
bounded di↵erences inequality–examples

Recall the L1 error of the kernel density estimator

Z = f (X1, . . . ,Xn) =

Z
|�(x) � �n(x)|dx ,

where
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We saw that Z satisfies the boubded di↵erences property with
ci = 2/n for all i .
We obtain

P{|Z � EZ | > t}  2e�nt
2/2 .



hoe↵ding in a hilbert space

Let X1, . . . ,Xn be independent zero-mean random variables in a
separable Hilbert space such that kXik  1. Then, for all
t � 2

p
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hoe↵ding in a hilbert space–proof

By the triangle inequality,
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�� has the bounded di↵erences
property with constants 2, so
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bounded di↵erences inequality

Easy to use.

Distribution free.

Often close to optimal (e.g., L1 error of kernel density estimate).

Does not exploit “variance information.”

Often too rigid.

Other methods are necessary.



shannon entropy

If X ,Y are random variables taking
values in a set of size N ,

H(X ) = �
X

x

p(x) log p(x)

H(X |Y )= H(X ,Y ) � H(Y )

= �
X

x,y

p(x, y) log p(x|y)

H(X )  logN and H(X |Y )  H(X )

Claude Shannon
(1916–2001)



han’s inequality

Te Sun Han

If X = (X1, . . . ,Xn) and
X (i ) = (X1, . . . ,Xi�1,Xi+1, . . . ,Xn), then

nX

i=1

⇣
H(X ) � H(X (i ))

⌘
 H(X )

Proof:

H(X )= H(X (i )) + H(Xi |X (i ))

 H(X (i )) + H(Xi |X1, . . . ,Xi�1)

Since
P

n

i=1 H(Xi |X1, . . . ,Xi�1) = H(X ), summing
the inequality, we get Han’s inequality.



edge isoperimetric inequality on the hypercube

Let A ⇢ {�1, 1}n. Let E (A) be the collection of pairs x, x 0 2 A
such that dH(x, x 0) = 1. Then

|E (A)| 
|A|
2

⇥ log2 |A| .

Proof: Let X = (X1, . . . ,Xn) be uniformly distributed over A.
Then p(x) = x2A/|A|.
Clearly, H(X ) = log |A|. Also,

H(X ) � H(X (i )) = H(Xi |X (i )) = �
X

x2A

p(x) log p(xi |x (i )) .

For x 2 A,

p(xi |x (i )) =

⇢
1/2 if x (i ) 2 A
1 otherwise

where x (i ) = (x1, . . . , xi�1,�xi , xi+1, . . . , xn).



H(X ) � H(X (i )) =
log 2

|A|
X

x2A

x,x (i )2A

and therefore

nX

i=1

⇣
H(X ) � H(X (i ))

⌘
=

log 2

|A|
X

x2A

nX

i=1
x,x (i )2A

=
|E (A)|
|A|

2 log 2 .

Thus, by Han’s inequality,

|E (A)|
|A|

2 log 2 =
nX

i=1

⇣
H(X ) � H(X (i ))

⌘
 H(X ) = log |A| .



This is equivalent to the edge isoperimetric inequality on the
hypercube: if

@E (A) =
�
(x, x 0) : x 2 A, x 0 2 Ac , dH(x, x 0) = 1

 
.

is the edge boundary of A, then

|@E (A)| � log2
2n

|A|
⇥ |A|

Equality is achieved for sub-cubes.



combinatorial entropies–an example

Let X1, . . . ,Xn be independent
points in the plane (of arbitrary
distribution!).
Let N be the number of subsets
of points that are in convex
position.
Then

Var(log2 N)  E log2 N .



proof

By Efron-Stein, it su�ces to prove that f is self-bounding:

0  fn(x) � fn�1(x (i ))  1

and
nX

i=1

⇣
fn(x) � fn�1(x (i ))

⌘
 fn(x) .

The first property is obvious, only need to prove the second.

This is a deterministic property so fix the points.



proof

Among all sets in convex position, draw one uniformly at random.
Define Yi as the indicator that xi is in the chosen set.

H(Y ) = H(Y1, . . . ,Yn) = log2 N = fn(x)

Also,
H(Y (i ))  fn�1(x (i ))

so by Han’s inequality,

nX

i=1

⇣
fn(x) � fn�1(x (i ))

⌘


nX

i=1

⇣
H(Y ) � H(Y (i ))

⌘
 H(Y ) = fn(x)



VC entropy is self-bounding

Let A is a class of subsets of X and x = (x1, . . . , xn) 2 X n.
Recall that S(x,A) is the number of di↵erent sets of form

{x1, . . . , xn} \ A : A 2 A

Let fn(x) = log2 S(x,A) be the VC entropy.
Then 0  fn(x) � fn�1(x1, . . . , xi�1, xi+1 . . . , xn)  1 and

nX

i=1

(fn(x) � fn�1(x1, . . . , xi�1, xi+1 . . . , xn))  fn(x) .

Proof: Put the uniform distribution on the class of sets
{x1, . . . , xn} \ A and use Han’s inequality.
Corollary: if X1, . . . ,Xn are independent, then

Var(log2 S(X ,A))  E log2 S(X ,A) .



vapnik and chervonenkis

Vladimir Vapnik Alexey Chervonenkis



subadditivity of entropy

The entropy of a random variable Z � 0 is

Ent(Z ) = E�(Z ) � �(EZ )

where �(x) = x log x . By Jensen’s inequality, Ent(Z ) � 0.

Han’s inequality implies the following sub-additivity property.
Let X1, . . . ,Xn be independent and let Z = f (X1, . . . ,Xn),
where f � 0.
Denote

Ent(i )(Z ) = E(i )�(Z ) � �(E(i )Z )

Then

Ent(Z )  E
nX

i=1

Ent(i )(Z ) .



a logarithmic sobolev inequality on the hypercube

Let X = (X1, . . . ,Xn) be uniformly distributed over {�1, 1}n. If
f : {�1, 1}n ! R and Z = f (X ),

Ent(Z 2) 
1

2
E

nX

i=1

(Z � Z 0
i
)2

The proof uses subadditivity of the entropy and calculus for the
case n = 1.

Implies Efron-Stein.



Sergei Lvovich Sobolev
(1908–1989)



herbst’s argument: exponential concentration

If f : {�1, 1}n ! R, the log-Sobolev inequality may be used with

g(x) = e�f (x)/2 where � 2 R .

If F (�) = Ee�Z is the moment generating function of Z = f (X ),

Ent(g(X )2)= �E
h
Ze�Z

i
� E

h
e�Z

i
log E

h
Ze�Z

i

= �F 0(�) � F (�) log F (�) .

Di↵erential inequalities are obtained for F (�).



herbst’s argument
As an example, suppose f is such that

P
n

i=1(Z � Z 0
i
)2+  v .

Then by the log-Sobolev inequality,

�F 0(�) � F (�) log F (�) 
v�2

4
F (�)

If G (�) = log F (�), this becomes
✓G (�)

�

◆0


v
4
.

This can be integrated: G (�)  �EZ + �v/4, so

F (�)  e�EZ��2
v/4

This implies

P{Z > EZ + t}  e�t
2/v

Stronger than the bounded di↵erences inequality!



gaussian log-sobolev inequality
Let X = (X1, . . . ,Xn) be a vector of i.i.d. standard normal If
f : Rn ! R and Z = f (X ),

Ent(Z 2)  2E
⇥
krf (X )k2

⇤

(Gross, 1975).

Proof sketch: Similar to how we proved the Gaussian Poincaré
inequality from Efron-Stein.
By the subadditivity of entropy, it su�ces to prove it for n = 1.
Approximate Z = f (X ) by

f

 
1

p
m

mX

i=1

"i

!

where the "i are i.i.d. Rademacher random variables.
Use the log-Sobolev inequality of the hypercube and the central
limit theorem.



gaussian concentration inequality

Herbst’t argument may now be repeated:
Suppose f is Lipschitz: for all x, y 2 Rn,

|f (x) � f (y)|  Lkx � yk .

Then, for all t > 0,

P {f (X ) � Ef (X ) � t}  e�t
2/(2L2) .

(Tsirelson, Ibragimov, and Sudakov, 1976).



an application: supremum of a gaussian process

Let (Xt)t2T be an almost surely continuous centered Gaussian
process. Let Z = supt2T Xt . If

�2 = sup
t2T

�
E
⇥
X 2

t

⇤�
,

then

P {|Z � EZ | � u}  2e�u
2/(2�2)

Proof: We have already seen that Z can be written as a
�-Lipschitz function of a standard normal vector.



beyond bernoulli and gaussian: the entropy method

For general distributions, logarithmic Sobolev inequalities are not
available.

Solution: modified logarithmic Sobolev inequalities.
Suppose X1, . . . ,Xn are independent. Let Z = f (X1, . . . ,Xn)
and Zi = fi (X (i )) = fi (X1, . . . ,Xi�1,Xi+1, . . . ,Xn).

Let �(x) = ex � x � 1. Then for all
� 2 R,

�E
h
Ze�Z

i
� E

h
e�Z

i
log E

h
e�Z

i


nX

i=1

E
h
e�Z� (��(Z � Zi ))

i
.

Michel Ledoux



the entropy method

Define Zi = infx0
i
f (X1, . . . , x 0

i
, . . . ,Xn) and suppose

nX

i=1

(Z � Zi )
2  v .

Then for all t > 0,

P {Z � EZ > t}  e�t
2/(2v) .

This implies the bounded di↵erences inequality and much more.



example: convex lipschitz functions

Let f : [0, 1]n ! R be a convex function. Let
Zi = infx0

i
f (X1, . . . , x 0

i
, . . . ,Xn) and let X 0

i
be the value of x 0

i

for which the minimum is achieved. Then, writing

X (i )
= (X1, . . . ,Xi�1,X 0

i
,Xi+1, . . . ,Xn),

nX

i=1

(Z � Zi )
2=

nX

i=1

(f (X ) � f (X (i )
)2


nX

i=1

✓
@f
@xi

(X )

◆2

(Xi � X 0
i
)2

(by convexity)


nX

i=1

✓
@f
@xi

(X )

◆2

= krf (X )k2  L2 .



convex lipschitz functions

If f : [0, 1]n ! R is a convex Lipschitz function and X1, . . . ,Xn

are independent taking values in [0, 1], Z = f (X1, . . . ,Xn)
satisfies

P{Z > EZ + t}  e�t
2/(2L2) .



self-bounding functions

Suppose Z satisfies

0  Z � Zi  1 and
nX

i=1

(Z � Zi )  Z .

Recall that Var(Z )  EZ . We have much more:

P{Z > EZ + t}  e�t
2/(2EZ+2t/3)

and
P{Z < EZ � t}  e�t

2/(2EZ)

combinatorial entropies, configuration functions are examples of
self bounding functions.



conditional rademacher average

Let X1, . . . ,Xn be independent, taking values in a set X and let
A be a class of subsets of X .
The conditional Rademacher average is

Rn = E" sup
A2A

�����

nX

i=1

"i Xi2A

�����



concentration of conditional rademacher average

Define

R(i )
n

= E" sup
A2A

������

X

j 6=i

"j Xj2A

������

One can show easily that

0  Rn � R(i )
n

 1 and
nX

i=1

(Rn � R(i )
n

)  Rn .

By the Efron-Stein inequality,

Var(Rn)  E
nX

i=1

(Rn � R(i )
n

)2  ERn .

Standard deviation is at most
p
ERn.

The exponential inequalities also apply.



exponential efron-stein inequality
Define

V+ =
nX

i=1

E0 ⇥(Z � Z 0
i
)2+
⇤

and

V� =
nX

i=1

E0
h
(Z � Z 0

i
)2�

i
.

By Efron-Stein,

Var(Z )  EV+ and Var(Z )  EV� .

For all �, ✓ > 0 with �✓ < 1,

log Ee�(Z�EZ) 
�✓

1 � �✓
log Ee�V

+/✓ .

If also Z 0
i
� Z  1 for every i , fhen for all � 2 (0, 1/2),

log Ee�(Z�EZ) 
2�

1 � 2�
log Ee�V

�
.



weakly self-bounding functions
f : X n ! [0,1) is weakly (a, b)-self-bounding if there exist
fi : X n�1 ! [0,1) such that for all x 2 X n,

nX

i=1

⇣
f (x) � fi (x (i ))

⌘2
 af (x) + b .

Then

P {Z � EZ + t}  exp

 
�

t2

2 (aEZ + b + at/2)

!
.

If, in addition, f (x) � fi (x (i ))  1, then for 0 < t  EZ ,

P {Z  EZ � t}  exp

 
�

t2

2 (aEZ + b + c�t)

!
.

where c = (3a � 1)/6.



the isoperimetric view

Let X = (X1, . . . ,Xn) have independent
components, taking values in X n. Let
A ⇢ X n.
The Hamming distance of X to A is

d (X ,A) = min
y2A

d (X , y) = min
y2A

nX

i=1

Xi 6=yi
.

Michel Talagrand

P
(

d (X ,A) � t +

s
n
2
log

1

P[A]

)
 e�2t2/n .

“An isoperimetric inequality”.



the isoperimetric view

Proof: By the bounded di↵erences inequality,

P{Ed (X ,A) � d (X ,A) � t}  e�2t2/n.

Taking t = Ed (X ,A), we get

Ed (X ,A) 
s

n
2
log

1

P{A}
.

By the bounded di↵erences inequality again,

P
(

d (X ,A) � t +

s
n
2
log

1

P{A}

)
 e�2t2/n



isoperimetry implies concentration
Suppose

P
(

d (X ,A) � t +

s
n
2
log

1

P[A]

)
 e�2t2/n .

Let f : X n ! R satisfy the bounded di↵erences property (with
ci = 1).
Then, taking A = {x 2 X n : f (x)  Mf (X )}, we have
P[A] � 1/2 and

P{f (X ) > Mf (X ) + t}  P{d (X ,A) � t}
 e�2(t�p

n/(2/ log 2))2/n

Paul Lévy (1886–1971)


