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PREAMBLE, WHY HETEROTIC STRING
I. What we know from experimental and theoretical physics at the moment
about the microstructure of the Universe:
a. Special and General Theories of Relativity,
b. Quantum Field Theory (fundamental object is 0-dimensional particle),

c. SU(3)xSU(2)xU(1) Standard model of Gauge Theory, Vector particles:
gluons, photons, W-bosons, Spinor particles: quarks, leptons,

d. Three Generations of the quarks and leptons,
e. Quarks and leptons are chiral.
f. Dark Matter exists.

Il. What don't we know and would like to know:

a. How to construct Quantum Gravity (to solve the problem of
non-renomalizability),

b. How to unify 3 types of interactions of Elementary particles,

c. How to explain that the number of Generations is namely three,

d. How to unify all 4 types of interactions of the particles,

e. How to explain that the right and the left elementary fermions belong to
different representations of the Gauge Group,

f. How to explain that Dark Matter exists; Why do elementary particles exist

that are gauge interaction singlets? How many types of such particles are there? , ..



Abstract

Heterotic string models in 4-dimensions are Hybrid of two theories:

of Left-moving N = 1 Fermionic string theory with the central charge 15 whose
extra 6-dimensions are compactified on a N =2 SCFT theory with the central
charge 9, which is equivalent to the compactification on Calabi-Yau manifolds
(Gepner)

and of Right-moving Bosonic string theory with the central charge 26, whose
6-dimensions are also compactified on N =2 SCFT theory with the central
charge 9,

and whose extra 13 dimensions form the torus of E(8) x SO(10) Lie algebra.

The important class of exactly solvable Heterotic string models discovered
earlier (1987) by D. Gepner correspond to products of N = 2 minimal models
with total central charge ¢ =9, which is equivalent to compactification on
Calabi-Yau manifolds, which belong to the subclass of CY-manifolds of
Berglund-Hubsch type.
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Introduction

We generalize this construction to all cases of compactifications on Calabi-Yau
manifolds of general Berglund-Hubsch (BH) type.

For this purpose, we use the Batyrev-Borisov combinatorial approach for
constructing Calabi-Yau manifolds of BH type and several additional reductions
to the BRST reduction of left- and right-vertex algebras.

As a result these models obtain the N = 1 Space-Time Supersymmetry, arising
from GSO reduction on Left side,

and the Gauge symmetry E(8) x E(6) Lie algebra (whose subalgebra is
SU(3) x SU(2) x U(1)) arising from a similar reduction on Right side.

We show how the number of 27, 27 representations of E(6) (including quarks
and gluons)

and Singlets of E(6) (i.e. Dark matter particles) are determined by the data of
reflexive Batyrev polyhedra corresponding to the CY manifold under
consideration.
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Introduction

The method uses the Batyrev-Borisov combinatorial approach, to implement a
vertex algebra realized by free bosonic and fermionic fields for the states of the
Calabi-Yau sector.

Our construction uses the requirement of mutual locality

of Left-moving vertices with N =1 SUSY space-time generators

and of Right-moving vertices with generators of E(8) x E(6)-Gauge symmetry.
After this, the requirement of mutual locality of the products of the Left and
Right vertices of physical states with each other together with other

requirements of the Conformal bootstrap, leads to a self-consistent result
precisely for the above-chosen torus E(8) x SO(10).

Based on these requirements, we explicitly construct Vertex operators of the
physical states of the theory in the following order.
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The initial product of two Conformal field theories

The construction of Heterotic string starts with a theory that is the product of
two Conformal Field theories:

N =1 SCFT on the Left, holomorphic side and

N =0 CFT on the Right, antiholomorphic side.

In Left sector we have the product of the 4-dimensional N =1 CFT for the
subsector of Space-Time with central charge 6, and the N =1 CFT for the
compact Calabi-Yau subsector with central charge 9, so that the total central
charge in the left sector is ¢ = 15.

N =1 SCFT of Left ST subsector is the theory
of 4 free bosons x*(z) and 4 Majorana fermions ¥*(z).

N =1 SCFT of Left CY subsector with central charge 9 is the theory
of free bosons X*(z) and Majorana fermions W(z), where i = 1,..., 5.

The algebra of vertex operators in this subsector is determined by the data of a
Calabi-Yau manifold of Berglund-Hubsch type.
Left-moving energy-momentum tensor is (others will be defined later)

1 v 1 . v
TL(Z) = Emwax“ax + Enw,w‘ (2)ov" (2) + Téy(z).
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The initial product of two Conformal field theories

In Right sector we have the product of four N = 0 Conformal Field theories:

CFT Space-Time subsector with central charge 4, realized by 4 bosonic fields
x*(2),

CFT E(8) subsector with the central charge 8, realized by 8 free boson fields
Yi(2),] =1, ...,8 compactified on the torus of the E(8) algebra,

CFT SO(10) subsector with the central charge 5, realized by 5 free bosonic
fields ®,(Z),« =1, ...,5 compactified on the torus of the SO(10) algebra,
CFT Calabi-Yau subsector with central charge 9.

So that the total central charge in the right sector is ¢ = 26.

The CFT of CY subsector with the central charge 9 is realized similarly to the
left one by free bosons X*(Z) and Majorana fermions U(Z), where i = 1, ..., 5.
Right-moving energy-momentum tensor is

y 1= 1,
TR(Z) = 5w 0% 0% + 5(8\/,)2 + E(a<1>a)2 + T&(2).
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Calabi-Yau manifolds and N=2 SCFT

Following to Borisov we construct of N=2 SCFT models corresponding to
Calabi-Yau models of the Berglund-Hubsch type in terms the free fields.

The N = 2 Virasoro superalgebra generators in this construction are expressed
in terms of the free bosons X*(z), the Majorana fermions W (z), where
i=1,..,5.

We will also use the free boson fields H;,i = 1,...,5, in terms of which the
Majorana fermions are expressed as Wi (z) = exp [+iHi(z)].

The operator product expansion (OPE) of these fields looks as follows
X,Jr(u)Xf(z) = §jjlog(u—z) + ...,

U@ (2) = 8yu— )
Hi(u)H;j(z) = —djjlog(u — z) + ....
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N= 2 Super-Virasoro algebra

The currents Tey(z), G5, (z) and the U(1) current Jey(z) that form N = 2
Virasoro algebra of Calabi-Yau subsectors look as follows

Tev(z) = Z[ax*ax + = (aw*w + 0w V) +

i=1

S (@ PX 43 0P X))

Giv(z) =2 Z[ (VSaX + 0wl a))),

i=1

Geoyl(z fZ[w X" +owrah)),

Jov(2) = Z[w,*w,f + a7 90X, — a; OX;].

i=1
It is also be useful to represent the currents Tcy(z) and Jey(z) in the following
equivalent bosonic form

5
Tev(z) = S [oxt0x™ — %(8H,-)2 + %(a,.*azx,f +am X)),

5
Jov(z) =0 [iHi+ af X7 — a; X;'] = 0Hev (2).
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Calabi-Yau manifolds and N=2 SCFT

The vectors 3% and 3~ depend on the Calabi-Yau manifold selected for
compactification on it.

(These vectors change the value of the central charge, as was the case in the
Dotsenko-Fateev design of the Virasoro minimal models.)

Below we will show how to define " and 3~ , and also that the scalar product
of these vectors is equal 1.

The central charge ¢ of the N = 2 Virasoro algebra under consideration is
expressed through these vectors as follows

5
c .
§_5—21'5:13,-;:7,-.

These statements will be explained below.
The central charge of the left and right Calabi-Yau subsectors is 9, which is
necessary for Heterotic string theory to be self-consistent.
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Berglund-Hubsch type CY manifolds and N=2 SCFT models

Calabi-Yau manifolds of BH type are defined as a hypersurface in the weighted
projective space Pj by the equation

Ajj
Y
1

Wi, .o3s) = >[5 =o.

5 5
i=1 j=
Here k = ki, ..., ks, where ki, i =1,...,5 are the weights of P;.

W(y1,...,ys) is a nondegenerated polynomial with invertible integer matrix A;.
It is assumed that the variables y; have positive rational degrees g; = %, and
d=3">, ki, such that 3" A;q; = 1 for all i.

The polynomial W and the monomial H?Zly,- are invariant under the
substitution y; — exp(i27q;)y;.

Such a symmetry group G described above always exists, call it the "minimum
admissible group."The maximum allowed group can be larger.

The mirror CY-manifold is defined by the mirror polynomial W with the
transposed matrix A,-JT- in the mirror projective space P?, and by the dual
admissible group G'.

This group is defined based on some duality requirements.
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Berglund-Hubsch type CY manifolds and N=2 SCFT models

From the described Berglund-Hubsch data, the potential W and the admissible
group G, one can obtain the Batyrev-Borisov combinatorial data, which will
then be used in constructing the Calabi-Yau sectors in the Heterotic string.

Namely, this can be done as follows. Let My and Ny be two integer
5-dimensional lattices with bases i; and vj, whose pairing is

a; - ‘7; = Ay,
where Aj; are the exponents of the potential W.

The solution to these equations can be chosen as follows
(@); = Ay, (vi)j = dj-

We define vectors 3t and 3, which are related to vectors &; and v; as follows
1 1
-+ * = - =
a = ? E k,’ uj, a = g E kJVJ.
i J

It is easy to verify that these vectors satisfy to the following equations
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Berglund-Hubsch type CY manifolds and N=2 SCFT models

The next step is to extend the lattices Mo and Ny to a pair of dual Batyrev
lattices M and N for the case when the group G for the polynomial W is
minimal.

First, we extend the lattice Ny to the lattice N = Ny + &~ which includes the
vector 3.

In the next step we find the basis of the lattice N, we denote its elements as

Then we find the basis of the dual lattice M as the five vectors &, whose
pairing with &3, (o, =1,...,5) is

é:l . e_;‘[; = 50‘75.

In what follows, an important role in the construction of Heterotic strings will
be played by elements mi € M and @ € N belonging to M and N, and especially
those of them that belong to the reflexive Batyrev polyhedra A" and A~
inside these lattices.
The latter means means that i € A" and 7€ A, if

m-i =1, 3" -A=1.

From which it follows that the central charge in the subsector CY is equal to 9.
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Berglund-Hubsch type CY manifolds and N=2 SCFT models

In constructing the vertex algebra of Heterotic string we will use vertices
corresponding to the points of the dual lattices M and N.

To construct fermion states we also need to use in both, Left and Right sectors
vertices corresponding to M & 2a+ and N + 1a~ elements.

The reason for this extension is that we want to build Heterotic string theory
that includes SCFT of CY as subsector.

Therefore, since we have a diagonal N =1 SCFT in the left sector (in both the
Space-Time and CY subsectors), therefore in both its subsectors the vertex

operators must simultaneously belong to either the Ramond (R) or the
Neveu-Schwatz (NS) type. For the theory to be consistent, we need both
options.

Moreover, in the absence of vertex algebras of both types (NS-type and
R-type), we cannot obtain Space-Time SUSY.

A similar situation occurs in the right sector.
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Berglund-Hubsch type CY manifolds and N=2 SCFT models

Following to Borisov we define the Vertex algebra of Heterotic string as the
Cohomology in respect to the set diffentials Dz and Dz

Ds = jfdu - U (u) exp(m- X~ (u)) = Zm,-j{duexp(—w,- +m- X (v)),

5
Dz = %du 7- Ut (u) exp(A- X+ (u)) = (E n;%duexp(iH,- + - X+ (u)),
i=1
D% = D7 = {Ds, Div} = {Ds, Dir} = { Dy, Ds} = 0;

where m € AT and 7€ A™.

The integrands in the definition of the differentials D7 and D, as can be
verified, are BRST-invariant total vertices of the Heterotic string.
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Berglund-Hubsch type CY manifolds and N=2 SCFT models

Calabi-Yau multiplier of any total vertex operator of Heterotic string contains
an exponential factor of the following form

5
exp(iZSiH;—l—ﬁ‘)_(‘—i—Eyﬂ)?*),

i=1
whose dimensions is
2 1l L - 1, .
A(S,p,4) =55 +F-G+5 (P2 +q-3).
These CY factors of the vertex operators must have the following properties.

Firstly, their vectors S, B, G must be elements of three 5 dimensional lattices
to satisfy the OPE axioms.

Secondly, their dimensions must be equal, as we see, to 0 or 1/2 modulo an
integer in the NS-case, or equal to 3/8 modulo an integer in the R-case.

Thirdly, they must be be mutually local with the differentials D and Dg.
For this, the parameters S, p, g must satisfy the requirement that the pairing
(P,3) and (3", A) be integers or half -integers for all g and g.

It follows that if the vertex operator belongs to the NS-sector, then all S; are
integers, p € M and ¢ € N, and if the vertex operator belongs to the R-sector,
then all S are half-integers, € M+ 23" and ge N+ 3.
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Berglund-Hubsch type CY manifolds and N=2 SCFT models

We call the subset of states belonging to the intersection of the BRST
cohomology set defined by the differential Qgrst and Borisov cohomology set
defined by differentials D,, and D, Space of Quasi-Physical states.

Below we perform two additional reductions of this set that lead

to an extension in Left sector of Poincaré symmetry to N = 1 space-time
Supersymmetry, and

in Right sector to an extension of E(8) x SO(10) to E(8) x E(6).

It is this set that will be the space of physical states of Heterotic string theory.
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Left-moving sector, N=1 SCFT

In Left sector we have the product of 4-dimensional N =1 SCFT for Left
space-time subsector consisting of 4 bosons and 4 Majorano fermions with the
central charge of 6 and

N =1 SCFT for compact CY subsector with the central charge of 9, so that
the total central charge in Left sector is ¢ = 15.

The N =1 SCFT of Left Space-Time subsector is a theory of 4 free bosonic
fields x#(z) and 4 Majorana fermion fields ¥*(z)

x"(2)x"(0) = =" logz + ...,

P2 (0) =" 2+
As for the N =1 SCFT of Left Calabi-Yau subsector, this is the

above-described theory of free bosons X*(z), fermions Wi (z) and free boson
fields H;,i =1,...,5 bosonizing the fermions.

Here the N = 1 symmetry corresponds to the subalgebra of the N = 2, which
was defined above when representing the CY subsectors.
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Left-moving sector, N=1 SCFT

The total left-moving N = 1 Virasoro algebra is the diagonal subalgebra in the
direct sum of the Calabi-Yau compact subsector, introduced above
and of the N =1 Virasoro algebras of space-time degrees of freedom

Tl (z) = Th(2) + T (2),

GL(Z) = GSLT(Z) + GéY(z)v

Thr = 20x"(2)m.(2) — 30" (@00 ().
Gst(z) = Ox"yu(2),

GLcy(2) = Gy + Gy (2).

This N =1 Virasoro superalgebra action is correctly defined on the product of
only NS-representations or on the product of only R-representations.
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Left-moving sector, N=1 SCFT

We use BRST approach to define the physical states.
The BRST charge is given by the integral

1
QBRST - %dz[CTmat + ’YGmat + E(CTgh + f)/Ggh)]v

where we introduced the ghost fields and N =1 Virasoro superalgebra of the
ghosts
B(z)7(0) = =z  + ..., b(z)c(0)=z""+...

Ten = —0bc — 2bdc — %6ﬁ7 - %ﬂ(’)%

Ggn = 0fc + %,Bac — 2bn.
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Left-moving sector, N=1 SCFT

The ghost space of states is characterized by the vacuum Vg(z), which can be
realized as a free scalar field exponent

Va(2) = exp (46(2)), 9(2)(0) = — log(2) + - .
The left-moving vertex can be written as
Vi = P(0"x*,0'Ha, 0 H;, ° X, 0" X ) x
~ 5 — —
X exp <q¢ +XH, + iz SiH + pX~ +gXt + zpux“(z)> .
i=1

Here P is a polynomial of the derivatives of the corresponding boson fields
including the fields H,,a =1, 2.
These fields bosonize the Fermi fields of spacetime subsector as follows

A.(z)Hb(0) = 6. log (2) + ..., a,b=1,2.

L0+ §) = exp [£eFh], %(wz + ) = exp [£Fa].

V2

21/45



Left-moving sector, N=1 SCFT

The dimension of the left-moving vertex Vé

A'(ji) = Dgn(q) + Ast + Aly,

where ( 2
+
Bl = -2,
1-
Asr = ZX°
ST 2 )
. lem . 1 1
Acv—25 +p q+2p 3 +2q ar.
The phase of the vertices Vé(u) and V;,(z)

omi fi- fi = A+ ') — AM(jT) — AN(u).
It follows that
fi-fil =—aq +X-N+S5-S+p5-d+p-q
The vector A? in exp(zA?H,) must satisfy the requirement of consistency with
the structure N =1 on the left side._
Therefore, in NS sector the vectors X fall into the classes [0] and [V], and in R
sector the vectors A fall into the classes [S] and [C] of SO(1, 3) lattice.

The integrality of ji- /i’ is the condition of mutual locality of two vertices.
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Massless Left movers and N=1 Space-Time supersymmetry
The vertices of massless physical states play two roles:

The first is that it is the states of this set that must correspond to the observed
elementary particles.

The first is that it is the such states must correspond to the observed
elementary particles.

The second is that some of such vertices can be used to extend the symmetry
of the theory.

Namely, they can be taken as currents whose integrals become additional
generators for this extension.

Requiring the vertices to be Cohomologies of Qgrst, D7 and Dz simultaneously
in NS-subsector we find the left-moving vertex of massless vector boson

exp(—¢(2))" (2) exp (1pux"(2)) ,
which can be rewritten using bosonization as
exp (—9(2) + XAy + 1p,x"(2)) X = (£1,0), X = (0, %1).
Also we find the left-moving vertex of massless scalar bosons
Vi = exp (—¢ + i - X~ 4 1pux"(2)),
Vi = exp (—6(2) + 1 X + 1puxt(2),
where m € AT and 7€ A™.
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Massless Left movers and N=1 Space-Time supersymmetry

In Ramond subsector with canonical picture number (—3) we find the vertices
of the massless spinors

J5(%,5) = exp (—1¢+ W F 1S At 2R - X 5*)) exp(1puxt(2)),

Ji(US —exp(ffdﬂrw-lil‘+z§-l-_i:t§()_(’+lékfo- ))expzpu (2)),
N 1 = o 1o. L o
JE(3,5) = exp §¢+w-H+15-Hi§(X -a = X -3 ) exp(epuxt(2)),
Ji(O'S —exp( %qﬁ—l—w ﬁl—i—zg Hi%()?+-5_—)?_ )exp(sz "(2)),
where

2 2

o=, > o’==1, =+, ) =0,

a=1 a=1

and
18

Si=+5, > Si=5, mod 2 ,_i ZS,_—f, mod 2
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Massless Left movers and N=1 Space-Time supersymmetry

All of these vertices are BRST cohomology, but the ones that are also
cohomology of Dz and Dz are only the following vertices

JF =exp <—%¢+z&’~l§;+%Hé—y),

_ 1 Lo 1

J; =exp (ngber-Hf EHéY)’

" 1 5 = 1.,

Jo" = exp —§¢+7,0"H+§Hcy s
1 = 1

J;:exp(—§¢+zE~H—§Héy>,

where HEy (2) = 3°,_, (iH; + a7 X; — a; X;") and we have omitted the factors

exp(epux*(z)).

The first two currents J and J; are mutually local, as are the other two
currents.

We will use the first pair to extend Poincaré symmetry to N = 1 spacetime
supersymmetry.
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Massless Left movers and N=1 Space-Time supersymmetry
We select the pair of currents J*(&, S) to determine N = 1 super-Poincaré
supercharges as follows

- :?{du JH(v) :%duexp <—%¢)+z5‘~ﬁl—|—%Héy),

Qs = ?{du Jo (u) = fduexp (—%(]H—z&’- [ %Héy) .

The supercharges Q, and Q, are spinors with respect to the Poincaré algebra
and, together with the generators of this algebra, P, and J,., form N =1
Poincaré superalgebra.

In order to obtain N =1 Sp:ice—Time supersymmetry in the theory, we must
leave from the vertices of VELL' where i, = (q, X, Q&y), which are the
cohomologies of Qgrst, Dm, D, only those vertices that are mutually local with
JY and J;.

These vertices are mutually local with the currents J;f and J; if

g+ N+ Qey €22

where Q¢y =3, S+ p-a~ — G- a"is U(1) charge of Calabi-Yau subsector.
This equation is nothing more than GSO condition for the vertices in the Left
sector.From GSO equation it follows that the total internal charges Q% of the

vertices are integers or half-integers.
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Massless Left movers and N=1 Space-Time supersymmetry
The vectors X are weights of the algebra SO(1,3) (and SO(2n)), belonging to
one of the four conjugacy classes of the weight lattice.

(0): (0,0,0,...,0) + any root;
(V):(1,0,0,...,0) + any root;
1
(S): (57 DI 5) + any root;
11 1
(C)(_E 5 5 72)-f'any root.

From GSO equation it follows that in NS sector the vectors X fall into classes

[0] and [V] and in R sector the vector X fall into classes[S] and [C] of SO(1, 3).

Therefore, we obtain the connection between the conjugacy class of X\ and the
U(1) charge of the CY factor for all 4 cases of left vertices.
In the NS sector we get

Qéy €2Z+1, Xe[0],
QL €2z, Xel[V)
In the R sector we get

Qky e2z+ 1 Sels),

27
L 1 5
Qbye2z -3, Xelcl

27 /45



Right-moving sector, N=0 CFT
The space-time subsector of Right-moving sector with the central charge 4
contains boson fields X*(Z).
To obtain Right sector of Bosonic string with the total central charge 26,
we add bosonic fields Y;(Z), I =1, ...,8 which are compactified on the torus of
the algebra E(8) with the central charge 8,

we also add the bosonic fields ®,(Z), compactified on the torus of the algebra
S50(10) with the central charge 5.

The final contribution is given by the right-moving part of the compact
Calabi-Yau subsector with the central charge 9.

Then the energy-momentum tensor and general right-moving vertex look like
- 1 cenroy = -
Trmat(2) = 5 (M 0X" X" + (BY))? + (09,)* + x

5
X+ (XX + %(awfw: +ov; W) + %(a,-*az)?,f + a7 2 X1)).
i=1

\_/I_I;R(E) = Pgh(Ea E)PSf(é)_(#)Pi”f(éylaa¢&7 Fll'v)_(iJraXF)

5
exp (e Y + 1o + iZS;FI,- +5- X +G- X" +apx"(2)),
i—1

if is vector of E(8) root lattice, and A is vector of the SO(10) weight lattice.
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Right-moving sector, N=0 CFT

Among the vertices we find BRST-invariant massless ones.
First of all this is SO(1,3) vector V#(2) = :dX*(Z).
We also find the currents of E(8) algebra
J(2) =0Y'(2), 1=1,...8, J:(2) = exp e, Y'](2), & =2,
o {(ﬂ, +1,0,0,0,0,0,0) 4 permutations,
(£3,...,£1) + permutations, even number of + 1,
where the vectors € are the roots of E(8) algebra.
Also there are the currents of SO(10) algebra:
Ja(2) = 10%4(2), a=1,...,5,
J5(2) = exp [1pa®a](2), pa =1, Y (pa)? =2,
where the vectors p are the roots of SO(10)
p=(%1,+£1,0,0,0) + permutations,
and the current of U(1) algebra of the right Calabi-Yau sector
Jev(2) = 0Acy(2), Hev(2) =) (if:+af X7 —ay X7).
i=1
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Right-moving sector, N=0 CFT

In the Right sector we also find massless SO(10) spinors
4o 1~ -
J(2) = exp (wa®a + EHCY)(Z)
1 1
Wa = i§’ Zwa = 5 mod 27,
1-
JE(2) = exp (oo ®u + 5 Her)(2),
. 1 : 1
Wa = :l:E’ Zwa = 5 mod 27Z.

The currents J? is mutually local with J;, and J is mutually local with JJ.
All these currents are also cohomologies of the differentials D and Dj.

By choosing one of these pairs (we choose JJ;, J. )
and adding them to the currents of the algebra SO(10) and the algebra U(1)
we extend the product of the algebra SO(10) x U(1) to the algebra E(6).
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Right-moving sector, N=0 CFT
One can express the Eg currents in terms of simple roots of Eg

62,’261—62, ey 524264—65, 6252644-65,

1 3
6 — *5(61 + ...+ 65) + %ee,

where e; are the orthonormal basic vectors in R®.
So that the Cartan subalgebra currents are

J(2) = 1d; - OH(Z), j=1,...,6, where
H(Z) = (Fu(2), ..., As(2), Fs(2)),
He(2) = Hey(2) = Z(f":’i +a X7 —a X").

i=1

QL

The currents of ladder E(6) operators are given by
E(2) = exp [ H)(2),
F(2) = exp[~;H)(2), j=1,....6.

E(6) gauge symmetry (and not any other) in Right sector ensures

self-consistency of the theory whose Left sector has N = 1 spacetime SUSY.

It is precisely these symmetries that are necessary for the Grand Unification of

the theory.
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Right-moving sector, N=0 CFT
In Right sector we also find a massless boson vertex that belongs to the
one-dimensional representation of SO(10)

V,[ﬁll = eXp(F/(;y +m- )?_);

Another massless boson vertex that belongs to the 10-dimensional
representation of SO(10)

O] _ (R E o R,
Voo =exp(iN-®4mi- X7);
One more massless boson vertex that belongs to the 16-dimensional spinor

representation of SO(10)

o - 1= -
VI — exp (i(KA+ @) - ® + 5 Hlev + 1 X7,
where i € A*, A = (+£1,0,0,0,0) + permutations and A + & = .
These 3 types of vertices are cohomologies of the differentials D5 and Dz and
form 27-dimensional representation of E(6).

Right massless sector also contains 97 representations of E(6), which are
constructed from representations of SO(10) whose vertices depend on 7€ A™.

The numbers of representations 27 and 27 are equal to the number of points in

the reflexive Batyrev polytopes for a given CY-manifold.
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Right-moving sector, N=0 CFT

The fourth class of massless right vertices, which are also
BRST, Dy, Dz cohomology, consists of E(8) x E(6) singlets

V(S i, @) = exp (i ZSH +@- X+ X+ pX")(2),

whose dimension

and U(1) charges

Qcysﬂ_‘ ZS—i—ﬁ‘i _‘ﬁ_ZO,

where -3~ =A-3"=1,thatisme AT and 7€ A™.
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Right-moving sector, N=0 CFT

There are three types of solutions to all these requirements
that are the E(8) x E(6) singlets.

The first type of the singlet vertices is
V(S, i, @) = exp(m- X~ +i- X" +1p,X")(2),
where the vectors m € AT, € A~ and their product ri - i is equal to 0.

The second type of the singlet vertices, where m € AT, is

V(S, i, i) = > mjexp (—iH; + ii- X~ +1p,X")(2)).

i

The third type of the singlet vertices, where 7€ A™, is

V(S i, @) = > njexp(iH; + it X +1p,X")(2)).

Verified that the total number of singlet massless states determined by these
conditions in Quintic case coincides with the result of D. Gepner.
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Massless right movers and E(6) gauge symmetry
To obtain the E(8) x E(6) gauge symmetry we need to restrict the space of
states in the right moving sector to a set of states compatible with the action
of the E(8) x E(6) generators.
This means that we have to choose among the vertices that are BRST Dy and
D5 cohomology, those that are mutually local with the currents E(8) and E(6).
These requirements are met if the following "GSO"equations are satisfied

g-NeZ, € ifel,
1
w- N+ Eng €.
From these equations we get that the SO(10) parts of the right vertices, that

fall into one of the four conjugacy classes of the SO(10) weight lattice,
determine the sixth Calabi-Yau component Q& as follows

Aeo] = Q& e2z,
AelV]= Q& €2z +1,
- 1
Ae [5];»o§yezz_§,
- R 1
AN e [Cl= Qcy ezz+§.
The data of the above-considered vertices satisfy these conditions.
35/45



Mutual locality of Full physical vertices

The complete vertices of a Heterotic string must be left and right BRST
invariant, obey the left GSO equation and the right " GSO" equation, be
cohomologies of D, and D,, and be mutually local with respect to each other.

We begin the search for complete mutually local vertices among the so-called
“quasi-diagonal” vertices, which are a special case of complete vertices.

The “quasi-diagonal” full vertices are given by the following product of
GSO-invariant left-moving and “GSQO"-invariant right-moving factors

exp (qcb + WNH + i§L . IEIL + ﬁL)?L_ + JL)?f)(z)x
x exp (1 V' +1Ma® + iSeHr + pr - Xz + Gr - X3 )(2),

where

St = Sr, PL = Pr, 4. = gr.
The product of two such vertices after moving one around the other receives a
complex factor, the phase of which has the following form

2mo(fiL - i, — jir - jig) = 2m(—qq + X- X —A-N).
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Mutual locality of the full physical vertices
The mutually locality requirement

= — - —
fir - i — AR - fir € Z
imposes certain correlations between the classes X and A.

The reason for this is the requirements of compatibility formulated above lead
to a correlation between the picture number g, the conjugacy classes of A\ and
the CY U(1) charge in the left sector.

The same is true for the correlation between the A classes and the CY charge
U(1) in the right sector, which are required for compatibility with the E(6)
symmetry.
Taking into account also that for quasi-diagonal full vertices with
QL — Q&, € 7, we get four types of them, which satisfy the following
requirements

Qey, Q&y € 2Z = Xe[V], Ae]o],

QLy, QF, €2Z+1= Xe[0], Ae[V],
Qcy, Q% e2Z+%: Ae[C], AeC],
Qév, Qfy 622_%:> Ae[S], Aes].
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Mutual locality of the full physical vertices

These vertices are mutually local due to the proper correlation of the internal
charges Q%y, SO(1,3) and the weights A and SO(10) weights A.

However, this set of the full mutually “quasi-diagonal” vertices does not satisfy
the requirement of Space-Time supersymmetry.

To solve this problem we use the fact that superpartners in the left sector
obtained by action the N = 1 supercharges Q» and Qs also satisfy the all
requirement on the left vertices defined above, including the requirement of
space-time supersymmetry.

So we solve the problem by simply adding these superpartners to the set of
"quasi-diagonal"vertices.

A similar technique can be used on the right side of full vertices, where instead
of N =1 Poincaré supergenerators, the action of the E(6) algebra generators is
used to obtain E(6) partners.

The result of these operations leads to the fulfillment of the requirement of
N =1 spacetime supersymmetry, E(8) x E(6) gauge symmetry and
preservation of mutual locality of complete vertex operators.
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Massless vertices in explicit form. The gravitational supermultiplet

For phenomenological applications, the most important are the massless states
of the Heterotic string.

We explicitly represent complete vertices for massless physical states as
products of suitable left and right vertices
(we omit the factor exp (1p.x") in order to shorten notations).

We obtain expressions for the vertices of the gravitational supermultiplet
starting from the graviton vertex

exp(~6(2)) V" (2) x 1Ix" (2)

and using the actions of Poincaré supergenerators.
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The gauge supermultiplets

We also get the following expressions for the vertices of vector gauge
supermultiplets.

The currents of E(8) are
Vi(z,2) = exp(—(2)) ¥ (z) x :dY'(2), 1 =1,...,8,
Vii(z,2) = exp(—4(2)) " (2) x exp [1e Y'](2),

where the vectors € are the roots of £(8) algebra;

The vertices belonging to adjoint representation of SO(10) algebra
Via(z,2) = exp(—¢(2) ¥*(2) x 1094 (2), a =1,...,5,
Vi5(2,2) = exp(—=¢(2) 9" (2) X exp [tpaPa](2),

where the vectors g’ are the roots of SO(10);
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The gauge supermultiplets
The vertex of U(1) algebra of the Calabi-Yau sector

V¥ (2,2) = exp(~6(2) " (2) x ey (2),
Flcy(f) B Z(IFI, + a,-+)_(,-_ — a,-_)_(,-+).
i=1
We then extend the Eg x SO(10) x U(1) symmetry to Es X Ee using 32 spinor
currents of SO(10) algebra J7 and J given by (30)
JE(2) = exp (1wa®a + %Hcy)(z)
1 1
Wa = i§’ Zwa =3 mod 27,
JE(2) = exp (100 da + %HCY)(z),
. 1 : 1
Wa = iE’ Zwa = 5 mod 27Z.
As a result we obtain the 32 additional currents of E(6) algebra
Vio(2,2) = exp(—o(2) ¥"(2) x J3(2),
Vw(zyf) = exp(—qﬁ(z) ’L/}“(Z) X JL;(Z)7

that together with the other 46 currents of SO(10) and U(1) form the

78-dimensional adjoint representation of E(6) algebra.
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27 and 27 supermultiplets

The third type are the vertex operators of 27 supermultiplet of E(6) algebra
whose right-moving factors belong to the 1-dimensional, 10-dimensional and
16- dimensional representations of S(10) algebra.

The left-moving factors of all these vertex operators belong to spinor
reppresentation of N = 1 Super Poincare algebra.

Thus, the vertex operators of the 27 supermultiplet include a 1-dimensional
representation of SO(10)

1 = 1 - _
Vi,(2,7) = exp (—5¢ N 5Héy> < exp (HRey + - X°),
the 10-dimensional representation of SO(10)
A _ 1 Lo~ 1 L il R S
Vs 5(z,Z) = exp f§¢>+w -H+ EHCY xexp(iN-®+ - X7),
and the 16-dimensional spinor representation of SO(10)

kN 1 = 1 RN 1 - -
V3 a(z,2) = exp <—§¢+z¢?~ H+ §Héy> (z)xexp (id) - O+ EHRCY + - Xf),

where i € A*, A = (£1,0,0,0,0) + permutations.
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27 and 27 supermultiplets

The condition m € A" means that the number 27 of supermultiplets is equal
to the number of dots i of the Batyrev polyhedron corresponding to the
Calabi-Yau manifold of the Heterotic string model under consideration.

Explicit expressions for the other vertices of the 27 supermultiplet can be
obtained by acting through OPE on these vertices by the generators of the
N =1 Poincaré superalgebra.

The similar actions we obtain the set of vertices of the 27 supermultiplet.

Note that this operation does not break the mutual locality between the
extended set of vertex operators that was between the original ones.
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Singlet supermultiplets

The final, fourth class of vertices that satisfies all the requirements of our
construction is the N = 1 supermultiplets, which are E(8) x E(6) singlets.

The first type of the singlet vertices is

>

1 = 1 - Lo
Viz.m,7(2,Z) = exp <—§¢ +10-H+ EHéy) x exp(ri - +i-X"h),

where the vectors m € AT, € A~ and their product ri- 7 = 0.
The second type of the singlet vertices is

Vi,m(z, Z) = exp <—%¢ +G-H+ %Héy> X Z mi exp (—iH; + i - X 7)(2),

where i € A*.
The third type of the singlet vertices is

1 = 1 -
Vi,#(z, 2) = exp <—§¢+25' H+ 5"’év> X Z niexp (iH; + - X™),

where 7€ A™.

For the case when Calabi-Yau sector is defined by Quintic polynomial we find a
total number of E(8) x E(6) which is coincide with the result of Gepner.
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Conclusion

In this paper we developed a method for explicitly constructing the models of
Heterotic string compactified on the product of a torus of the Lie algebra
E(8) x SO(10) and general Calabi-Yau manifolds of Berglund-Hubsch type.

The construction uses Batyrev-Borisov combinatorial approach to construct
the Vertex algebra of the Calabi-Yau sector.

We used the requirement for the simultaneous fulfillment of mutual locality of
the left-moving vertices with the space-time symmetry generators

and of right-moving vertices with generators of E(8) x E(6) gauge symmetry
together with the requirement of mutual locality of complete (left-right)
vertices of physical states.
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