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Motivation

m Symmetric functions are central objects in algebraic combinatorics,
representation theory and geometry.

m There are many well-studied bases of the ring of symmetric functions. We
understand how to write most of them as partition functions of vertex models.

m The connection with integrability yields many nice features of the functions:

Symmetry Commuting transfer matrices
Symmetrization identity Coordinate Bethe Ansatz
Cauchy summation identity | Yang—Baxter algebra or RTT relation

m A much harder problem is to study the expansion coefficients from one basis to
another:
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Macdonald polynomials

m The Macdonald polynomials P, (x; g, t) depend on an alphabet x = (x1, xp, . ..

and two further parameters g, t.

m They are uniquely characterized by the following two properties:

Py(x;q,t) = my(x) + Z Cym(q/t)my(x)r
u<v
where m,, (x) denotes a monomial symmetric function
my (x) = Sym | [
iz1

(P\,P,) =0, A#v

where the scalar product (-, -) is defined via its action on the power sum basis:
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Macdonald polynomials

m Many reductions are of interest. When g = t, one has the following reduction to
Schur polynomials:

P(xig,) =su(x) = | det (i),

1<i,j</

where h;(x) denotes a complete symmetric function

1
hy(x) = Coeff {H s }

i1

m In this talk we consider the integral form of the Macdonald polynomials:

Ju(x;9,t) = cu(q,t)Py(x; 4, t)

where S

Cv(q,t) _ I‘I (1 . qa(S)tl(S)—H) Lis)=2
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Macdonald polynomials

m The integral Macdonald polynomials take their name from the fact that

Ju(x;q,t) = Z D,‘bl,V(q’t)mV(x>/

p<v

where D, ,(q,t) € Z|q, t].

m This was originally conjectured by Macdonald, and later proved by [Sahi 96] and
[Knop 97].

m In fact, one can get stronger results for these coefficients.



Macdonald polynomials

m Foranyi,je€ Zzpand S C Z% define

(gt =+q'd TT (1 q%tP).
(a,B)€S

Then for any k € IN, define

+,i,j
IFIZ{t(th) — { S ](q/t>

i,j € Zso, 5cz;0:|5|:k}.

Theorem (Haglund—Haiman—Loehr 06)

There exists a family of tableaux T such that

L(xgt)= Y, Wr(gt)x"
T of shape v

where Wr(q,t) € F

vl

(g,t) is explicit.



Macdonald into Schur basis

m The topic of this talk is the expansion of ], (x; g, t) over the Schur basis:

Jo(x;q,8) = Y Exu(g, t)sa(x)

ALy
where E, ,(q,t) € Z|q, t].

Conjecture (Haglund 10)

For any partitions A, v such that |A| = |v| and k € IN, one has

Partial progress by [Bhattacharya 22].



Main result

Theorem (Gunna—-W 25+)

There exists an explicit partition function Z such that

EA,v(qrt) — Z We (q/ t)/
C with frame (Av)

where W (q,t) € F=

vl

(g,t) is explicit.

m This just fails, however, to prove Haglund’s conjecture:

Corollary

k
D DI (o 0
(1—9) C with frame (A,v)

where sgn(C) € {£1} may be explicitly defined, and with each Ps(q) € IN[g].



Examples

m Here are some examples of the combinatorial formula.

mv=(2), A= (11)
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Examples

mu=(4), A=(22)

gt (1 -1t —q(1-4%) (1 -2 (1 P -9 (1-¢2) (-

PA-D21-q) (1-gt)  —(1- (1



mv=(31), A=(22)
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Examples

mv=(31),A=(211)




Proof via the Yang—Baxter equation

m The vertex weights used in the construction of Z satisfy a Yang—Baxter equation.

m The verification of the identity

Jo(x;9,8) = Y Ery(g,£)sx(x)

ALy

proceeds by analysis of the left and right hand sides of our Yang—Baxter equation:
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Macdonald polynomials from vertex models

m Consider the following vertex model:

wx(A,b;Cd) = x — i = X — b

A,Ce {01}, bde{01,...,n}
m We demand that w,(A,b;C,d) =0 unless A+ ¢, = C + e,.
(1,0)
i -JKZ

(0,1)



Macdonald polynomials from vertex models

m The nonzero vertices of the model are given as follows:

A A Az'_
T R Al

A A A

1 (—1)A tinl x (1 — A1) nl x

At A;_ Aﬁ_
i'j 0 ijﬁ]’ j—j‘ﬁi

A A A

1 (1 — 40l x 0

where it is assumed that 0 < i < j < n in this tabulation.




Macdonald polynomials from vertex models

m Fix a composition v = (1 <1, < -+ < v, < M). Construct the partition function
Co I TENTR o () P
n M A 1w o A
Pu(x;9,t) = ) HHwi’j i Ly J 0
A1), A(M) i=1j=1 0 0
0 0
0 0
)0 0
where € AR oo
n
I(]) - Zlvi:j "€
i—1

and

wij = Ly

foralll<i<nandl <j< M.



Macdonald polynomials from vertex models

m Let v denote the partition obtained by sorting v.

Theorem (Aggarwal-Borodin—W 21)

Jo+(x:9,t) = Pu(x;9, ).
m This result is motivated by, and proved in completely analogous fashion to an
earlier formula for Macdonald polynomials in [Cantini—-de Gier—W 15].

m By a relatively simple bijection, one may show that this expression is equivalent to
the tableau formula of [Haglund—Haiman—Loehr 06].



Schur polynomials from vertex models

m Fix a composition A = (0 < A < -+ < Ay ). Define a shifted version of A as

follows:
A={M+1,A+2,..., AN+ N} CN.

We define J0) ]'(z\ ]‘(*) ........................

(0]
t) =

Qa(x;t) .,
@)
X, 0]

where J(j) =15 -eq forall j >

Theorem (Aggarwal—Borodin—W 21)



Thanks for listening!

Jo(x;q,8) = Y Exu(g, t)sa(x)

ALy
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