A tour of modular forms and quaternions

Alex Ghitza (University of Melbourne)

Variously joint with:

Samuele AnniYiannis FamAnna MedvedovskyMarseilleMelbourne and LSGNTMPIM Bonn

Why?

Maybe congruences?

D. H. Lehmer: $\tau(n) \equiv n\sigma_9(n) \pmod{7}$ for all $n \ge 1$.

Here

$$\Delta(q) = q \prod_{n=1}^{\infty} (1 - q^n)^{24} = \sum_{n=1}^{\infty} \tau(n)q^n \equiv q + 4q^2 + 5q^4 + 4q^8 + 2q^9 + \dots$$

and $\sigma_9(n) = \sum_{d|n} d^9$ appears in

$$E_{10}(q) = 1 - 264 \sum_{n=1}^{\infty} \sigma_9(n) q^n \equiv 1 + 2\left(q + 2q^2 + 3q^4 + q^7 + 4q^8 + q^9 + \dots\right)$$

Elliptic curves

Let \mathbb{F} be an algebraically closed field.

Elliptic curve E over \mathbb{F} : smooth, genus one, projective curve with distinguished point \mathcal{O} . It has affine Weierstraß equations of the form

$$y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}, \qquad a_{j} \in \mathbb{F},$$

an abelian group structure, and a one-dimensional *space of invariant differentials*

$$\omega_E = \operatorname{Span}_{\mathbb{F}} \left(\frac{dx}{2y + a_1 x + a_3} \right).$$

Elliptic curve E over ring R: proper smooth curve over R with a section \mathcal{O} and all of whose geometric fibres are elliptic curves as described above. It's a group scheme over R.

Has invertible sheaf $\underline{\omega}_{E/R}$ encapsulating the spaces of invariant differentials of the fibres.

Tate curve

Tate_q is an elliptic curve over $\mathbb{Z}((q))$ given by the equation

$$y^{2} + xy = x^{3} + B(q)x + C(q),$$

where

$$B(q) = -5\sum_{n=1}^{\infty} \sigma_3(n)q^n$$
$$C(q) = -\sum_{n=1}^{\infty} \frac{5\sigma_3(n) + 7\sigma_5(n)}{12} q^n.$$

Its canonical differential is

$$\omega_{\rm can} = \frac{dx}{2y+x}.$$

For any ring R_0 get Tate_q as an elliptic curve over $\mathbb{Z}((q)) \otimes_{\mathbb{Z}} R_0$.

Modular forms mod \boldsymbol{p}

Modular form of weight k, level 1, over ring R_0 , is a mapping

 $(E/R, \omega)$: R an R_0 -algebra, ω non-vanishing section of $\underline{\omega}_{E/R} \mapsto f(E/R, \omega) \in R$

that is *R*-isomorphism invariant, commutes with R_0 -base change and is homogeneous of degree -k:

$$f(E/R, \lambda \omega) = \lambda^{-k} f(E/R, \omega)$$
 for all $\lambda \in R^{\times}$.

Also *holomorphic at infinity*, a condition on the Tate curve:

$$f(\operatorname{Tate}_q, \omega_{\operatorname{can}}) \in \mathbb{Z}\llbracket q \rrbracket \otimes_{\mathbb{Z}} R_0.$$

The space of all such f is

 $M_k(1;R_0).$

When $R_0 = \overline{\mathbb{F}}_p$, we speak of *modular forms mod* p.

Higher level

Level $\Gamma_1(N)$, where N is invertible in the ring R_0 : pairs $(E/R, \omega)$ replaced by triples $(E/R, \alpha, \omega), \quad \alpha: \mu_N \hookrightarrow E.$

If $N \ge 4$ there is a moduli space $Y_1(N)$ of elliptic curves with level structure. Compactification $X_1(N)$ is a smooth projective curve over $\mathbb{Z}[1/N]$. The space of modular forms mod p of level N and weight k is given briefly by

$$M_k(N; \overline{\mathbb{F}}_p) = \mathrm{H}^0(X_1(N)_{\overline{\mathbb{F}}_p}, \underline{\omega}^{\otimes k}).$$

Supersingular elliptic curves

Let E be an elliptic curve over $\overline{\mathbb{F}}_p$. We say that E is

- ordinary if End(E) is an order in an imaginary quadratic field, iff E[p] is a group of order p;
- supersingular if End(E) is an order in the quaternion algebra D ramified at p and ∞ , iff E[p] is the trivial group.

The supersingular case is of particular interest to us.

Given $E/\overline{\mathbb{F}}_p$ supersingular, there exists a unique (up to \mathbb{F}_{p^2} -isomorphism) elliptic curve E_0/\mathbb{F}_{p^2} such that E is isomorphic over $\overline{\mathbb{F}}_p$ to $E_0 \times \overline{\mathbb{F}}_p$, and the p^2 -power Frobenius on E_0 is the multiplication by -p map.

We call E_0 the *canonical* \mathbb{F}_{p^2} -structure on E.

Modular forms mod p as reductions

Good source of modular forms mod p: take a normalised Hecke eigenform in characteristic zero and reduce its Fourier coefficients modulo p.

Extreme(ly useful) special case: Eisenstein series of weight p-1

$$E_{p-1}(q) = 1 - \frac{2p-2}{B_{p-1}} \sum_{n=1}^{\infty} \sigma_{p-2}(n) q^n, \qquad \sigma_{p-2}(n) = \sum_{d|n} d^{p-2}.$$

Its reduction modulo p is the *Hasse invariant* $A \in M_{p-1}(1; \overline{\mathbb{F}}_p)$ that satisfies

$$A(q) = 1.$$

Viewed as a global section over $X_1(N)_{\overline{\mathbb{F}}_p}$, all the zeros of A are simple and occur precisely at the supersingular elliptic curves.

Hecke operators

The spaces $M_k(N; \overline{\mathbb{F}}_p)$ are equipped with a family of Hecke operators $\{T_\ell\}$ indexed by primes $\ell \nmid Np$.

They can be defined by explicit formulas on q-expansions: if

$$f(q) = \sum_{n=0}^{\infty} a_n q^n$$
 and $(\langle \ell \rangle f)(q) = \sum_{n=0}^{\infty} b_n q^n$,

then

$$(T_{\ell}f)(q) = \sum_{n=0}^{\infty} a_{\ell n} q^n + \ell^{k-1} \sum_{n=0}^{\infty} b_n q^{\ell n}.$$

Can also be given by decomposing the double coset

$$\operatorname{GL}_2(\mathbb{Z}_\ell) \begin{pmatrix} 1 & 0 \\ 0 & \ell \end{pmatrix} \operatorname{GL}_2(\mathbb{Z}_\ell)$$

or in terms of degree ℓ isogenies between elliptic curves.

The quotients W_k

Multiplication by the Hasse invariant is Hecke-equivariant, injective

$$f \longmapsto A \cdot f : M_{k-(p-1)}(N; \overline{\mathbb{F}}_p) \longrightarrow M_k(N; \overline{\mathbb{F}}_p).$$

We consider the Hecke module structure of the quotient

$$W_k(N) = M_k(N; \overline{\mathbb{F}}_p) / A \cdot M_{k-(p-1)}(N; \overline{\mathbb{F}}_p)$$

This behaves very regularly once $k \ge p+1$:

- $W_{k+p^2-1}(N) \cong W_k(N).$
- $W_{k+p+1}(N) \cong W_k(N)[1].$ Tate twist of the Hecke action: T_ℓ acts as ℓT_ℓ .
- $W_{pk}(N) \cong W_k(N)$.

How does one prove such isomorphisms?

• G. Robert (1980): multiplication by E_{p+1} induces $W_k(N)[1] \cong W_{k+p+1}(N)$.

• Serre (1987–1996) uses geometry of the modular curve $X_1(N)_{\overline{\mathbb{F}}_p}$: much more soon.

• Trace formula: slightly more, later.

Serre's approach

Look at multiplication by the Hasse invariant A at the level of sheaves on $X_1(N)_{\overline{\mathbb{F}}_p}$

$$0 \longrightarrow \underline{\omega}^{\otimes k - (p-1)} \longrightarrow \underline{\omega}^{\otimes k} \longrightarrow \mathcal{V}_k \longrightarrow 0.$$

Take global sections, apply Serre duality etc. to get

$$0 \longrightarrow W_k(N) \longrightarrow V_k(N) \longrightarrow S_{(p+1)-k}(N; \overline{\mathbb{F}}_p)^{\vee} \longrightarrow 0.$$

So

$$W_k(N) \cong V_k(N)$$
 for $k \ge p+1$.

\mathcal{V}_k is supported on the supersingular locus

This simplifies things considerably.

Since any supersingular elliptic curve E has a canonical \mathbb{F}_{p^2} -structure E_0 , so does its space of invariant differentials $\omega_E \cong \omega_{E_0} \otimes_{\mathbb{F}_{p^2}} \overline{\mathbb{F}}_p$, so $\omega_E^{\otimes p^2 - 1}$ has a canonical basis.

Gives Hecke isomorphism

$$V_{k+p^2-1} \cong V_k.$$

V_k as functions on the quaternion algebra D

Serre pushes this further and identifies V_k with the space of functions

$$f: U_1(N) \setminus G(\mathbb{A}^{\infty}) / G(\mathbb{Q}) \longrightarrow \overline{\mathbb{F}}_p, \quad f(\lambda x) = \lambda^{-k} f(x) \text{ for all } \lambda \in \mathcal{O}_p^{\times} / \mathcal{O}_p^{\times}(1) \cong \mathbb{F}_{p^2}^{\times},$$

where $G = D^{\times}$ is the algebraic group over \mathbb{Q} given by the multiplicative group of the quaternion algebra D, and $U_1(N)$ is an appropriately chosen level structure.

[Actually, Serre worked with full level structure $\Gamma(N)$.

The case $\Gamma_1(N)$ is sketched in Edixhoven's Serre weights paper, and worked out in full detail in Yiannis Fam's MPhil thesis.

Yiannis also gives a refinement of this for fixed Dirichlet character, in particular proving the $\Gamma_0(N)$ case.]

Serre's main result

Theorem (Serre). Let $N \ge 4$ be prime to p.

The systems of Hecke eigenvalues coming from the spaces of modular forms mod p on $X_1(N)_{\overline{\mathbb{F}}_p}$ (all weights k put together) are the same as the systems of Hecke eigenvalues coming from the spaces of locally constant functions $G(\mathbb{A}^{\infty})/G(\mathbb{Q}) \longrightarrow \overline{\mathbb{F}}_p$, where G is the multiplicative group of the quaternion algebra ramified at p and ∞ .

Yiannis Fam's main result

Theorem (Fam). Let *B* be an indefinite quaternion algebra over \mathbb{Q} , of discriminant $\delta > 1$ relatively prime to *p*. Let $N \ge 4$ be prime to $p\delta$.

The systems of Hecke eigenvalues coming from the spaces of modular forms mod p on the Shimura curve defined by B and of level structure N (all weights k put together) are the same as the systems of Hecke eigenvalues coming from the spaces of locally constant functions $G(\mathbb{A}^{\infty})/G(\mathbb{Q}) \longrightarrow \overline{\mathbb{F}}_p$, where G is the multiplicative group of the quaternion algebra ramified at $p\delta$ and ∞ .

Shimura curves and false elliptic curves

Complex analytically, we have $B \hookrightarrow B \otimes_{\mathbb{Q}} \mathbb{R} \cong M_2(\mathbb{R})$, so picking a maximal order \mathcal{O}_B and looking at the group of units of reduced norm 1, we get a discrete subgroup Γ^B of $\mathrm{SL}_2(\mathbb{R})$ and then the quotient $\Gamma^B \setminus \mathcal{H} = X^B$.

This turns out to be compact already, so no need to compactify, but also no cusps (hence no q-expansions to rely on, and no Eisenstein series).

There is a moduli interpretation though: X^B is the moduli space of *false elliptic curves*, aka abelian surfaces with quaternionic multiplication by B

$$(E/R, \iota), \quad \iota: \mathcal{O}_B \hookrightarrow \operatorname{End}_R(E) \text{ ring homomorphism.}$$

There is a notion of supersingular false elliptic curve, and a purely algebraic-geometric definition of the Hasse invariant, etc.

A happy consequence

How could we get the isomorphism of Hecke modules

 $W_k^B(N)[1] \cong W_{k+p+1}^B(N) \quad \text{for } k \ge p+1?$

Already Serre indicated the possibility of mimicking Robert's multiplication by E_{p+1} purely in the quaternionic context.

This also works in the Shimura curve setting; we construct a function

$$\chi^B: G(\mathbb{A}^\infty)/G(\mathbb{Q}) \to \overline{\mathbb{F}}_p$$

such that multiplication by χ^B gives the desired isomorphism.

We are also optimistic about showing that any system of Hecke eigenvalues arising from X^B in some weight already appears, possibly up to twist, in weight $\leq p + 1$. (The modular curve version of this was proved by Edixhoven.)

Many other generalisations

At first sight, Serre's result may seem just an instance of the law of small numbers: the behaviour of global sections of sheaves on a curve is determined here by their restriction to a codimension one subvariety.

But the phenomenon turns out to be much more general than that:

- G (2003): Siegel modular varieties of any dimension
- Reduzzi (2013): certain Shimura varieties of PEL type
- Goldring–Koskivirta (2019), Terakado–Yu (2022): Shimura varieties of Hodge type

In each case, despite the dimension of the moduli spaces being arbitrarily large, the restriction of modular forms mod p to a natural finite set of points retains all the systems of Hecke eigenvalues.

The wild case (level Np)

Back in the modular curve setting, we now allow one factor of p to sneak into the level of the modular forms, in other words we work with the curve $X_1(Np)$.

Computationally, we still see many relations for $k \ge p+1$ (ss means semisimplification)

- $W_{k+p^2-p}(Np) \cong W_k(Np)$
- $W_{k+2}(Np)^{ss} \cong W_k(Np)[1]^{ss}$
- $W_k(Np)[(p-1)/2]^{ss} \cong W_k(Np)^{ss}$

How to prove these isomorphisms?

We haven't been able to find a replacement for Robert's multiplication by E_{p+1} .

The modular curve $X_1(Np)_{\overline{\mathbb{F}}_p}$ is singular, so Serre's approach becomes trickier.

Theorem (Anni–G–Medvedovsky 202?). Let M_1, M_2, N_1, N_2 be free \mathbb{Z}_p -modules of finite rank, each with an action of an operator T. Let $\overline{M_1} = M_1 \otimes \overline{\mathbb{F}}_p$, etc. Suppose we have T-equivariant embeddings $\iota_1 : \overline{N_1} \hookrightarrow \overline{M_1}$ and $\iota_2 : \overline{N_2} \hookrightarrow \overline{M_2}$ and consider the quotients

$$W_1 = \overline{M_1}/\iota_1(\overline{N_1}), \qquad W_2 = \overline{M_2}/\iota_2(\overline{N_2}).$$

Then $W_1^{ss} \cong W_2^{ss}$ as $\overline{\mathbb{F}}_p[T]$ -modules if and only if for every $n \ge 0$ we have $\left(\operatorname{tr}(T^n|M_1) - \operatorname{tr}(T^n|N_1)\right) - \left(\operatorname{tr}(T^n|M_2) - \operatorname{tr}(T^n|N_2)\right) \equiv 0 \pmod{p^{1+v_p(n)}}.$ Using the Eichler–Selberg trace formula and the previous theorem, we prove

Theorem (Anni–G–Medvedovsky 202?). For $k \ge p+3$ we have

 $W_{k+2}(Np)^{ss} \cong W_k(Np)[1]^{ss}$ and $W_k(Np)[(p-1)/2]^{ss} \cong W_k(Np)^{ss}$.