Expansion coefficients and the Yang-Baxter equation

Michael Wheeler
University of Melbourne
Joint work with Ajeeth Gunna

Motivation

- Symmetric functions are central objects in algebraic combinatorics, representation theory and geometry.
- There are many well-studied bases of the ring of symmetric functions. We understand how to write most of them as partition functions of vertex models.
- The connection with integrability yields many nice features of the functions:

Symmetry	Commuting transfer matrices
Symmetrization identity	Coordinate Bethe Ansatz
Cauchy summation identity	Yang-Baxter algebra or RTT relation

■ A much harder problem is to study the expansion coefficients from one basis to another:

$$F_{\lambda}(x) = \sum_{\mu} c_{\lambda,\mu} G_{\mu}(x).$$

- The Macdonald polynomials $P_{\nu}(x;q,t)$ depend on an alphabet $x=(x_1,x_2,\dots)$ and two further parameters q,t.
- They are uniquely characterized by the following two properties:

$$P_{\nu}(x;q,t) = m_{\nu}(x) + \sum_{\mu < \nu} C_{\mu,\nu}(q,t) m_{\mu}(x),$$

where $m_{\mu}(x)$ denotes a monomial symmetric function

$$m_{\mu}(x) = \operatorname{Sym}\left(\prod_{i\geqslant 1} x_i^{\mu_i}\right)$$

2

$$\langle P_{\lambda}, P_{\nu} \rangle = 0, \qquad \lambda \neq \nu$$

where the scalar product $\langle \cdot, \cdot \rangle$ is defined via its action on the power sum basis:

$$\langle p_{\lambda}, p_{
u}
angle = \delta_{\lambda,
u} \cdot z_{\lambda} \cdot \prod_{i=1}^{\ell(\lambda)} rac{1 - q^{\lambda_i}}{1 - t^{\lambda_i}} \qquad p_{\lambda}(x) = \prod_{i \geqslant 1} \left(\sum_{k \geqslant 1} x_k^{\lambda_i}
ight)$$

■ Many reductions are of interest. When q = t, one has the following reduction to Schur polynomials:

$$P_{\nu}(x;q,q) = s_{\nu}(x) = \det_{1 \leqslant i,j \leqslant \ell(\nu)} \left(h_{\nu_i - i + j}(x) \right),$$

where $h_k(x)$ denotes a complete symmetric function

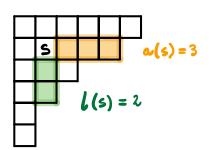
$$h_k(x) = \operatorname{Coeff}_{z^k} \left\{ \prod_{i \geqslant 1} \frac{1}{1 - x_i z} \right\}$$

In this talk we consider the integral form of the Macdonald polynomials:

$$J_{\nu}(x;q,t) = c_{\nu}(q,t)P_{\nu}(x;q,t)$$

where

$$c_{\nu}(q,t) = \prod_{s \in \nu} \left(1 - q^{a(s)} t^{l(s)+1} \right)$$



■ The integral Macdonald polynomials take their name from the fact that

$$J_{\nu}(x;q,t) = \sum_{\mu \leqslant \nu} D_{\mu,\nu}(q,t) m_{\mu}(x),$$

where $D_{\mu,\nu}(q,t) \in \mathbb{Z}[q,t]$.

- This was originally conjectured by Macdonald, and later proved by [Sahi 96] and [Knop 97].
- In fact, one can get stronger results for these coefficients.

■ For any $i, j \in \mathbb{Z}_{\geqslant 0}$ and $S \subset \mathbb{Z}_{\geqslant 0}^2$ define

$$f_S^{\pm,i,j}(q,t) = \pm q^i t^j \prod_{(\alpha,\beta)\in S} (1 - q^\alpha t^\beta).$$

Then for any $k \in \mathbb{N}$, define

$$\mathbb{F}_k^{\pm}(q,t) = \left\{ f_S^{\pm,i,j}(q,t) \middle| i,j \in \mathbb{Z}_{\geqslant 0}, S \subset \mathbb{Z}_{\geqslant 0}^2 : |S| = k \right\}.$$

Theorem (Haglund-Haiman-Loehr 06)

There exists a family of tableaux T such that

$$J_{
u}(x;q,t) = \sum_{T \text{ of shape }
u} W_T(q,t) x^T$$

where $W_T(q,t) \in \mathbb{F}^+_{|\nu|}(q,t)$ is explicit.

Macdonald into Schur basis

■ The topic of this talk is the expansion of $J_{\nu}(x;q,t)$ over the Schur basis:

$$J_{\nu}(x;q,t) = \sum_{\lambda \leq \nu} E_{\lambda,\nu}(q,t) s_{\lambda}(x)$$

where $E_{\lambda,\nu}(q,t) \in \mathbb{Z}[q,t]$.

Conjecture (Haglund 10)

For any partitions λ , ν such that $|\lambda| = |\nu|$ and $k \in \mathbb{N}$, one has

$$\frac{E_{\lambda,\nu}(q,q^k)}{(1-q)^{|\nu|}} \in \mathbb{N}[q].$$

Partial progress by [Bhattacharya 22].

Main result

Theorem (Gunna-W 25+)

There exists an explicit partition function Z such that

$$E_{\lambda,
u}(q,t) = \sum_{\mathcal{C} \; \textit{with frame} \; (\lambda,
u)} W_{\mathcal{C}}(q,t),$$

where $W_{\mathcal{C}}(q,t) \in \mathbb{F}^{\pm}_{|\nu|}(q,t)$ is explicit.

■ This just fails, however, to prove Haglund's conjecture:

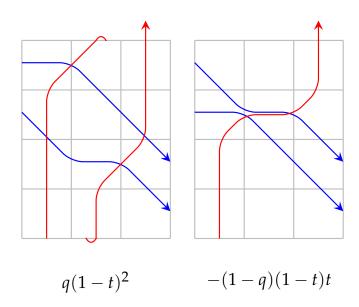
Corollary

$$rac{E_{\lambda,
u}(q,q^k)}{(1-q)^{|
u|}} = \sum_{\mathcal{C} \; \textit{with frame} \; (\lambda,
u)} \mathrm{sgn}(\mathcal{C}) \mathcal{P}_{\mathcal{C}}(q),$$

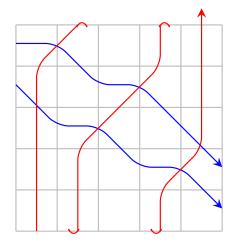
where $sgn(\mathcal{C}) \in \{\pm 1\}$ may be explicitly defined, and with each $\mathcal{P}_{\mathcal{C}}(q) \in \mathbb{N}[q]$.

■ Here are some examples of the combinatorial formula.

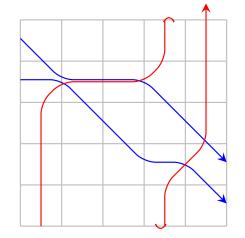
$$\mathbf{v} = (2), \ \lambda = (1,1)$$



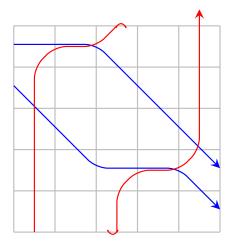
$$\mathbf{v} = (4), \ \lambda = (2, 2)$$



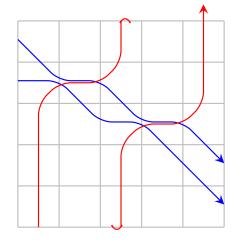
$$q^4(1-t)^4$$



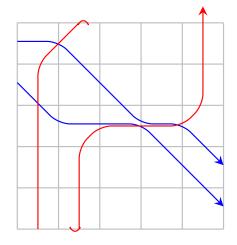
$$-q\left(1-q^3\right)(1-t)^2t\left(1-q^2t\right)$$
 $(1-q)q^2\left(1-q^3\right)(1-t)^2t^2$



$$q^2(1-t)^2(1-qt)\left(1-q^3t\right)$$

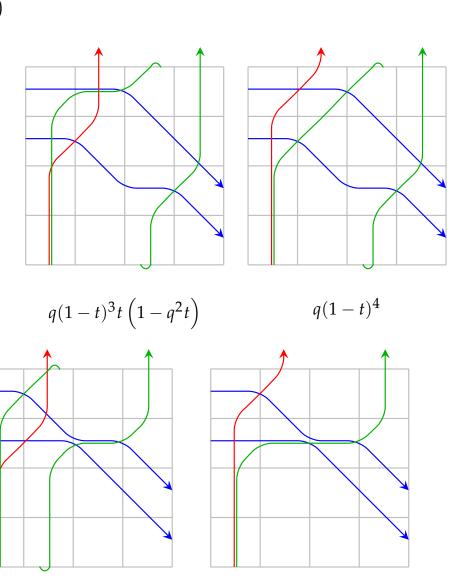


$$(1-q)q^2(1-q^3)(1-t)^2t^2$$



$$q^{2}(1-t)^{2}(1-qt)\left(1-q^{3}t\right) - (1-q)q^{3}(1-t)^{2}t\left(1-q^{2}t\right)$$

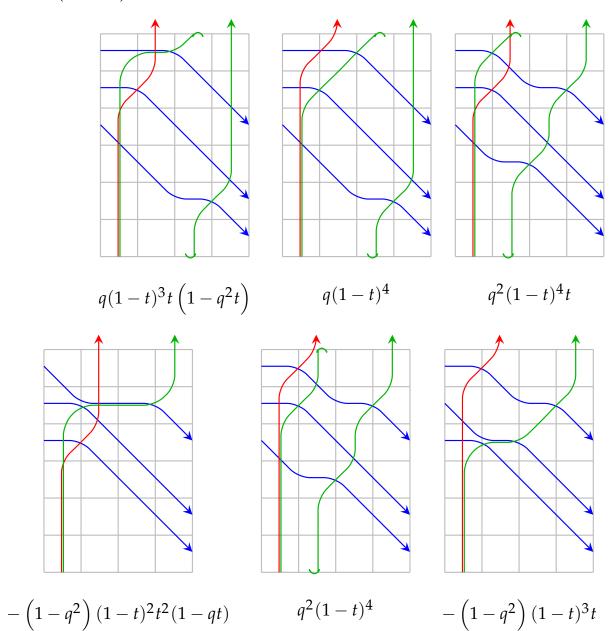
$$\mathbf{v} = (3,1), \ \lambda = (2,2)$$



$$-(1-q)q^2(1-t)^3t^2$$

$$-(1-q)q^{2}(1-t)^{3}t^{2} \qquad -(1-q)(1-t)^{2}t\left(1-q^{2}t\right)$$

 $\mathbf{v} = (3,1), \ \lambda = (2,1,1)$

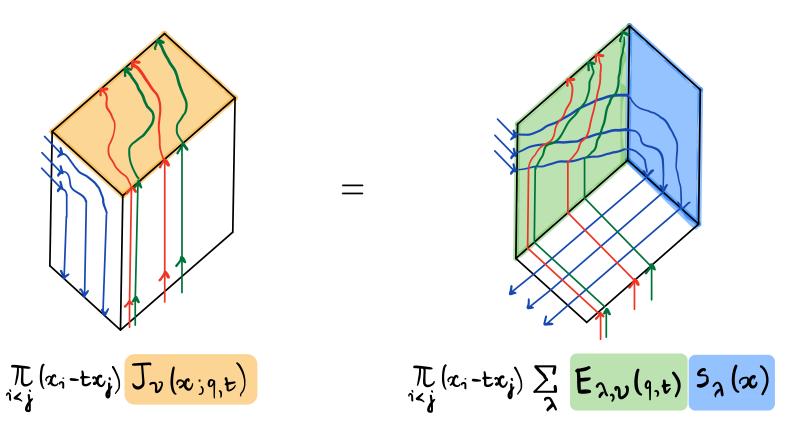


Proof via the Yang-Baxter equation

- The vertex weights used in the construction of Z satisfy a Yang-Baxter equation.
- The verification of the identity

$$J_{\nu}(x;q,t) = \sum_{\lambda \leqslant \nu} E_{\lambda,\nu}(q,t) s_{\lambda}(x)$$

proceeds by analysis of the left and right hand sides of our Yang-Baxter equation:

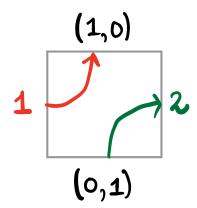


Consider the following vertex model:

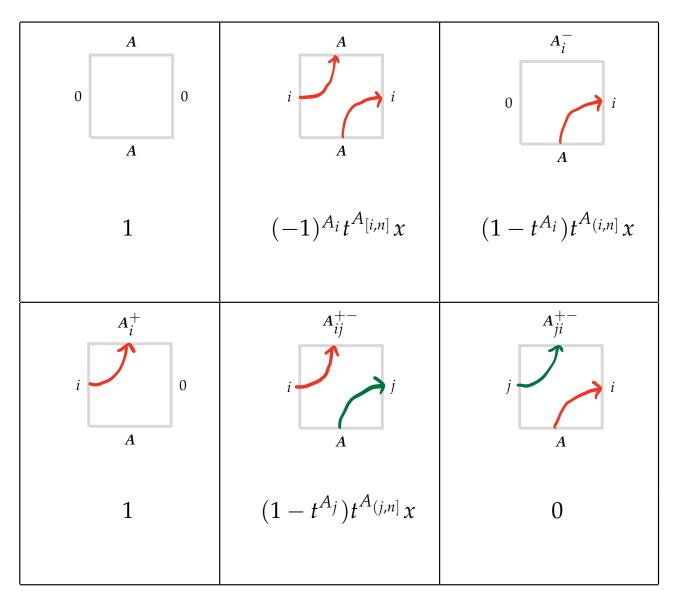
$$w_x(A,b;C,d) = x \rightarrow b \qquad \qquad \begin{array}{c} c & c \\ & & \\ & & \\ A & & \end{array}$$

$$A, C \in \{0,1\}^n, \quad b, d \in \{0,1,\ldots,n\}.$$

■ We demand that $w_x(A, b; C, d) = 0$ unless $A + e_b = C + e_d$.



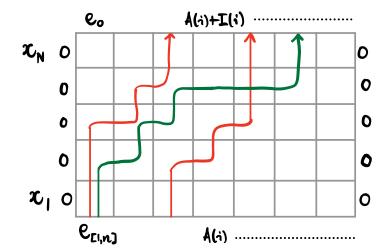
■ The nonzero vertices of the model are given as follows:



where it is assumed that $0 \leqslant i < j \leqslant n$ in this tabulation.

■ Fix a composition $\nu = (1 \le \nu_1 \le \cdots \le \nu_n \le M)$. Construct the partition function

$$\mathcal{P}_{\nu}(x;q,t) = \sum_{A(1),\dots,A(M)} \prod_{i=1}^{n} \prod_{j=1}^{M} w_{i,j}^{A(j)_{i}} \quad \mathbf{x_{N}} \quad \mathbf{o} \begin{bmatrix} \mathbf{v} \\ \mathbf{o} \end{bmatrix}$$



where

$$I(j) = \sum_{i=1}^{n} \mathbf{1}_{\nu_i = j} \cdot e_i$$

and

$$w_{i,j} = \mathbf{1}_{\nu_i > j} \cdot q^{\nu_i - j}$$

for all $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant M$.

Let ν^+ denote the partition obtained by sorting ν .

Theorem (Aggarwal–Borodin–W 21)

$$J_{\nu^+}(x;q,t)=\mathcal{P}_{\nu}(x;q,t).$$

- This result is motivated by, and proved in completely analogous fashion to an earlier formula for Macdonald polynomials in [Cantini—de Gier—W 15].
- By a relatively simple bijection, one may show that this expression is equivalent to the tableau formula of [Haglund—Haiman—Loehr 06].

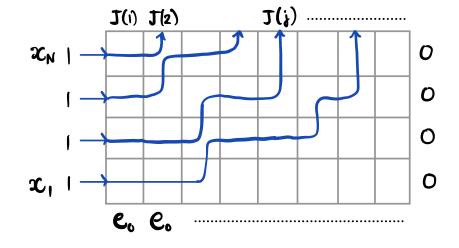
Schur polynomials from vertex models

■ Fix a composition $\lambda = (0 \le \lambda_1 \le \cdots \le \lambda_N)$. Define a shifted version of λ as follows:

$$\tilde{\lambda} = \{\lambda_1 + 1, \lambda_2 + 2, \dots, \lambda_N + N\} \subset \mathbb{N}.$$

We define

$$Q_{\lambda}(x;t) =$$



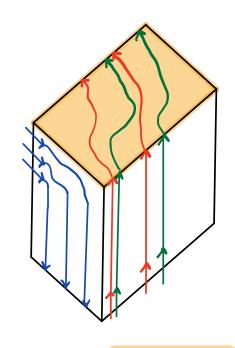
where $J(j) = \mathbf{1}_{j \in \tilde{\lambda}} \cdot e_1$ for all $j \geqslant 1$.

Theorem (Aggarwal-Borodin-W 21)

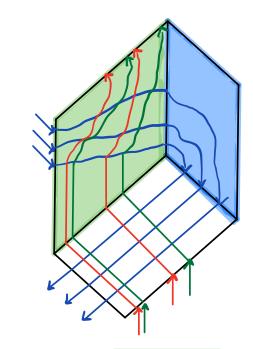
$$s_{\lambda^+}(x)\prod_{1\leqslant i< j\leqslant N}(x_i-tx_j)=\mathcal{Q}_{\lambda}(x;t).$$

Thanks for listening!

$$J_{\nu}(x;q,t) = \sum_{\lambda \leqslant \nu} E_{\lambda,\nu}(q,t) s_{\lambda}(x)$$



$$\frac{\pi}{1 < j} (x_i - tx_j) \frac{J_{\nu}(x_j, t)}{J_{\nu}(x_j, t)}$$



$$\frac{\mathcal{T}_{i < j}(x_i - tx_j)}{\sum_{\lambda} \sum_{\lambda} \left(x_i - tx_j \right)} \sum_{\lambda} \left(\sum_{i < j} (x_i - tx_j) \sum_{\lambda} \left(x_i - tx_j \right) \sum_{\lambda} \left(x_i - tx_j \right)$$