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Motivation

Symmetric functions are central objects in algebraic combinatorics,

representation theory and geometry.

There are many well-studied bases of the ring of symmetric functions. We

understand how to write most of them as partition functions of vertex models.

The connection with integrability yields many nice features of the functions:

Symmetry Commuting transfer matrices

Symmetrization identity Coordinate Bethe Ansatz

Cauchy summation identity Yang–Baxter algebra or RTT relation

A much harder problem is to study the expansion coefficients from one basis to

another:

Fλ(x) = ∑
µ

cλ,µGµ(x).



Macdonald polynomials

The Macdonald polynomials Pν(x; q, t) depend on an alphabet x = (x1, x2, . . . )
and two further parameters q, t.

They are uniquely characterized by the following two properties:

1

Pν(x; q, t) = mν(x) + ∑
µ<ν

Cµ,ν(q, t)mµ(x),

where mµ(x) denotes a monomial symmetric function

mµ(x) = Sym

(

∏
i↭1

xµi
i

)

2

→Pλ , Pν↑ = 0, λ ↓= ν

where the scalar product →·, ·↑ is defined via its action on the power sum basis:

→pλ , pν↑ = ελ,ν · zλ ·
ω(λ)

∏
i=1

1 ↔ qλi

1 ↔ tλi
pλ(x) = ∏

i↭1

(

∑
k↭1

xλi
k

)



Macdonald polynomials

Many reductions are of interest. When q = t, one has the following reduction to

Schur polynomials:

Pν(x; q, q) = sν(x) = det
1↫i,j↫ω(ν)

(
hνi↔i+j(x)

)
,

where hk(x) denotes a complete symmetric function

hk(x) = Coeffzk

{

∏
i↭1

1
1 ↔ xiz

}

In this talk we consider the integral form of the Macdonald polynomials:

Jν(x; q, t) = cν(q, t)Pν(x; q, t)

where

cν(q, t) = ∏
s↗ν

(
1 ↔ qa(s)tl(s)+1

)
s a s 3

s 2



Macdonald polynomials

The integral Macdonald polynomials take their name from the fact that

Jν(x; q, t) = ∑
µ↫ν

Dµ,ν(q, t)mµ(x),

where Dµ,ν(q, t) ↗ Z[q, t].

This was originally conjectured by Macdonald, and later proved by [Sahi 96] and

[Knop 97].

In fact, one can get stronger results for these coefficients.



Macdonald polynomials

For any i, j ↗ Z↭0 and S ↘ Z2
↭0 define

f±,i,j
S (q, t) = ±qitj ∏

(ϱ,β)↗S
(1 ↔ qϱtβ).

Then for any k ↗ N, define

F±
k (q, t) =

{
f±,i,j
S (q, t)

∣∣∣i, j ↗ Z↭0, S ↘ Z2
↭0 : |S| = k

}
.

Theorem (Haglund–Haiman–Loehr 06)

There exists a family of tableaux T such that

Jν(x; q, t) = ∑
T of shape ν

WT(q, t)xT

where WT(q, t) ↗ F+
|ν|(q, t) is explicit.



Macdonald into Schur basis

The topic of this talk is the expansion of Jν(x; q, t) over the Schur basis:

Jν(x; q, t) = ∑
λ↫ν

Eλ,ν(q, t)sλ(x)

where Eλ,ν(q, t) ↗ Z[q, t].

Conjecture (Haglund 10)

For any partitions λ, ν such that |λ| = |ν| and k ↗ N, one has

Eλ,ν(q, qk)

(1 ↔ q)|ν|
↗ N[q].

Partial progress by [Bhattacharya 22].



Main result

Theorem (Gunna–W 25+)

There exists an explicit partition function Z such that

Eλ,ν(q, t) = ∑
C with frame (λ,ν)

WC (q, t),

where WC (q, t) ↗ F±
|ν|(q, t) is explicit.

This just fails, however, to prove Haglund’s conjecture:

Corollary

Eλ,ν(q, qk)

(1 ↔ q)|ν|
= ∑

C with frame (λ,ν)
sgn(C)PC (q),

where sgn(C) ↗ {±1} may be explicitly defined, and with each PC (q) ↗ N[q].



Examples

Here are some examples of the combinatorial formula.

ν = (2), λ = (1, 1)

q(1 ↔ t)2 ↔(1 ↔ q)(1 ↔ t)t



Examples

ν = (4), λ = (2, 2)

q4(1 ↔ t)4 ↔q
(

1 ↔ q3
)
(1 ↔ t)2t

(
1 ↔ q2t

)
(1 ↔ q)q2

(
1 ↔ q3

)
(1 ↔ t)2t2

q2(1 ↔ t)2(1 ↔ qt)
(

1 ↔ q3t
)

↔(1 ↔ q)q3(1 ↔ t)2t
(

1 ↔ q2t
)



Examples

ν = (3, 1), λ = (2, 2)

q(1 ↔ t)3t
(

1 ↔ q2t
)

q(1 ↔ t)4

↔(1 ↔ q)q2(1 ↔ t)3t2 ↔(1 ↔ q)(1 ↔ t)2t
(

1 ↔ q2t
)



Examples

ν = (3, 1), λ = (2, 1, 1)

q(1 ↔ t)3t
(

1 ↔ q2t
)

q(1 ↔ t)4 q2(1 ↔ t)4t

↔
(

1 ↔ q2
)
(1 ↔ t)2t2(1 ↔ qt) q2(1 ↔ t)4 ↔

(
1 ↔ q2

)
(1 ↔ t)3t



Proof via the Yang–Baxter equation

The vertex weights used in the construction of Z satisfy a Yang–Baxter equation.

The verification of the identity

Jν(x; q, t) = ∑
λ↫ν

Eλ,ν(q, t)sλ(x)

proceeds by analysis of the left and right hand sides of our Yang–Baxter equation:

IEat
v m I m

Ijki too Juboq t Ejkitoo Exu g t Sa00



Macdonald polynomials from vertex models

Consider the following vertex model:

wx(A, b; C, d) = b d

A

C

x ≃ = b d

A

C

x ≃

A, C ↗ {0, 1}n, b, d ↗ {0, 1, . . . , n}.

We demand that wx(A, b; C, d) = 0 unless A + eb = C + ed.

1,0

1
12
0,1



Macdonald polynomials from vertex models

The nonzero vertices of the model are given as follows:

0 0

A

A

i i

A

A

0 i

A

A↔
i

1 (↔1)Ai tA[i,n] x (1 ↔ tAi )tA(i,n] x

i 0

A

A+
i

i j

A

A+↔
ij

j i

A

A+↔
ji

1 (1 ↔ tAj )tA(j,n] x 0

where it is assumed that 0 ↫ i < j ↫ n in this tabulation.

r e

5 5 if



Macdonald polynomials from vertex models

Fix a composition ν = (1 ↫ ν1 ↫ · · · ↫ νn ↫ M). Construct the partition function

Pν(x; q, t) = ∑
A(1),...,A(M)

n

∏
i=1

M

∏
j=1

wA(j)i
i,j

where

I(j) =
n

∑
i=1

1νi=j · ei

and

wi,j = 1νi>j · qνi↔j

for all 1 ↫ i ↫ n and 1 ↫ j ↫ M.

g o
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20 0 0

Erin Ali



Macdonald polynomials from vertex models

Let ν+ denote the partition obtained by sorting ν.

Theorem (Aggarwal–Borodin–W 21)

Jν+ (x; q, t) = Pν(x; q, t).

This result is motivated by, and proved in completely analogous fashion to an

earlier formula for Macdonald polynomials in [Cantini–de Gier–W 15].

By a relatively simple bijection, one may show that this expression is equivalent to

the tableau formula of [Haglund–Haiman–Loehr 06].



Schur polynomials from vertex models

Fix a composition λ = (0 ↫ λ1 ↫ · · · ↫ λN). Define a shifted version of λ as

follows:

λ̃ = {λ1 + 1, λ2 + 2, . . . , λN + N} ↘ N.

We define

Qλ(x; t) =

where J(j) = 1j↗λ̃ · e1 for all j ↭ 1.

Theorem (Aggarwal–Borodin–W 21)

sλ+ (x) ∏
1↫i<j↫N

(xi ↔ txj) = Qλ(x; t).

if O

i 0

20 1 0

e Co



Thanks for listening!

Jν(x; q, t) = ∑
λ↫ν

Eλ,ν(q, t)sλ(x)
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