspire me and many others.
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From Baxter’s Legacy to Modern Applications:

• Baxter’s philosophy — to study models that are both

relevant and exactly solvable — continues to guide our

work.

• Here: inspired by Baxter’s legacy, we discuss integrable

multi-well quantum tunneling models in cold atoms and

explore some possible applications.
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Why are we studying integrable tunneling models?

They display high potential for applications in the development

of emerging quantum technologies:

• Solvability and Control: Integrable models offer analytical

formulae and predictions, enabling precise control of

quantum states for robust technology development.

• Understanding Quantum Correlations: Integrable models

offer a platform for studying and manipulating quantum

correlations in quantum computing and communication.

• Developing Quantum Devices:Integrable models guide the

design and understanding of quantum devices, crucial for

the implementation of quantum technologies.
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OUTLINE

1- Integrable bosonic quantum tunneling models

2- Application in a static frame: 4-sites in a ring:
NOON states

3- Application in a rotating frame: 4-sites in a
tetrahedral geometry: Quantum Turntable

4- Concluding remarks
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1 - Integrable quantum tunneling
models:
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Two wells: Two-site Bose Hubbard Hamiltonian:

H =
K

8
(N1−N2)

2−∆µ

2
(N1−N2)−

EJ
2
(a†1a2+a†2a1)

• Ni = a†iai: number of atoms in well (i = 1, 2)

• K: atom-atom interaction term

• ∆µ: external potential

• EJ : tunneling strength

G. Milburn et al, Phys. Rev. A 55 (1997) 4318; A. Leggett, Rev. Mod. Phys. 73 (2001) 307

A. Tonel, J. Links, A. Foerster, JPA 38 (2005) 1235

The quantum dynamics of the model exhibits tunneling &

self-trapping - experiment of Oberthaler et al - 2005
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Two-wells: Integrability and BA-solution:

• This model is integrable; it can be formulated by the

Yang-Baxter equation and exactly solved via Bethe

ansatz methods.
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Yang-Baxter equation: key ingredient in this construction

R12(x− y)R13(x)R23(y) = R23(y)R13(x)R12(x− y)

• sufficient condition for integrability, proposed independently in different contexts by:

• C. N. Yang (China): Nobel Prize 1957

• R. Baxter (Australia): Boltzman Medal 1980, Lars Onsager

Prize 2006, Royal Medal 2013, Henri Poincaré Prize 2021
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Multiple-wells:

• We aim to extend this result to multiple wells or sites.

• Natural candidate: L-site Bose-Hubbard model.

It is not integrable in general: just 2 and ∞ sites.

• Until recently, there was a belief that constructing

integrable multi-well systems was not possible.

• We solved this and found that integrability requires the

presence of long-range interactions.

• The algebraic construction of these models is tricky,

presenting challenges in obtaining all conserved quantities.
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Integrable Multi-well tunneling models:

• 3 wells: Triple well Hamiltonian

• 4 wells: Four-well ring model

• .......

• Multi-well tunneling models
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Triple well Hamiltonian:

H = U(N1 +N3 −N2)
2 +∆µ(N1 +N3 −N2)

+ t1(a
†
1a2 + a1a

†
2) + t3(a

†
2a3 + a2a

†
3) (1)

• Ni = a†iai: number of bosons in well i, (i = 1, 2, 3),

N = N1 +N2 +N3 is constant, H is invariant by changing the indices 1 and 3

• U : controls on-site and inter-well interac. bet. bosons

• ∆µ: external potential, ti, i = 1, 3: tunneling strength:
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Application: atomtronic switching device
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Contribution to the blogs of Nature Research Communities:
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Four-well ring:

H = U(N1 +N3 −N2 −N4)
2 +∆µ(N1 +N3 −N2 −N4)(2)

+ t12(a1a
†
2 + a†1a2) + t14(a1a

†
4 + a†1a4)

+ t23(a3a
†
2 + a†3a2) + t34(a3a

†
4 + a†3a4)

U : controls on-site and inter-well interactions; tij are not independent: t12t34 = t23t14 but

still admits sufficient freedom to investigate a range of anisotropic tunneling regimes
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Application: NOON states
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Contribution to the blog of Nature Research Communities:
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Baxter 2020: Frontiers in Integrability
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Multi-well tunneling models:

• Hamiltonian for (n+m) wells:

Hn,m = U(NA−NB)
2+∆µ(NA−NB)+

n
∑

i=1

m
∑

j=1

ti,j(aib
†
j+a†ibj)

• in terms of sets of canonical boson operators:

ai, a
†
i , Na,i = a†iai, i = 1, ..., n

bj, b
†
j , Nb,j = b†jbj , j = 1, ...,m

NA =
∑n

i=1 a
†
iai NB =

∑m
j=1 b

†
jbj N = NA +NB

• U intra-well and inter-well interaction between bosons

• ∆µ external potential, ti,j couplings for tunneling

• Models defined on complete bipartite graphs Kn,m

Exactly Solved Models in the Design of Quantum Architectures – p. 23/75



Some particular Hamiltonians:
For particular choices of n,m we find

• 2 wells:

n = m = 1: Two-site Bose Hubbard model

1a

1b

• 3 wells:

n = 2,m = 1: Triple well Hamiltonian

1a

1b

2a
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• 4 wells:

n = 2,m = 2: Four-well ring model:

1a

1b

2a

2b

n = 3,m = 1: Open four well model:

1b

1a

2a

3a

Schematic rep.: spheres represent the wells, with bonds indicating the tunneling between the wells
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6 wells: n = 4,m = 2:

1b

2b

1a

2a
3a

4a

L. Ymai, A. Tonel, A. Foerster, J. Links, JPA 2017
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6 wells: n = 5,m = 1:

1b

1a

2a

3a

4a

5a
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OBS: Superintegrability:

• For n > 2 or m > 2 the (n+m)-wells (or sites) tunneling

Hamiltonian is superintegrable:

more conserved quantities than degrees of freedom.

• The existence of superintegrability allows for the inclusion

of additional interaction terms that can break the global

symmetry algebra without compromising integrability.

• We can extend the models to include tunneling terms

while retaining integrability
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Example: n = 3,m = 1

• Superintegrable 4-sites in a tetrahedral geometry:
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2-Application: 4-sites in a ring:
Protocol designs for NOON states
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What is a NOON state?

• Definition: It is an all and nothing superposition of two

different modes. For N particles, it has the form:

|NOON〉 = 1√
2

(

|N, 0〉+ eiϕ|0, N〉
)

where the phase ϕ typically records information in applications

• Applications:

Quantum metrology and sensing

Quantum lithography

Quantum communication

Quantum computing

......
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• Here we show how to generate a NOON state
and, in additon, how to encode a phase into
this NOON state.

• Our approach is based on the formation
of an uber-NOON state en route to the
final NOON state.
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Uber-NOON state:

• Consider a closed-circuit of 4 sites, with a Fock-state input

|Ψ0〉 = |M,P, 0, 0〉. The initial step is to create an

uber-NOON state, with the general form:

|u-NOON〉 = 1

2

(

|M,P, 0, 0〉 + eiϕ1|M, 0, 0, P 〉

+eiϕ2 |0, P,M, 0〉 + eiϕ3|0, 0,M, P 〉
)

for a set of phases {ϕ1, ϕ2, ϕ3}. It may be viewed as an embedding of NOON states

within two-site subsystems
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• We then describe two protocols to extract a
NOON state from an uber-NOON state.

• For this, we consider a model of dipolar bosons
confined to 4 wells, more especifically, to a closed
circuit of 4 sites.

• The system has long-range interactions and can
be described by the EBHM.
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Extended 4-site Bose-Hubbard Model (EBHM)

H =
U0

2

4
∑

i=1

Ni(Ni − 1) +
4

∑

i=1

4
∑

j=1,j 6=i

Uij

2
NiNj

− J

2

[

(a†1 + a†3)(a2 + a4) + (a1 + a3)(a
†
2 + a†4)

]

,

• U0: characterizes the interaction between bosons at the same site

• Uij = Uji, i 6= j: characterize DDI between bosons at different sites (i and j)

• J : couplings for the tunneling between different sites

• Integrability condition:

The integrable closed 4-wells model can be obtained from EBHM if:

U0 = U13 = U24, U12 = U23 = U34 = U14.

Exactly Solved Models in the Design of Quantum Architectures – p. 35/75



• Conserved quantities:

The model has 4 modes, so 4 independent conserved quantities are expected:

[H,N ] = [H,Qk] = [N,Qk] = [Q1, Q2] = 0, k = 1, 2.

Q1 =
1

2
(N1 +N3 − a†1a3 − a†3a1),

Q2 =
1

2
(N2 +N4 − a†2a4 − a†4a2),

Hereafter we consider the integrable EBHM case.
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To generate NOON states we consider that:

• the system is initially in a Fock state |Ψ0〉 = |M,P, 0, 0〉,
with total boson number N = M + P odd

• the system is in the resonant tunneling regime

achieved when U |M − P | ≫ J , where U = (U12 − U0)/4.

In this resonant regime:

a) the energy levels separate into distinct bands

b) an effective Hamiltonian Heff , dynamically equivalent

to the integrable EBHM, can be obtained

c) Heff can be written in terms of charges Q1, Q2

d) Heff enables the derivation of analytical expressions for

physical quantities.
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Significant feature:

• Under this Heff , the time evolution of:

N1 +N3 = M is constant

N2 +N4 = P is constant

• In this resonant tunneling regime:

M particles can oscillate between sites 1, 3: subsystem A

P particles can oscillate between sites 2, 4: subsystem B
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NOON-state protocols:

• We describe two protocols that enable the generation of

NOON states. For Protocol I the outcomes are probabilistic

while Protocol II are deterministic.

• Both protocols consider the initial state |Ψ0〉 = |M,P, 0, 0〉
and are built around a general time evolution operator:

U(t, µ, ν) = exp

(

− it

~
[H + µ(N2 −N4) + ν(N1 −N3)]

)

The applied field strengths µ, ν implement the breaking of integrability
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NOON state generation scheme:

The four spheres on the left represent the initial state, with white indicating empty site and cyan

and blue M and P particles, respectively. Gradient colors are used to indicate that the state of a

site is entangled with the rest of the system - superposition states for each step are shown in the

framed legend. Rectangles represent applied external fields to sites 1-3 (ν) and 2-4 (µ).
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Protocol I:

Here are the steps we implement to arrive at a NOON state in subsystem B = {2, 4}:

(i) |ΨI
1〉 = U(tm − tµ, 0, 0) |Ψ0〉

(ii) |ΨI
2〉 = U(tµ, µ, 0) |ΨI

1〉
(iii) |ΨI

3〉 = M|ΨI
2〉
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Protocol I:

In Protocol I the system evolves for tm − tµ, towards the u-NOON state. Then, a field is applied

across sites 2-4 for time tµ, to encode a phase. The cyan halo portrays a measurement process at

site 3: outcomes |0〉 and |M〉 signify which of two possible NOON states results across sites 2-4.
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Analytical results:

Analytic results are obtained by employing the effective Hamiltonian in an extreme limit, with

divergent applied fields acting for infinitesimally small times: µ → ∞, tµ → 0, such that θ

remains finite. Here β = (−1)(N+1)/2. We find for the final state at step (iii):

|ΨI
3〉 =











1√
2

(

β |M,P, 0, 0〉+ eiPθ |M, 0, 0, P 〉
)

, r = 0

1√
2

(

|0, P,M, 0〉 − βeiPθ |0, 0,M, P 〉
)

, r = M

• These states are recognized as products of a NOON state for subsystem B = {2, 4}

with Fock basis states for subsystem A = {1, 3}.
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Protocol II:

Here the following steps are implemented to arrive at a NOON state in subsystem B = {2, 4}:

(i) |ΨII
1 〉 = U(tm − tν , 0, 0) |Ψ0〉

(ii) |ΨII
2 〉 = U(tν , 0, ν) |ΨII

1 〉
(iii) |ΨII

3 〉 = U(tm − tµ, 0, 0) |ΨII
2 〉

(iv) |ΨII
4 〉 = U(tµ, µ, 0) |ΨII

3 〉
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Protocol II:

In Protocol II the system first evolves for time tm − tν , then a field is applied to sites 1-3 for time

tν to implement the phase π/2. Next, the system evolves for time tm − tµ, after which a field is

applied to sites 2-4 to encode a phase during time tµ. This results in a NOON state across sites

2-4, without performing a measurement procedure
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Analytic results:

Similar to Protocol I, analytic results are obtained by employing the effective Hamiltonian. We

obtain for the final state at step (iv): (here Υ = β exp(i(Pθ − π/2)))

|ΨII
4 〉 =

1√
2

(

|M,P, 0, 0〉+Υ |M, 0, 0, P 〉
)

This state is recognized as a product of a NOON state for subsystem B = {2, 4}

with a deterministic state (Fock basis state) for subsystem A = {1, 3}.
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Protocol fidelities:
• We give numerical simulations of the protocols to show

that, for physically realistic settings (see Set I and Set II)

high-fidelity outcomes for NOON state production persist.

• The fidelities of Protocols I and II are defined as:

FI = | 〈ΨI
3|ΦI

3〉 | FII = | 〈ΨII
4 |ΦII

4 〉 |
|Ψ〉: denotes the analytical states obtained using the effective Hamiltonian

|Φ〉: denotes the numerically calculated state obtained by EBHM time evolution.

OBS: The fidelities are computed for Pθ ranging from 0 to π, achieved by varying tµ. As

the values remain almost constant for Pθ ∈ [0, π], varying less than 1%, we display here

only one case.
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Protocol fidelities:

FI FII Pθ = π/2

r = 0 r = M tµ tν tm
Set 1 0.986 0.997 0.974 0.0024 s 0.0065 s 6.1639 s

Set 2 0.964 0.991 0.920 0.0026 s 0.0072 s 2.8913 s

Fidelities for Protocols I (FI) and II (FII) and related times tm, tµ and tν (fixed), concerning to

the parameters of Set 1 and Set 2, for |Ψ0〉 = |4, 11, 0, 0〉.

• Two realistic sets of parameters (in Hz):

Set 1: {U/~ = 104.85, J/~ = 71.62, µ/~ = 30.02}

Set 2: {U/~ = 105.60, J/~ = 104.95, µ/~ = 27.42}
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Observations:

• Both protocols display high fidelity results greater than 0.9.

• The higher fidelity results associated to parameter Set 1,

compared to Set 2, are produced through longer evolution

time: these results reflect the trade-off between fidelity and

total evolution time.

• The required times tm, 2tm to produce the NOON states

are comparable with typical lifetimes of optical lattice traps.

• Advantage of the protocols: the evolution time is

independent of total particle number, offering an

encouraging prospect for scalability.
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Experimental feasibility:

a) Trapping scheme: 2D square optical lattice is generated with 2 sets of counterpropagating laser

beams crossing at 90. The superlattice of 4-site model is achieved overlapping the 2D short lattice

(cyan) and long-lattice (blue). The vertical lattice (orange) provides confinement in z direction.

An additional 2D square long-lattice (green) is used to implement the integrability break control.

b) Zoom into the region of the superlattice which contains the 4-site plaquette. c)

Breaking-of-integrability scheme
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3-Application: 4-sites in a

tetrahedral geometry:

Quantum Turntable
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• Here we design a quantum turntable that
spatially transfers entangled states with high
fidelity in a rotating frame.

• For this, we study a system of ultracold dipolar
atoms in a tetrahedral geometry, that is set to
rotate at constant angular frequency Ω.

• The system can be described by the Extended
Bose-Hubbard Model in a rotating frame.
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Geometric representation of rotating tetrahedral system

Sites 1, 2, 3 form the triangular base. Blue arrows show dipoles

along z-axis. The system rotates around z with angular freq. Ω.
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Extended Bose-Hubbard model in a rotating frame:

H =
U0

2

4
∑

i=1

Ni(Ni − 1) +
4

∑

i=1

4
∑

j=1;j 6=i

Uij

2
NiNj

− J
4

∑

i<j=1

(a†iaj + a†jai) +Hrot

• U0: characterizes the interaction between bosons at the same site

• Uij = Uji, i 6= j: characterize DDI between bosons at different sites (i and j)

• J : couplings for the tunneling between different sites

• Hrot: characterizes the rotation of the system.
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Our approach combines various ingredients:

• Long-range interactions via dipolar atoms.

• Non-equilibrium phenomena via use of a
rotating frame.

• Property of superintegrability guiding the
proposal.
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Cases Considered:

• Non-rotating case: Superintegrable.

• Rotating case: Integrability persists.

Bethe Ansatz applied as analytical basis
for the quantum turntable.
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Superintegrability in a Static Frame (Hrot = 0)

• Geometric symmetry: U14 = U24 = U34, U12 = U23 = U13

• Superintegrability condition: U12 = U0 = 2U

• H reduces to:

H = H0 = U(N1+N2+N3−N4)
2−J

∑

i<j(a
†
iaj +a†jai)

⋄ It has 4 degrees of freedom.

⋄ It is superintegrable: has more conserved quantities than

degrees of freedom.

Then the system is set to rotate.
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Integrability in a Rotating Frame:

• Rotation term: Hrot = −ζJ

J = i
√
3
[

(a†2a1 + a†3a2 + a†1a3)− (a†1a2 + a†3a1 + a†2a3)
]

• Total Hamiltonian: H(ζ) = H0 − ζJ
• Effect: superintegrability is broken, but...

• Integrability preserved: 4 conserved operators:

{H(ζ), N,Q2, Q3}
• These conserved operators can define Heff , enabling the

derivation of analytical expressions for physical quantities.
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Quantum turntable for different initial states:

• Expectation values of populations at sites k = 1, 2, 3

〈Nk〉 =
3

∑

i=1

ni

9

{

1 + 4 cos θk,i(t)[cos(ξt) + cos θk,i(t)]
}

,

where θk,i(t) = tζ + 2π(k − i)/3

ξ = 3J − 3Jγ
2

[

N+1−γ
(N−2n4−γ)2−1

]

, γ = J
2U

.

• At ζ = ξ/3, this eq. yields the time interval required for

particle transfer between consecutive sites:

τ = π/ξ

• The system can act as a quantum turntable, capable of

spatially transferring different initial states.
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Transfer of Fock states:

• Schematic of Fock state dynamics on a quantum turntable

rotating at Ω. Colored spheres represent sites with particles.

For a particular Ω, the initial state |N, 0, 0, 0〉 evolves to

|0, N, 0, 0〉 over time interval τ .
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Transfer of NOON states:

a) One of the components of the NOON state remains fixed at

site 4, while the other is transferred across sites 1, 2 and 3.

b) The NOON state prepared in sites 1 and 2 is transferred along

the neighbouring two-site subsystems.
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Fidelity:

0.99

1.0

F
id

e
lit

y

a

F 2(τ)

0.99

1.0

F
id

e
lit

y

b

F 23(τ)

0.1 0.15 0.2

J/U

0.99

1.0

F
id

e
lit

y

c

F 231(τ)

Fidelity computations for N = 19 - numerical versus analytic

expressions from Bethe Ansatz results. All cases display

high-fidelity results greater than 0.99.
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4- CONCLUDING REMARKS
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Concluding remarks:

• We discussed integrable multi-sites qtum tunneling models,

which may be formulated in different configurations and

geometries;

• As an application, we showed how to generate and encode a

phase into a NOON state by exploring the 4-sites in a ring;

• We showed how to use 4-sites in a tetrahedral geometry to

design quantum turntable that spatially transfers entangled

states with high fidelity in a rotating frame.
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• Integrable models continue to evolve, showing
potential for quantum technologies.

• Exactly solved models - past, present and future -
are windows into the deeper structure of nature.

• Rodney Baxter’s clarity, elegance, and curiosity
remain timeless.
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Photo taken in Porto Alegre, September, 2018
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Photo taken in Porto Alegre, June, 2025
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