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Why?

Maybe congruences?

D. H. Lehmer: τ (n) ≡ nσ9(n) (mod 7) for all n ⩾ 1.

Here

∆(q) = q

∞∏
n=1

(
1 − qn

)24 =
∞∑

n=1
τ (n)qn ≡ q + 4q2 + 5q4 + 4q8 + 2q9 + . . .

and σ9(n) =
∑
d|n

d9 appears in

E10(q) = 1 − 264
∞∑

n=1
σ9(n)qn ≡ 1 + 2

(
q + 2q2 + 3q4 + q7 + 4q8 + q9 + . . .

)
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Elliptic curves

Let F be an algebraically closed field.

Elliptic curve E over F: smooth, genus one, projective curve with distinguished point O.

It has affine Weierstraß equations of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, aj ∈ F,

an abelian group structure, and a one-dimensional space of invariant differentials

ωE = SpanF

(
dx

2y + a1x + a3

)
.

Elliptic curve E over ring R: proper smooth curve over R with a section O and all of
whose geometric fibres are elliptic curves as described above. It’s a group scheme over R.

Has invertible sheaf ωE/R encapsulating the spaces of invariant differentials of the fibres.
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Tate curve

Tateq is an elliptic curve over Z((q)) given by the equation

y2 + xy = x3 + B(q)x + C(q),

where

B(q) = −5
∞∑

n=1
σ3(n)qn

C(q) = −
∞∑

n=1

5σ3(n) + 7σ5(n)
12 qn.

Its canonical differential is
ωcan = dx

2y + x
.

For any ring R0 get Tateq as an elliptic curve over Z((q)) ⊗Z R0.
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Modular forms mod p

Modular form of weight k, level 1, over ring R0, is a mapping(
E/R, ω

)
: R an R0-algebra, ω non-vanishing section of ωE/R 7→ f

(
E/R, ω

)
∈ R

that is R-isomorphism invariant, commutes with R0-base change and is homogeneous of
degree −k:

f
(
E/R, λω

)
= λ−kf

(
E/R, ω

)
for all λ ∈ R×.

Also holomorphic at infinity, a condition on the Tate curve:

f
(
Tateq, ωcan

)
∈ ZJqK ⊗Z R0.

The space of all such f is
Mk

(
1; R0

)
.

When R0 = Fp, we speak of modular forms mod p.
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Higher level

Level Γ1(N), where N is invertible in the ring R0: pairs
(
E/R, ω

)
replaced by triples(

E/R, α, ω
)
, α : µN ↪→ E.

If N ⩾ 4 there is a moduli space Y1(N) of elliptic curves with level structure.

Compactification X1(N) is a smooth projective curve over Z[1/N ].

The space of modular forms mod p of level N and weight k is given briefly by

Mk

(
N ;Fp

)
= H0(X1(N)Fp

, ω⊗k
)
.
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Supersingular elliptic curves

Let E be an elliptic curve over Fp. We say that E is

• ordinary if End(E) is an order in an imaginary quadratic field, iff E[p] is a group
of order p;

• supersingular if End(E) is an order in the quaternion algebra D ramified at p and
∞, iff E[p] is the trivial group.

The supersingular case is of particular interest to us.

Given E/Fp supersingular, there exists a unique (up to Fp2-isomorphism) elliptic curve
E0/Fp2 such that E is isomorphic over Fp to E0 × Fp, and the p2-power Frobenius on E0

is the multiplication by −p map.

We call E0 the canonical Fp2-structure on E.
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Modular forms mod p as reductions

Good source of modular forms mod p: take a normalised Hecke eigenform in characteristic
zero and reduce its Fourier coefficients modulo p.

Extreme(ly useful) special case: Eisenstein series of weight p − 1

Ep−1(q) = 1 − 2p − 2
Bp−1

∞∑
n=1

σp−2(n) qn, σp−2(n) =
∑
d|n

dp−2.

Its reduction modulo p is the Hasse invariant A ∈ Mp−1
(
1;Fp

)
that satisfies

A(q) = 1.

Viewed as a global section over X1(N )Fp
, all the zeros of A are simple and occur precisely

at the supersingular elliptic curves.
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Hecke operators

The spaces Mk

(
N ;Fp

)
are equipped with a family of Hecke operators

{
Tℓ

}
indexed by

primes ℓ ∤ Np.

They can be defined by explicit formulas on q-expansions: if

f (q) =
∞∑

n=0
anqn and

(
⟨ℓ⟩f

)
(q) =

∞∑
n=0

bnqn,

then (
Tℓf
)
(q) =

∞∑
n=0

aℓnqn + ℓk−1
∞∑

n=0
bnqℓn.

Can also be given by decomposing the double coset

GL2
(
Zℓ

)(1 0
0 ℓ

)
GL2

(
Zℓ

)
or in terms of degree ℓ isogenies between elliptic curves.
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The quotients Wk

Multiplication by the Hasse invariant is Hecke-equivariant, injective

f 7−→ A · f : Mk−(p−1)
(
N ;Fp

)
−→ Mk

(
N ;Fp

)
.

We consider the Hecke module structure of the quotient

Wk(N) = Mk

(
N ;Fp

)
/A · Mk−(p−1)

(
N ;Fp

)
This behaves very regularly once k ⩾ p + 1:

• Wk+p2−1(N) ∼= Wk(N).

• Wk+p+1(N) ∼= Wk(N)[1].
Tate twist of the Hecke action: Tℓ acts as ℓTℓ.

• Wpk(N) ∼= Wk(N).
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How does one prove such isomorphisms?

• G. Robert (1980): multiplication by Ep+1 induces Wk(N)[1] ∼= Wk+p+1(N).

• Serre (1987–1996) uses geometry of the modular curve X1(N)Fp
: much more soon.

• Trace formula: slightly more, later.
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Serre’s approach

Look at multiplication by the Hasse invariant A at the level of sheaves on X1(N)Fp

0 −→ ω⊗k−(p−1) −→ ω⊗k −→ Vk −→ 0.

Take global sections, apply Serre duality etc. to get

0 −→ Wk(N) −→ Vk(N) −→ S(p+1)−k

(
N ;Fp

)∨ −→ 0.

So
Wk(N) ∼= Vk(N) for k ⩾ p + 1.
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Vk is supported on the supersingular locus

This simplifies things considerably.

Since any supersingular elliptic curve E has a canonical Fp2-structure E0, so does its space
of invariant differentials ωE

∼= ωE0 ⊗F
p2 Fp, so ω⊗p2−1

E has a canonical basis.

Gives Hecke isomorphism
Vk+p2−1

∼= Vk.
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Vk as functions on the quaternion algebra D

Serre pushes this further and identifies Vk with the space of functions

f : U1(N)\G
(
A∞)/G(Q) −→ Fp, f (λx) = λ−kf (x) for all λ ∈ O×

p /O×
p (1) ∼= F×

p2,

where G = D× is the algebraic group over Q given by the multiplicative group of the
quaternion algebra D, and U1(N) is an appropriately chosen level structure.

[
Actually, Serre worked with full level structure Γ(N).

The case Γ1(N) is sketched in Edixhoven’s Serre weights paper, and worked out in full
detail in Yiannis Fam’s MPhil thesis.
Yiannis also gives a refinement of this for fixed Dirichlet character, in particular proving
the Γ0(N) case.

]
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Serre’s main result

Theorem (Serre). Let N ⩾ 4 be prime to p.
The systems of Hecke eigenvalues coming from the spaces of modular forms mod p on
X1(N)Fp

(all weights k put together) are the same as the systems of Hecke eigenvalues
coming from the spaces of locally constant functions G

(
A∞)/G(Q) −→ Fp, where G is

the multiplicative group of the quaternion algebra ramified at p and ∞.

Yiannis Fam’s main result

Theorem (Fam). Let B be an indefinite quaternion algebra over Q, of discriminant
δ > 1 relatively prime to p. Let N ⩾ 4 be prime to pδ.
The systems of Hecke eigenvalues coming from the spaces of modular forms mod p on
the Shimura curve defined by B and of level structure N (all weights k put together) are
the same as the systems of Hecke eigenvalues coming from the spaces of locally constant
functions G

(
A∞)/G(Q) −→ Fp, where G is the multiplicative group of the quaternion

algebra ramified at pδ and ∞.
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Shimura curves and false elliptic curves

Complex analytically, we have B ↪→ B ⊗Q R ∼= M2(R), so picking a maximal order OB

and looking at the group of units of reduced norm 1, we get a discrete subgroup ΓB of
SL2(R) and then the quotient ΓB\H = XB.

This turns out to be compact already, so no need to compactify, but also no cusps (hence
no q-expansions to rely on, and no Eisenstein series).

There is a moduli interpretation though: XB is the moduli space of false elliptic curves,
aka abelian surfaces with quaternionic multiplication by B(

E/R, ι
)
, ι : OB ↪→ EndR(E) ring homomorphism.

There is a notion of supersingular false elliptic curve, and a purely algebraic-geometric
definition of the Hasse invariant, etc.
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A happy consequence

How could we get the isomorphism of Hecke modules

W B
k (N)[1] ∼= W B

k+p+1(N) for k ⩾ p + 1?

Already Serre indicated the possibility of mimicking Robert’s multiplication by Ep+1

purely in the quaternionic context.

This also works in the Shimura curve setting; we construct a function

χB : G
(
A∞)/G(Q) → Fp

such that multiplication by χB gives the desired isomorphism.

We are also optimistic about showing that any system of Hecke eigenvalues arising from
XB in some weight already appears, possibly up to twist, in weight ⩽ p + 1.
(The modular curve version of this was proved by Edixhoven.)
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Many other generalisations

At first sight, Serre’s result may seem just an instance of the law of small numbers: the
behaviour of global sections of sheaves on a curve is determined here by their restriction
to a codimension one subvariety.

But the phenomenon turns out to be much more general than that:

• G (2003): Siegel modular varieties of any dimension

• Reduzzi (2013): certain Shimura varieties of PEL type

• Goldring–Koskivirta (2019), Terakado–Yu (2022): Shimura varieties of Hodge type

In each case, despite the dimension of the moduli spaces being arbitrarily large, the
restriction of modular forms mod p to a natural finite set of points retains all the systems
of Hecke eigenvalues.
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The wild case (level Np)

Back in the modular curve setting, we now allow one factor of p to sneak into the level of
the modular forms, in other words we work with the curve X1(Np).

Computationally, we still see many relations for k ⩾ p + 1 (ss means semisimplification)

• Wk+p2−p(Np) ∼= Wk(Np)

• Wk+2(Np)ss ∼= Wk(Np)[1]ss

• Wk(Np)[(p − 1)/2]ss ∼= Wk(Np)ss
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How to prove these isomorphisms?

We haven’t been able to find a replacement for Robert’s multiplication by Ep+1.

The modular curve X1(Np)Fp
is singular, so Serre’s approach becomes trickier.

Theorem (Anni–G–Medvedovsky 202?). Let M1, M2, N1, N2 be free Zp-modules of finite
rank, each with an action of an operator T . Let M1 = M1 ⊗ Fp, etc.
Suppose we have T -equivariant embeddings ι1 : N1 ↪→ M1 and ι2 : N2 ↪→ M2 and
consider the quotients

W1 = M1/ι1
(
N1
)
, W2 = M2/ι2

(
N2
)
.

Then W ss
1

∼= W ss
2 as Fp[T ]-modules if and only if for every n ⩾ 0 we have(

tr(T n|M1) − tr(T n|N1)
)

−
(
tr(T n|M2) − tr(T n|N2)

)
≡ 0

(
mod p1+vp(n)).
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Using the Eichler–Selberg trace formula and the previous theorem, we prove

Theorem (Anni–G–Medvedovsky 202?). For k ⩾ p + 3 we have

Wk+2(Np)ss ∼= Wk(Np)[1]ss and Wk(Np)[(p − 1)/2]ss ∼= Wk(Np)ss.
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