bounded differences inequality—examples

Recall the L; error of the kernel density estimator

Z = F(Xi oo Xa) = [ 16(x) = Gulx)]dx

where

o)~ 435w (55).

We saw that Z satisfies the boubded differences property with
ci = 2/n for all i.
We obtain

P{|Z —EZ| > t} < 2e "/2,




hoeffding in a hilbert space

Let Xi,..., X, be independent zero-mean random variables in a
separable Hilbert space such that || X;|| < 1. Then, for all

t > 2+/n,
i
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hoeffding in a hilbert space—proof

By the triangle inequality, HZle X,-H has the bounded differences

property with constants 2, so
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bounded differences inequality

*Easy to use.

*Distribution free.

*Often close to optimal (e.g., L; error of kernel density estimate).
*Does not exploit “variance information.”

*Often too rigid.

*Other methods are necessary.



shannon entropy

If X, Y are random variables taking
values in a set of size N,

H(X) = — ) p(x)log p(x)

H(X|Y)= H(X,Y)— H(Y)
= — ) p(x,y)logp(x]y)

H(X)<logN and H(X|Y) < H(X)

Claude Shannon
(1916-2001)



han's inequality

Te Sun Han

If X = (X1,...,X,) and
X = (Xyy.eouy Xi—1, Xit1s -5 Xn), then

n

> (H(X) = HXD)) < H(X)

i=1

Proof:

H(X)= H(X") + H(X;| X ")
< H(XWDY + H(Xi| Xy, ..., Xi_1)

Since > H(Xi| X1, ..., Xi—1) = H(X), summing
the inequality, we get Han's inequality.



edge isoperimetric inequality on the hypercube

Let A C {—1,1}". Let E(A) be the collection of pairs x,x” € A
such that dy(x, x”) = 1. Then

A
|[E(A)| < B3 X log, |A| .

Proof: Let X = (X1,...,X,) be uniformly distributed over A.
Then p(x) = 1xea/|Al.
Clearly, H(X) = log |A|. Also,

H(X) — H(X") = H(X;|X") = — " p(x) log p(xi|x"") .
xXEA

For x € A,
: if x() ¢ A
1ye(D)Y — 1/2 if x\" &
p(xi|x™") { 1 otherwise

where X() = (X1, .00y Xi—1y —Xiy Xit1s -~ Xn).



Al ‘=
and therefore
. : log 2 . |E(A)|
HX—HX(’)): 1 i, = 2log 2 .
;2;( 0 = HXD) =7 23 Aaien = | 218

Thus, by Han's inequality,

E(A), log 2 = zn: (H(X) — H(X(i))> < H(X) = log|A| .

Al i




This is equivalent to the edge isoperimetric inequality on the
hypercube: if

Oe(A) = {(x,x") : x € A, x" € A, du(x,x") =1} .

is the edge boundary of A, then

2"
|0e(A)| > log, a = Al

Equality is achieved for sub-cubes.



combinatorial entropies—an example

Let Xi,..., X, be independent
points in the plane (of arbitrary
distribution!).

Let N be the number of subsets
of points that are in convex
position.

Then

Var(log, N) < E log, N .




proof

By Efron-Stein, it suffices to prove that f is self-bounding:

0 < fo(x) — Fo1(x?) < 1

and
n

3 (f,,(x) - fn_l(x(i))> < fio(x) .

i=1

The first property is obvious, only need to prove the second.

This is a deterministic property so fix the points.



proof

Among all sets in convex position, draw one uniformly at random.
Define Y; as the indicator that x; is in the chosen set.

H(Y)=H(Y1,...,Yn) = log, N = fy(x)
Also, . .
H(YW) < £ 1 (x)
so by Han's inequality,

n n

S (fa0x) = faca(x®)) <37 (H(Y) = H(YD)) < H(Y) = fo(x)



VC entropy is self-bounding

Let A is a class of subsets of X and x = (x1,...,x,) € X".
Recall that S(x,.A) is the number of different sets of form

{x1,...,xpJNA:- A€ A
Let fp(x) = log, S(x, .A) be the VC entropy.
Then 0 < f(x) — fo—1(X1y e e ey Xi—15Xj11-++5%Xn) < 1 and

Z (fn(x) — fn—l(xla cee gy Xi—19Xjt1 e Xn)) < fn(x) .
i=1

Proof: Put the uniform distribution on the class of sets
{x1,...,Xn} N A and use Han's inequality.
Corollary: if Xi,..., X, are independent, then

Var(log, S(X,.A)) < Elog, S(X, . A) .



vapnik and chervonenkis

Vladimir Vapnik Alexey Chervonenkis



subadditivity of entropy
The entropy of a random variable Z > 0 is
Ent(Z) = E®(Z) — ®(EZ)
where ®(x) = x log x. By Jensen's inequality, Ent(Z) > 0.

Han's inequality implies the following sub-additivity property.
Let Xi,...,X, be independent and let Z = f(X1,...,X,),
where f > 0.

Denote _ . _
Ent()(Z) = EDo(Z) — o(ED Z)
Then

Ent(Z) <E) Ent')(Z).
i=1




a logarithmic sobolev inequality on the hypercube

Let X = (X1,...,X,) be uniformly distributed over {—1,1}". If
f:{—1,1}" - R and Z = f(X),

1 n
Ent(Z?) < SE Y (Z2-2Z)y
i=1

The proof uses subadditivity of the entropy and calculus for the
case n = 1.

Implies Efron-Stein.




Sergei Lvovich Sobolev
(1908-1989)




herbst’s argument: exponential concentration

If f:{—1,1}" — R, the log-Sobolev inequality may be used with
g(x) = e*X¥/2 \where A €ER.
If F(A) = Ee*? is the moment generating function of Z = f(X),
Ent(g(X)?)= AE [Ze)‘z} —E [eAZ} log E [ZeAZ}
= AF'(A) — F(X\) log F(X) .

Differential inequalities are obtained for F(\).



herbst’'s argument
As an example, suppose f is such that Y1 |(Z — Z{)3 < v.
Then by the log-Sobolev inequality,

AF'(A) — F(A) log F(A\) < VT)\QF()\)

If G(\) = log F(\), this becomes
(CN) <.
A — 4
This can be integrated: G(A\) < AEZ + Av/4, so

F(A) S eAEZ—A2V/4

This implies

P{Z>EZ+t}<et/

Stronger than the bounded differences inequality!



gaussian log-sobolev inequality

Let X = (X1,...,X,) be a vector of i.i.d. standard normal If
f:R" — Rand Z = f(X),

Ent(Z%) < 2E [||VF(X)|)?]
(Gross, 1975).

Proof sketch: Similar to how we proved the Gaussian Poincaré
inequality from Efron-Stein.

By the subadditivity of entropy, it suffices to prove it for n = 1.
Approximate Z = f(X) by

1 m
fl| —— Ej
()
where the €; are i.i.d. Rademacher random variables.

Use the log-Sobolev inequality of the hypercube and the central
limit theorem.



gaussian concentration inequality

Herbst't argument may now be repeated:
Suppose f is Lipschitz: for all x,y € R",

[f(x) = f(y)l < Lllx =yl -

Then, for all t > 0,

P{f(X)—EF(X) >t} < e t/CL)
(Tsirelson, Ibragimov, and Sudakov, 1976).




an application: supremum of a gaussian process

Let (X¢),cq be an almost surely continuous centered Gaussian
process. Let Z = sup;cy X;. If

2: E X2
g tsg7p,< X:1)

then

P{|Z —EZ|> u} < 2e /()

Proof: We have already seen that Z can be written as a
o-Lipschitz function of a standard normal vector.



beyond bernoulli and gaussian: the entropy method

For general distributions, logarithmic Sobolev inequalities are not
available.

Solution: modified logarithmic Sobolev inequalities.
Suppose Xi, ..., Xy are independent. Let Z = f(X1,...,Xp)
and Z; = (X)) = F( X1y e ooy Xiz1s Xit1s e ey Xn).

Let ¢(x) = e* — x — 1. Then for all
A €R,

AE [ZeV ] _E [e)‘z } log E [eV ]

< ZE [e”cb (—=X\(Z - z,-))} :

Michel Ledoux



the entropy method

Define Z; = inf f(Xiy..yxiy..., Xn) and suppose

zn:(z —Z)<v.
i=1

Then for all t > 0,

P{Z —EZ >t} <e t/(),

This implies the bounded differences inequality and much more.



example: convex lipschitz functions

Let f : [0,1]" — R be a convex function. Let
Z; = inf, F(Xq,. .. yX!y...,Xpn) and let X/ be the value of x]
for which the minimum is achieved. Then, writing

7(') _ (X1,.--,Xi—1aXi,aXi+1""7X")'

n n

N (2 - z:)>= S (F(x) — F(X)?

i=1 i=1

sﬁ(g)';(mf(x;—x;)z

(by convexity)

= ||VF(X)||* < L*.



convex lipschitz functions

If f:[0,1]" — R is a convex Lipschitz function and Xi,..., X,
are independent taking values in [0,1], Z = f(X1,...,X})
satisfies

P{Z >EZ+t} < e t/CL)



self-bounding functions

Suppose Z satisfies

0<Z-2Z<1 and » (Z—-2Z)< Z.
i=1

Recall that Var(Z) < EZ. We have much more:

P{Z > EZ +t} < e—t’/(2EZ+2t/3)

and
P{Z < EZ — t} < e t"/(2£2)

combinatorial entropies, configuration functions are examples of
self bounding functions.



conditional rademacher average

Let Xi1,...,X, be independent, taking values in a set X and let
A be a class of subsets of X.
The conditional Rademacher average is

n
Z eilx,ca

i=1

R, = E. sup
Ac A




concentration of conditional rademacher average

Define

R,(j) = Es sup Z&j:ﬂ.xjeA
ACA | jzi

One can show easily that
. n .
0<R,—R{)<1 and > (R,—RY))<R,.
i=1
By the Efron-Stein inequality,
Var(R,) <E (R, — R{))> <ER, .
i=1
Standard deviation is at most v/IER,,.

The exponential inequalities also apply.



exponential efron-stein inequality
Define

n
Vi =) E[(Z-Z])]
i=1
and
n
vy [z-z].
i=1
By Efron-Stein,
Var(Z) < EV" and Var(Z) <EV~ .

For all A, 6 > 0 with A0 < 1,

ANZ—-EZ) < A0 |OgEe>\V+/9 )

log Ee
06 =1 _ )0

If also Z! — Z < 1 for every i, fhen for all A € (0,1/2),

AN(Z-EZ) 2A AV

log Ee log [Ee
< =7 _ox %




weakly self-bounding functions
f: X" — [0,00) is weakly (a, b)-self-bounding if there exist
f; - X"~1 — [0, 00) such that for all x € X",

zn: (f(x) - f,-(x(")))2 < af(x)+b.

i=1
Then

t2
P{Z > EZ +t} < — .
(22 B2+ }—eXp< 2(aEZ+b+at/2)>

If, in addition, f(x) — f(x()) < 1, then for 0 < t < EZ,

$2
P{Z <EZ -t} <exp|— .
2(aEZ + b+ c_t)

where ¢ = (3a — 1) /6.




the isoperimetric view

Let X = (X1,...,X,) have independent
components, taking values in X". Let
AC X",

The Hamming distance of X to A is

d(X,A) = mind(X,y) = min > Lx.y, .
(X, A) = min d(X, y) ;nelg\i; Xiy

P{d(X,A) > t+\/g|ogﬁ

“An isoperimetric inequality” .



the isoperimetric view

Proof: By the bounded differences inequality,
P{Ed(X, A) — d(X,A) > t} < e 2t/

Taking t = Ed(X, A), we get

1
P{A}

Ed(X, A) < \/ g log

By the bounded differences inequality again,

1
IP’{d(X,A) >t \/f log } < =26/

2 " °P{A}



iIsoperimetry implies concentration

Suppose
n 1 2
PLd(X,A) >t — | < e 2/m
{( )-'_%¢2°gmm}-e

Let f : X" — R satisfy the bounded differences property (with
C; = 1).

Then, taking A = {x € X" : f(x) < Mf(X)}, we have

P[A] > 1/2 and

P{f(X) > MF(X) + t}

< P{d(X,A) > t}
< e—2At—/A/(2/l0g2)}*/n

Paul Lévy (1886-1971)




