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Talk Outline

1. Background

* What is a zonal flow?

* What do zonal flows do?

* How do zonal flows arise?

* What limits their amplitude, and how do zonal flows decay?
2. The residual flow in well-optimized stellarators.

3. Optimizing stellarators for strong zonal flows.



Zonal flow

Origins and definition

“Homogeneous, isotropic turbulence”: no preferred direction or
location, K41, etc.

With geometry: preferential directions, lower dimensionality (3D-
>2D), “self-organization”.

For nested toroidal magnetic geometries (tokamaks, stellarators...)
we define ZFs as E X B flows due to the part of the electrostatic

Box of turbulence.

potential (¢) that is constant within flux surfaces, e.g.:

¢ = 6¢ + @, with O(y) = (¢)

Gyrokinetic theory:

° kJ_ = kay/ + ka Va where B = VW X Va. Coherent structures

and zonal flows in
* No source of free energy for perturbations having k, = 0. atmospheric systems.
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With geometry: preferential directions, lower dimensionality (3D-
>2D), “self-organization”.

For nested toroidal magnetic geometries (tokamaks, stellarators...)
we define ZFs as E X B flows due to the part of the electrostatic
potential (¢) that is constant within flux surfaces, e.g.:

¢ = o6¢ + D, with O(y) = (¢P)

Gyrokinetic theory:
* k, =k, Vy+k,Vawhere B=Vy X Va.

* No source of free energy for perturbations having k, = 0.

Zonal flows in toroidal plasmas.
Nakata, Nunami &Sugama, PRL (2017)

LHD shows that the shape of the magnetic

field matters for ZFs!
Watanabe, Sugama & Ferrando, PRL(2008)



Z.onal flows suppress turbulence
Why ZFs are “good”

* Zonal flow “shearing”: one-dimensional transport of energy in
k-space. Lower saturation amplitude of turbulence.
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Fig: The Dimits shift in tokamaks.
(2021).

Dimits, et al, Phys Plasmas Vol 7, No 3 (2000)
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* see also damped eigenmode theory of Pueschel, Li & Terry, NF



Zonal flow generation

Linear and nonlinear mechanisms

* ZFs are linearly stable and arise spontaneously via nonlinear mechanisms. Why?
* Modes of “minimal inertia” — see e.g. P. Diamond, Plasma Phys. Control. Fusion 47 (2005):
1. Electrons move fast along the field lines, exploring a flux surface (irrational 7).

2. zero electron density response.

3. Smallion (polarization) density gives large electrostatic potential for k, p; < 1, i.e. gyrokinetic quasi-
neutrality constraint gives:

* [nverse cascade: Quasi-2D limits show conservation of two invariants.

* Secondary instability: A “primary instability” cannot grow forever — eventually the mode itself goes unstable!



Z) generation asinverse cascade

Fjortoft's argument
* Fjgrtoft (1953): Spectral redistribution of Modified Hasegawa-Mima equation:
energy in 2D turbulence is constrained by ) , ) , ) )
the conservation of enstrophy. Oy (T — V) +1p, 70 — V7ot + 0.0y0 = Ly
* Enstrophy flows to small scales, while Energy & enstrophy spectra:
energy flows to large scales. 1
B =5 (F+8) e,
4+ Kraichnan’s dual cascade 1, o 2 5 ’
2(0) = 5 (7 + #)° |p(k)|

E(k) A 1
\ Ratio of invariants defines an  71/2
. effective “scale” g~! for the

inverse cascade:

* Zonal flows are modes of maximal Z(k

effective scale, G G Plunk et al, New J.
Phys. 14 103030 (2012).
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Secondary instability in stellarator geometry

(The geometry doesn’t change much)

* If a linearly unstable mode in the plasma (primary mode ¢,,) grows to sufficiently large amplitude, another

mode arises that grows much faster than the primary mode (secondary mode ¢; < ¢,).

* This can be described by a linear problem, involving 3-mode coupling — Plunk et al, New J. Phys. 19 025009 (2017).

2
Twisting primary mode Primary 'lf‘y /s \/2<Q¢b” >/<b’" >

Sidebands

Zonal
@ o _ 21,2 2

Qy = Kok | Ppol b, = p; kw‘Vl//‘
> ok,
/ * Geometry affects ZF growth via flux-
surface averaging.

© & * Space-filling turbulence couples

more strongly to ZFs.



Zonal flow decay

Are zonal flows forever?

* Nonlinear decay mechanisms: “turbulent viscosity”, tertiary modes — generalized Kelvin-
Helmholtz limit, ...

* Linear collisionless decay: geodesic transfer mechanism to damped acoustic modes: “GAMs”.

» In tokamaks GAM damping goes as y ~ exp(—g?) — this comes from the ratio between the
parallel connection length L, = gR_.and the curvature scale length R. ~ R.

» The naive expectation is that g = L;/R, is smaller in stellarators, and so damping is strong,
but this is probably too simplistic.*

* After the GAMs decay away something remains — the “residual flow” of Rosenbluth & Hinton,
Phys. Rev. Lett. 8o, 724 (1998).

*[E. Rodriguez, G. G. Plunk, in prepration (2024)]



Interaction of Turbulence and Zonal Flows

Trying to put it all together

Free energy

sources ' Turbulence , Zonal Flows
S, ZF Drive:

Secondary modes, etc

Micro- Zonal flows and
instabilities and Back reaction: related stable
plasma waves Shearing & stabilization, modes

tertiary modes, etc.

)

Energy cascade,
dissipation.

Where do the opportunities for stellarator optimization lie?

~

Damping by
geodesic-
transfer, and the
residual flow.



Residual zonal flow*

Revisiting the problem with optimized stellarators in mind

* Linear gyrokinetic system (k, = 0):

aga eaFaO a¢
+ v,V + 1w — J,
Y I V118a da8a T o Oa

Z Ifla%¢ — Z eanaJOad3v

* Undamped solutions exist for k, = 0, e.g. the residual flow of Rosenbluth and Hinton.

* When are these solutions actually important?
* When are they important in stellarators? Can they be optimized?

* More basic questions remain — are such solutions necessarily “zonal”?

*[Plunk & Helander, submitted to J. Plasma Phys (2023); arXiv:2310.14218]



Problem setup

Electrostatic collisionless linearized gyrokinetics with k, = 0

Electrostatic gyrokinetic system (k, = 0):

aga eaFaO a¢
+ v,V + i — J
5 IV NI8a T MWdaba = T 7Y 0a

a

D n%zfﬁ =) eanaJOad3v

Quasi-neutrality constraint:

whereJ, = J (k,v,/Q ), andw,, = kv, - Vr =k.yv, . Define the orbit width o,

V., = Vm + V” Vlléra

ra

Note that v, , = 0 here (omnigenity) and we define the transit/orbit average

_1 L f L 1
f==—> J dl, where 7, = J dl.
21, & ), /1= 2B(1) L /1= AB(0)

where [; and [, are the bounce points such that B(l;) = B(l,) = 1/A where A = u/E. (Defined in

limiting sense for passing particles.)

Bounce point:
V” = 0and5,,= 0

Fig: Orbit width 6, measures the radial
excursion from flux surfaces of particles.
It is a function of phase space variables

(arc length, 4, etc.).



Initial value problem

Laplace transform, introduce integrating factor h, = exp(ik,o,,)g,

Jo, F.o+ OF (0) | e

VaN

)
T

a

(p + ikrvm)ila + V” V”i’\la = |P

)
T

a

i.e. the initial condition.

where 6F, = g, JooF 40 and OF (0) = OF |

=0’

Take long-time limit, times much longer than transit/bounce time, p < @, ~ kv V10, ~ kyvyy, ~ ygamy i-€- long after GAMs have
damped away.

At dominant order we find V”iz = 0. At next order we apply the transit average and obtain the solution

A\

1 )

- p + ikrvm p Ta

5 ik, k0 | ,—ik,6
g, Jo e F o+ OF (0)e"™a | ™",

This is all standard except we do not assume ¢p = ¢. This means we cannot easily solve for ¢, indeed using quasi-neutrality we obtain

9) . )
“a 2 3 P ks, —iks Z 3 I %5, —ik,0
— N nod—- |d’vJ, F Jn erPrap ™0 | = e |d’v/ OF (0)e"rCrap "%
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Intermediate Residual

Assessing ZFs in a well-optimized stellarators

Compared to tokamaks, additional solutions are found in stellarators that

arise because of unconfined orbits: “Mishchenko oscillations”.* § _ - |
W7X-HM ------
. . _ 0s b LHD-SC ——
These are associated with a slow decay (y;, ~ k.V,,) 81
0.6 | i
Unfortunately, they strongly deplete zonal flows even in the limit that v, is A
S o04f:" -
A 02H( " -
* The “true” long-time residual is therefore (negligibly) small in stellarators. < ; '\n",)rm,m,w e
4 Jl @J‘\I FATATE J‘-’j";'"‘-"-w—-—**--v--i-*w-.——.—.-w- ----
. | T
* But turbulence has a much shorter intrinsic timescale &y ~ a/vy,. 0.2 ? i
Define the “intermediate” residual potential, O T o0 300 400 200 600 700 590 900 1000

time (a/Vy)
¢ = lim ( lim gb(t)),

Yif=0 \ 7gapf— Fig.: Gyrokinetic simulations of linear
zonal flow response.*™ Green line added
i.e., we takev,, = (! by me: “intermediate residual”.

*[Mishchenko, Helander & Konies, Phys. Plasmas, 15(7):072309 (2008)]
**[Helander, Mishchenko, Kleiber & Xanthopoulos, Plasma Phys. Control. Fusion, §3(5):054000, (2011)]



Intermediate Residual

Assessing ZFs in a well-optimized stellarators

Compared to tokamaks, additional solutions are found in stellarators that 1.0 i % — 1.000
arise because of unconfined orbits: “Mishchenko oscillations”.* opt, ky = 1.050

These are associated with a slow decay (y;, ~ k,v, )

Unfortunately, they strongly deplete zonal flows even in the limit that v, is
small but non-zero.**

* The “true” long-time residual is therefore (negligibly) small in stellarators.

* But turbulence has a much shorter intrinsic timescale 7y ~ a/v,,.

0.29— HIL &, =0.736 LM, k, = 0.918
Define the “intermediate” residual potential, u I;gﬂ,’kix:ol.é%il —— LI k, = 0.848
0.0 . . . .
.. = lim ( lim gb(t)) , 0 10 20 30 40 50
ymt=0 \ Ygamt— 0 t*vpila
i.e., we take V,, = 0! Fig.: Linear zonal flow response in different

W7X configurations.
Mora Moreno, et al, Phys Plasmas (submitted)

*[Mishchenko, Helander & Konies, Phys. Plasmas, 15(7):072309 (2008)]
**[Helander, Mishchenko, Kleiber & Xanthopoulos, Plasma Phys. Control. Fusion, §3(5):054000, (2011)]



The residual zonal flow

Simplifying assumptions

* The general solution for the residual is complicated, non-zonal and
dependent on details of the initial condition — interesting
theoretically, but hardly the clean outcome of Rosenbluth & Hinton.

gyro-center
motion

* Must make some simplifying assumptions
1. Well-optimized stellarator (intermediate residual): k,v,, < p.
2. Small orbit width & Larmor radius: k.p; ~ k.6, < 1.
3- Sensible initial condition: (v}, /n,) 5F,(0) ~ b,e;p(0)/T..

* Item (3) is not obvious, but recall GK-QN equation:

2
é:
Z e J(SFaJOad% = bl-nl-lT¢

a l Fig: Particle motion.



Residual zonal flow in well-optimized stellarators

* Neglecting electron polarization (0,, < 0,;, p; <K p,), we
obtain

. (bh(0))
b)) + n [ dVFh2SE)

where the flux-surface average is

| LL ()4
<> — gil’?o LL o B ,
J—LF

* This is a very slight generalization of Rosenbluth & Hinton’s
expression, allowing the initial potential to be non-zonal:

P (0) = (¢(0)) # ¢(0).

Comparing with RH

* RH expression:

(bi)

RH — (0
¢res ( ) <bl> + ni_l <Id3vFlok725,2'>

* Case of uniform initial gyro-

center charge <bl¢(0)> = b,(0)

<b51>_1

= ®(0
¢res (0) <bz> + ni_l <Jd3VFzOk%5%>

* Note the inequality between the
harmonic and arithmetic means
implies for this case

Dres/ P(0) < pRU/D(0).




Residual in different stellarators

The residual is sensitive to a phase-space average of 5,,2: |
Bounce point:

n r

In tokamaks (and QA stellarators) the orbit width is large:

1. Distance along the field line between bounce points is L; ~ gR with g > 1.

2. Low trapped particle fractions (large aspect ratio limit: € << 1), but these

particles have slow transit (small vy).

2/6 1/2.

l

3. 8, ~qpile’and D ~ 57 ~ q°p
The situation is similar for QH stellarators, but the connection length is smaller,
Ly ~ R/|N — 1], so 6,is proportionally smaller, D ~ [N — 1 \_2pl.2/€1/2.

Fig: Orbit width 6, measures the radial
excursion from flux surfaces of particles.

PSA: ZFs not to be confused with undamped equilibrium flows, which are possible It is a function of phase space variables
in QS stellarators, but not in Ql. (arc length, 4, etc.).

QI stellarators are the best, D < pl.z.



Bounding the residual in QI stellarators

Writing the flux surface average as an integral over a single field period:

| L7, (fdl[* > [ 8?Bda
D=—( |d'vFy; )= da| — | Fy2avady

n nV/.JO Jo B.J() JO \/1—/13
Use dtf = dl/\/ 1 — AB and apply the Poincaré inequality assuming 6, = 0 at bounce
points
y[oo 2r ¢ 1/B, . \ |
D < : Fydv do ngxl v,,zdt M
AN Jo Jo | K

dl
V<141 — AB(0)

For QI, toroidal currentis small, B = GV @ 4+ K Vy, so v, can be written

Tp(4) =

Trapped particle motion

2 2

vir +vi/2 201 1B\ OB . .

p = | 1 (bX VInB) - Vr = var'(y) | _ | in one period of a QI field
Q2 Q2 2 ) 00

We find the more rigorous bound

3mT  (dr \*(*  (“(omB\" (Y2 ,/ iB\> di
D < do dl | 1 ——
2r%e?V' \dy ) J, Jo 00




Bounding the residual in QI stellarators

* Estimate from the bound

2 221 L 2 1/B 2
oln B AB d/A
2nee<V' \dy ) J, 0 00 0 2 \/1 — B

~ Bpiz/(rzL) ~ L(dy1ln B)* ~ L(rk)* ~ r*/L ~ L2%/B

* We get roughly
D < p?.

~ I



Final Thought: Zonal flow Optimization

* Do stellarator geometries exist that have large stable zonal flows?
* How to go about finding them.

1. Choose the right stellarator (QI).

2. Achieve good collisionless particle confinement.

3. Try to optimize for small orbit widths (large residual, low damping rate of
GAMs) — rigorous bounds derived here, and more detailed targets being
developed.

4. Optimizing for large Dimits shift?



