Hausdorff measure for limsup sets

Mumtaz Hussain

Theorem (Dirichlet 1842)

For any real number α and $N \in \mathbb{N}$, there exists integers p, q with $1 \le q \le N$ such that

$$\left| \alpha - \frac{p}{q} \right| \leq \frac{1}{qN}.$$

Theorem (Dirichlet 1842)

For any real number α and $N \in \mathbb{N}$, there exists integers p, q with $1 \le q \le N$ such that

$$\left| \alpha - \frac{p}{q} \right| \leq \frac{1}{qN}.$$

Let $\psi : \mathbb{N} \to \mathbb{R}^+$ be a function such that $\psi(q) \to 0$ as $q \to \infty$.

$$W(\psi) := \left\{ lpha \in \mathbb{R} : \left| lpha - rac{p}{q} \right| < \psi(q), ext{ for infinitely many } (p,q) \in \mathbb{Z} imes \mathbb{N}
ight\}$$

Theorem (Dirichlet 1842)

For any real number α and $N \in \mathbb{N}$, there exists integers p, q with $1 \le q \le N$ such that

$$\left|\alpha-\frac{p}{q}\right|\leq\frac{1}{qN}.$$

Let $\psi : \mathbb{N} \to \mathbb{R}^+$ be a function such that $\psi(q) \to 0$ as $q \to \infty$.

$$\mathcal{W}(\psi) := \left\{ lpha \in \mathbb{R} : \left| lpha - rac{\mathcal{p}}{q}
ight| < \psi(q), ext{ for infinitely many } (\mathcal{p}, q) \in \mathbb{Z} imes \mathbb{N}
ight\}.$$

Dirichlet's Theorem (1842) $\implies W(q^{-2}) = \mathbb{R}$

Theorem (Dirichlet 1842)

For any real number α and $N \in \mathbb{N}$, there exists integers p, q with $1 \le q \le N$ such that

$$\left|\alpha-\frac{p}{q}\right|\leq\frac{1}{qN}.$$

Let $\psi : \mathbb{N} \to \mathbb{R}^+$ be a function such that $\psi(q) \to 0$ as $q \to \infty$.

$$\mathcal{W}(\psi) := \left\{ lpha \in \mathbb{R} : \left| lpha - rac{\mathcal{P}}{q} \right| < \psi(q), ext{ for infinitely many } (\mathcal{p}, q) \in \mathbb{Z} imes \mathbb{N}
ight\}.$$

Dirichlet's Theorem (1842)
$$\implies$$
 $W(q^{-2}) = \mathbb{R}$

$$W(\psi) = \bigcap_{N=1}^{\infty} \bigcup_{q=N}^{\infty} \bigcup_{p=0}^{q} \left\{ \alpha \in [0,1) : \left| \alpha - \frac{p}{q} \right| < \psi(q) \right\} = \limsup_{q \to \infty} A_q(\psi).$$

$$W(\psi) = \bigcap_{N=1}^{\infty} \bigcup_{q=N}^{\infty} \bigcup_{p=0}^{q} \left\{ \alpha \in [0,1) : \left| \alpha - \frac{p}{q} \right| < \psi(q) \right\} = \limsup_{q \to \infty} A_q(\psi).$$

$$W(\psi) = \bigcap_{N=1}^{\infty} \bigcup_{q=N}^{\infty} \bigcup_{p=0}^{q} \left\{ \alpha \in [0,1) : \left| \alpha - \frac{p}{q} \right| < \psi(q) \right\} = \limsup_{q \to \infty} A_q(\psi).$$

Lemma (Borel-Cantelli, 1909)

Let E_1, E_2, \ldots be a sequence of events in some probability space.

If
$$\sum_{n=1}^{\infty} \Pr(E_n) < \infty$$
, then $\Pr\left(\limsup_{n \to \infty} E_n\right) = 0$.

$$W(\psi) = \bigcap_{N=1}^{\infty} \bigcup_{q=N}^{\infty} \bigcup_{p=0}^{q} \left\{ \alpha \in [0,1) : \left| \alpha - \frac{p}{q} \right| < \psi(q) \right\} = \limsup_{q \to \infty} A_q(\psi).$$

Lemma (Borel-Cantelli, 1909)

Let E_1, E_2, \ldots be a sequence of events in some probability space.

If
$$\sum_{n=1}^{\infty} \Pr(E_n) < \infty$$
, then $\Pr\left(\limsup_{n \to \infty} E_n\right) = 0$.

Borel–Cantelli Lemma $\Longrightarrow \mathcal{L}(W(\psi)) = 0$ if $\sum_{q=1}^{\infty} q\psi(q) < \infty$.

$$W(\psi) = \bigcap_{N=1}^{\infty} \bigcup_{q=N}^{\infty} \bigcup_{p=0}^{q} \left\{ \alpha \in [0,1) : \left| \alpha - \frac{p}{q} \right| < \psi(q) \right\} = \limsup_{q \to \infty} A_q(\psi).$$

Lemma (Borel-Cantelli, 1909)

Let E_1, E_2, \ldots be a sequence of events in some probability space.

If
$$\sum_{n=1}^{\infty} \Pr(E_n) < \infty$$
, then $\Pr\left(\limsup_{n \to \infty} E_n\right) = 0$.

Borel–Cantelli Lemma $\Longrightarrow \mathcal{L}(W(\psi)) = 0$ if $\sum_{q=1}^{\infty} q\psi(q) < \infty$.

Question

Under what conditions $\mathcal{L}(W(\psi)) > 0$?

$$W(\psi) = \bigcap_{N=1}^{\infty} \bigcup_{q=N}^{\infty} \bigcup_{p=0}^{q} \left\{ \alpha \in [0,1) : \left| \alpha - \frac{p}{q} \right| < \psi(q) \right\} = \limsup_{q \to \infty} A_q(\psi).$$

Lemma (Borel-Cantelli, 1909)

Let E_1, E_2, \ldots be a sequence of events in some probability space.

If
$$\sum_{n=1}^{\infty} \Pr(E_n) < \infty$$
, then $\Pr\left(\limsup_{n \to \infty} E_n\right) = 0$.

Borel–Cantelli Lemma $\Longrightarrow \mathcal{L}(W(\psi)) = 0$ if $\sum_{q=1}^{\infty} q\psi(q) < \infty$.

Question

Under what conditions $\mathcal{L}(W(\psi)) > 0$?

Example

$$A_{q}(\psi) = E_{q} = (0, 1/q), \quad \sum_{q=1}^{\infty} \mathcal{L}(E_{q}) = \infty. \text{ But}$$
$$\limsup_{t \to \infty} E_{t} = \bigcap_{t=1}^{\infty} \bigcup_{q=t}^{\infty} E_{q} = \bigcap_{t=1}^{\infty} (0, 1/t) = \emptyset$$

Classical Diophantine Approximation

$$W(\psi) = \bigcap_{N=1}^{\infty} \bigcup_{q=N}^{\infty} \bigcup_{p=0}^{q} \left\{ \alpha \in [0,1) : \left| \alpha - \frac{p}{q} \right| < \psi(q) \right\} = \limsup_{q \to \infty} A_q(\psi).$$

Lemma (Borel-Cantelli, 1909)

Let E_1, E_2, \ldots be a sequence of events in some probability space.

If
$$\sum_{n=1}^{\infty} \Pr(E_n) < \infty$$
, then $\Pr\left(\limsup_{n \to \infty} E_n\right) = 0$.

Borel–Cantelli Lemma $\Longrightarrow \mathcal{L}(W(\psi)) = 0$ if $\sum_{q=1}^{\infty} q\psi(q) < \infty$.

Lemma (Borel-Cantelli, 1909)

Let $E_1, E_2, ...$ be a sequence of events in some probability space such that $\sum_{q=1}^{\infty} \Pr(E_q) = \infty$, then

$$\Pr\left(\limsup_{Q \to \infty} E_Q\right) \ge \limsup_{Q \to \infty} \frac{\left(\sum_{s=1}^{Q} \Pr(E_s)\right)^2}{\sum_{t,s=1}^{Q} \Pr(E_t \cap E_s)}$$

Lebesgue measure criterion

Theorem (Khintchine, 1924)

Let $\psi:\mathbb{N}\to\mathbb{R}^+$ be a function. Then

$$\mathcal{L}(W(\psi) \cap \mathbb{I}) = egin{cases} 0 & ext{if} & \sum\limits_{q=1}^{\infty} q\psi(q) < \infty \ 1 & ext{if} & \sum\limits_{q=1}^{\infty} q\psi(q) = \infty & \psi ext{ is decreasing.} \end{cases}$$

Lebesgue measure criterion

Theorem (Khintchine, 1924)

Let $\psi : \mathbb{N} \to \mathbb{R}^+$ be a function. Then

Theorem (Koukoulopoulos-Maynard, 2020)

Let $\psi : \mathbb{N} \to \mathbb{R}^+$ be a function. Then

$$\mathcal{L}(\widehat{W}(\psi) \cap \mathbb{I}) = 1 ext{ if } \sum_{q=1}^{\infty} \phi(q)\psi(q) = \infty.$$

Lebesgue measure criterion

Theorem (Khintchine, 1924)

Let $\psi : \mathbb{N} \to \mathbb{R}^+$ be a function. Then

$$\mathcal{L}(W(\psi) \cap \mathbb{I}) = egin{cases} 0 & ext{if} & \sum\limits_{\substack{q=1 \ \infty \ q \neq 1}}^{\infty} q\psi(q) < \infty \ 1 & ext{if} & \sum\limits_{\substack{q=1 \ q = 1}}^{\infty} q\psi(q) = \infty & \psi ext{ is decreasing.} \end{cases}$$

Theorem (Koukoulopoulos-Maynard, 2020)

Let $\psi : \mathbb{N} \to \mathbb{R}^+$ be a function. Then

$$\mathcal{L}(\widehat{W}(\psi) \cap \mathbb{I}) = 1 \text{ if } \sum_{q=1}^{\infty} \phi(q)\psi(q) = \infty.$$

•
$$\psi_1(q) = \frac{1}{q^2}$$
; then $\sum_{q=1}^{\infty} q\psi_1(q) = \infty \Longrightarrow \mathcal{L}(W(\psi_1) \cap \mathbb{I}) = 1$.
• $\psi_2(q) = \frac{1}{q^{10}}$; then $\sum_{q=1}^{\infty} q\psi_2(q) < \infty \Longrightarrow \mathcal{L}(W(\psi_2) \cap \mathbb{I}) = 0$

Uniform Approximation

Definition (Dirichlet improvable sets)

Let $\psi : [t_0, \infty) \to \mathbb{R}_+$ be a non-increasing function with $t_0 \ge 1$ fixed. $D(\psi) := \left\{ x \in \mathbb{R} : \begin{array}{l} \exists N : \text{ the system } |qx - p| < \psi(t), \ |q| < t \\ \text{has a non trivial integer solution for all } t > N \end{array} \right\}$

Uniform Approximation

Definition (Dirichlet improvable sets)

Let $\psi : [t_0, \infty) \to \mathbb{R}_+$ be a non-increasing function with $t_0 \ge 1$ fixed. $D(\psi) := \left\{ x \in \mathbb{R} : \begin{array}{c} \exists N : \text{ the system } |qx - p| < \psi(t), \ |q| < t \\ \text{has a non trivial integer solution for all } t > N \end{array} \right\}$

Theorem (Kleinbock–Wadleigh, 2018)

Let ψ be a non-increasing positive function with $t\psi(t)<1$ for all large t. Then

$$\mathcal{L}(D(\psi)^{c}) = \begin{cases} 0, & \text{if } \sum_{t} \frac{\log \Psi(t)}{t \Psi(t)} < \infty, \\ \text{full, } & \text{if } \sum_{t} \frac{\log \Psi(t)}{t \Psi(t)} = \infty. \end{cases}$$

Uniform Approximation

Definition (Dirichlet improvable sets)

Let $\psi : [t_0, \infty) \to \mathbb{R}_+$ be a non-increasing function with $t_0 \ge 1$ fixed. $D(\psi) := \left\{ x \in \mathbb{R} : \begin{array}{c} \exists N : \text{ the system } |qx - p| < \psi(t), \ |q| < t \\ \text{has a non trivial integer solution for all } t > N \end{array} \right\}$

Theorem (Kleinbock–Wadleigh, 2018)

Let ψ be a non-increasing positive function with $t\psi(t)<1$ for all large t. Then

$$\mathcal{L}(D(\psi)^{c}) = \begin{cases} 0, & \text{if } \sum_{t} \frac{\log \Psi(t)}{t\Psi(t)} < \infty, \\ \text{full, } & \text{if } \sum_{t} \frac{\log \Psi(t)}{t\Psi(t)} = \infty. \end{cases}$$

Example

$$\mathcal{L}(D(\psi)^c) = \begin{cases} 0, & \text{if } \psi(t) = \frac{1}{t} \left(1 - \frac{1}{\log t(\log \log t)^{2+\epsilon}} \right) \text{ for any } \epsilon > 0; \\ \text{full, } \text{if } \psi(t) = \frac{1}{t} \left(1 - \frac{1}{\log t(\log \log t)^2} \right). \end{cases}$$

Definition

Let s > 0 and $\{B_i\}$ be a countable collection of Euclidean balls with $diam(B_i) \le \rho$ such that $X \subset \bigcup_i B_i$. $\mathcal{H}^s_{\rho}(X) = \inf \left\{ \sum_i (diam(B_i))^s : \{B_i\} \text{ is a } \rho\text{-cover for } X \right\}, \qquad \overset{\mathcal{H}^{s}(X)}{\underset{(0, 0) \quad \text{dim } X}{\overset{\infty}{\longrightarrow}}} s$

Definition

Let s > 0 and $\{B_i\}$ be a countable collection of Euclidean balls with $diam(B_i) \le \rho$ such that $X \subset \bigcup_i B_i$. $\mathfrak{H}^s_{\rho}(X) = \inf \left\{ \sum_i (diam(B_i))^s : \{B_i\} \text{ is a } \rho\text{-cover for } X \right\}, \qquad \overset{\mathfrak{H}^{s(X)}}{\underset{\mathcal{H}^{s(X)}}{\overset{(0,0) \quad \dim X}{\overset{(0,0) \quad \coprod X}{\overset{(0,0) \quad \coprod X}{\overset{(0,0) \quad \amalg X}{\overset{$

Example

Let K be the middle third Cantor set,

$$\dim K = \frac{\log 2}{\log 3}$$

0 1/9	2/9 1/3	2/3 7/9 8/9 1		
•		••		
\square				
:		:		
The Cantor Set				

 $\rho \rightarrow 0^+$

Definition

Let s > 0 and $\{B_i\}$ be a countable collection of Euclidean balls with $diam(B_i) \le \rho$ such that $X \subset \bigcup_i B_i$.

$$\begin{aligned} \mathfrak{H}^{s}_{\rho}(X) &= \inf \left\{ \sum_{i} (diam(B_{i}))^{s} : \{B_{i}\} \text{ is a } \rho \text{-cover for } X \right\}, \\ \mathfrak{H}^{s}(X) &= \lim \ \mathfrak{H}^{s}_{\rho}(X). \end{aligned}$$

Example

Let *K* be the middle third Cantor set,

$$\dim K = \frac{\log 2}{\log 3}$$

0 1/9 2/9	1/3	2/3 7/9	8/9 1	
•	_	•	·	
	_	·•	·	
\mapsto \mapsto \mapsto	⊷	$ \rightarrow \rightarrow $	\cdots	
:		:		
The Cantor Set				

Example

The Hausdorff dimension of Sierpinksi Triangle is $\frac{\log 3}{\log 2}$ obtained by solving the equation $2^d = 3$.

(0, 0)

 $\dim X$

s

Let $\psi : \mathbb{N} \to \mathbb{R}^+$ be a function such that $\psi(q) \to 0$ as $q \to \infty$.

 $W(\psi) := \left\{ \alpha \in \mathbb{R} : \left| \alpha - \frac{p}{q} \right| < \psi(q), \text{ for infinitely many } (p, q) \in \mathbb{Z} \times \mathbb{N}
ight\}.$

Let $\psi : \mathbb{N} \to \mathbb{R}^+$ be a function such that $\psi(q) \to 0$ as $q \to \infty$.

$$W(\psi) := \left\{ \alpha \in \mathbb{R} : \left| \alpha - \frac{p}{q} \right| < \psi(q), \text{ for infinitely many } (p, q) \in \mathbb{Z} \times \mathbb{N} \right\}$$

Theorem (Jarník 1928, Besicovitch 1934)

$$\dim W(r\mapsto r^{-\tau})=\frac{2}{\tau} \quad \text{for} \quad \tau\geq 2.$$

Let $\psi : \mathbb{N} \to \mathbb{R}^+$ be a function such that $\psi(q) \to 0$ as $q \to \infty$.

$$W(\psi) := \left\{ \alpha \in \mathbb{R} : \left| \alpha - \frac{p}{q} \right| < \psi(q), \text{ for infinitely many } (p, q) \in \mathbb{Z} \times \mathbb{N} \right\}$$

Theorem (Jarník 1928, Besicovitch 1934)

$$\dim W(r \mapsto r^{-\tau}) = \frac{2}{\tau} \quad \text{for} \quad \tau \geq 2.$$

Let ψ be an approximating function. Let f be a dimension function such that $q^{-1}f(q) \to \infty$ as $q \to 0$ and $q^{-1}f(q)$ is decreasing. Then

Let $\psi : \mathbb{N} \to \mathbb{R}^+$ be a function such that $\psi(q) \to 0$ as $q \to \infty$.

$$W(\psi) := \left\{ \alpha \in \mathbb{R} : \left| \alpha - \frac{p}{q} \right| < \psi(q), \text{ for infinitely many } (p, q) \in \mathbb{Z} \times \mathbb{N} \right\}$$

Theorem (Jarník 1928, Besicovitch 1934)

$$\dim W(r \mapsto r^{-\tau}) = \frac{2}{\tau} \quad \text{for} \quad \tau \geq 2.$$

Let ψ be an approximating function. Let f be a dimension function such that $q^{-1}f(q) \to \infty$ as $q \to 0$ and $q^{-1}f(q)$ is decreasing. Then

$$\mathcal{H}^{f}(W(\psi)) = \begin{cases} 0 & \text{if} & \sum_{q=1}^{\infty} qf(\psi(q)) < \infty, \\ & & \sum_{q=1}^{\infty} qf(\psi(q)) = \infty. \end{cases}$$

Definition (Dimension Function)

An increasing, continuous function $f : \mathbb{R}_+ \to \mathbb{R}_+ : f(r) \to 0$ as $r \to 0$.

Theorem (Jarník 1928, Besicovitch 1932)

$$\dim W(r\mapsto r^{-\tau})=\frac{2}{\tau}\quad\text{for}\quad \tau\geq 2.$$

Theorem (Jarník, 1931)

Let ψ be an approximating function. Let f be a dimension function such that $q^{-1}f(q) \to \infty$ as $q \to 0$ and $q^{-1}f(q)$ is decreasing. Then

$$\mathfrak{H}^{f}(W(\psi)) \ = \ \left\{ egin{array}{ccc} 0 & ext{if} & \displaystyle\sum_{q=1}^{\infty} qf(\psi(q)) < \infty, \ & \displaystyle\sum_{q=1}^{\infty} qf(\psi(q)) = \infty. \end{array}
ight.$$

Jarník theorem \implies Jarník–Besicovitch theorem.

Theorem (Jarník, 1931)

Let ψ be an approximating function. Let f be a dimension function such that $q^{-1}f(q) \to \infty$ as $q \to 0$ and $q^{-1}f(q)$ is decreasing. Then

$$\mathcal{H}^{f}(W(\psi)) = \left\{egin{array}{ll} 0 & ext{if} & \sum_{q=1}^{\infty} qf(\psi(q)) < \infty, \ & & & & \ & & & \ & & & \ & & & \ & & & \ & \ & & \ &$$

Hausdorff–Cantelli Lemma $\Longrightarrow \mathfrak{H}^{f}(W(\psi)) = 0$ if $\sum_{q=1}^{\infty} qf(\psi(q)) < \infty$.

Theorem (Jarník, 1931)

Let ψ be an approximating function. Let f be a dimension function such that $q^{-1}f(q) \to \infty$ as $q \to 0$ and $q^{-1}f(q)$ is decreasing. Then

$$\mathcal{H}^{f}(W(\psi)) = \left\{egin{array}{ccc} 0 & ext{if} & \sum\limits_{q=1}^{\infty} qf(\psi(q)) < \infty, \ & & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & \ & & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & \ & & & \ & \ & \ & \ & & \$$

Hausdorff–Cantelli Lemma $\implies \mathfrak{H}^{f}(W(\psi)) = 0$ if $\sum_{q=1}^{\infty} qf(\psi(q)) < \infty$.

Hausdorff–Cantelli Lemma => upper bound of Hausdorff dimension

Theorem (Jarník, 1931)

Let ψ be an approximating function. Let f be a dimension function such that $q^{-1}f(q) \to \infty$ as $q \to 0$ and $q^{-1}f(q)$ is decreasing. Then

$$\mathcal{H}^{f}(W(\psi)) = \left\{egin{array}{ll} 0 & ext{if} & \sum_{q=1}^{\infty} qf(\psi(q)) < \infty, \ & & & & \ & & & \ & & & \ & & & \ & & & \ & & \ & & & \ & \ & & \$$

Hausdorff–Cantelli Lemma $\Longrightarrow \mathfrak{H}^{f}(W(\psi)) = 0$ if $\sum_{q=1}^{\infty} qf(\psi(q)) < \infty$.

Hausdorff–Cantelli Lemma \implies upper bound of Hausdorff dimension

Question

How to prove $\mathcal{H}^{f}(W(\psi)) > 0$?

Lemma (Mass Distribution Principle)

Let μ be a probability measure supported on a subset F of X. Suppose there are positive constants c > 0 and $\epsilon > 0$ such that

 $\mu(U) \leq cf(\operatorname{diam}(U))$

for all sets U with diam(U) $\leq \epsilon$. Then $\mathfrak{H}^{\mathfrak{f}}(F) \geq \mu(F)/c$.

Lemma (Mass Distribution Principle)

Let μ be a probability measure supported on a subset F of X. Suppose there are positive constants c > 0 and $\epsilon > 0$ such that

 $\mu(U) \leq cf(\operatorname{diam}(U))$

for all sets U with diam(U) $\leq \epsilon$. Then $\mathfrak{H}^{f}(F) \geq \mu(F)/c$.

construct a suitable Cantor type subset *K* ⊂ *F* = lim sup_{i→∞} *B_i* and a probability measure μ supported on *K*,

Lemma (Mass Distribution Principle)

Let μ be a probability measure supported on a subset F of X. Suppose there are positive constants c > 0 and $\epsilon > 0$ such that

 $\mu(U) \leq cf(\operatorname{diam}(U))$

for all sets U with diam(U) $\leq \epsilon$. Then $\mathfrak{H}^{f}(F) \geq \mu(F)/c$.

- construct a suitable Cantor type subset *K* ⊂ *F* = lim sup_{i→∞} *B_i* and a probability measure μ supported on *K*,
- show that for any fixed c > 0, μ satisfies the condition that for any measurable set U of sufficiently small diameter, μ(U) ≤ cf(diam(U)).

Lemma (Mass Distribution Principle)

Let μ be a probability measure supported on a subset F of X. Suppose there are positive constants c > 0 and $\epsilon > 0$ such that

 $\mu(U) \leq cf(\operatorname{diam}(U))$

for all sets U with diam(U) $\leq \epsilon$. Then $\mathfrak{H}^{\mathfrak{f}}(F) \geq \mu(F)/c$.

- construct a suitable Cantor type subset *K* ⊂ *F* = lim sup_{i→∞} *B_i* and a probability measure μ supported on *K*,
- show that for any fixed c > 0, μ satisfies the condition that for any measurable set U of sufficiently small diameter, μ(U) ≤ cf(diam(U)).

If this can be done, then by the mass distribution principle, it follows that

$$\mathfrak{H}^{f}(F) \geq \mathfrak{H}^{f}(\mathfrak{K}) \geq c^{-1}.$$

Then since *c* is arbitrary, it follows that $\mathcal{H}^{f}(F) = \infty$.

A general principle

Theorem (H.-Simmons, PAMS 2019)

Fix $\delta > 0$, let $(B_i)_i$ be a sequence of open sets in an Ahlfors δ -regular metric space X, and let f be a dimension function such that

$$r \mapsto r^{-\delta} f(r)$$
 is decreasing, and (1)
 $r^{-\delta} f(r) \to \infty \text{ as } r \to 0.$ (2)

A general principle

Theorem (H.-Simmons, PAMS 2019)

Fix $\delta > 0$, let $(B_i)_i$ be a sequence of open sets in an Ahlfors δ -regular metric space X, and let f be a dimension function such that

$$r \mapsto r^{-\delta} f(r)$$
 is decreasing, and (1)
 $r^{-\delta} f(r) \to \infty$ as $r \to 0$. (2)

Fix C > 0, and suppose that the following hypothesis holds:

(*) For every ball $B_0 \subset X$ and for every $N \in \mathbb{N}$, there exists a probability measure $\mu = \mu(B_0, N)$ with $\operatorname{Supp}(\mu) \subset \bigcup_{i \geq N} B_i \cap B_0$, such that for every ball $B = B(x, \rho) \subset X$, we have

$$\mu(B) \lesssim \max\left(\left(\frac{
ho}{\operatorname{diam}B_0}\right)^{\delta}, \frac{f(
ho)}{C}\right).$$
(3)

A general principle

Theorem (H.-Simmons, PAMS 2019)

Fix $\delta > 0$, let $(B_i)_i$ be a sequence of open sets in an Ahlfors δ -regular metric space X, and let f be a dimension function such that

$$r \mapsto r^{-\delta} f(r)$$
 is decreasing, and (1)
 $r^{-\delta} f(r) \to \infty$ as $r \to 0$. (2)

Fix C > 0, and suppose that the following hypothesis holds:

(*) For every ball $B_0 \subset X$ and for every $N \in \mathbb{N}$, there exists a probability measure $\mu = \mu(B_0, N)$ with $\operatorname{Supp}(\mu) \subset \bigcup_{i \geq N} B_i \cap B_0$, such that for every ball $B = B(x, \rho) \subset X$, we have

$$\mu(B) \lesssim \max\left(\left(\frac{\rho}{\operatorname{diam}B_0}\right)^{\delta}, \frac{f(\rho)}{C}\right).$$
(3)

Then for every ball B_0 ,

$$\mathcal{H}^f\left(B_0\cap\limsup_{i\to\infty}B_i
ight)\gtrsim C.$$

In particular, if the hypothesis (*) holds for all C, then $\mathfrak{H}^{f}(B_{0} \cap \limsup_{i \to \infty} B_{i}) = \infty$.

Theorem (Beresnevich–Velani, Ann. Math. 2006)

Let $X \subset \mathbb{R}^d$ be Ahlfors δ -regular. Let $(B_i)_{i \in \mathbb{N}}$ be a sequence of balls in X with $rad(B_i) \to 0$ as $i \to \infty$. Let f be a dimension function such that $r \mapsto r^{-\delta}f(r)$ is monotonic. Suppose that for every ball $B \subset X$

 $\mathfrak{H}^{\delta}(B \cap \limsup_{i \to \infty} B_i^f) = \mathfrak{H}^{\delta}(B).$

Then for every ball $B \subset X$

 $\mathfrak{H}^{f}(B \cap \limsup_{i \to \infty} B_{i}) = \mathfrak{H}^{f}(B).$

Theorem (Beresnevich–Velani, Ann. Math. 2006)

Let $X \subset \mathbb{R}^d$ be Ahlfors δ -regular. Let $(B_i)_{i \in \mathbb{N}}$ be a sequence of balls in X with $rad(B_i) \to 0$ as $i \to \infty$. Let f be a dimension function such that $r \mapsto r^{-\delta}f(r)$ is monotonic. Suppose that for every ball $B \subset X$

 $\mathfrak{H}^{\delta}(B \cap \limsup_{i \to \infty} B_i^f) = \mathfrak{H}^{\delta}(B).$

Then for every ball $B \subset X$

 $\mathfrak{H}^{f}(B \cap \limsup_{i \to \infty} B_{i}) = \mathfrak{H}^{f}(B).$

Khintchine's Theorem \Longrightarrow Jarník's Theorem

Theorem (Beresnevich–Velani, Ann. Math. 2006)

Let $X \subset \mathbb{R}^d$ be Ahlfors δ -regular. Let $(B_i)_{i \in \mathbb{N}}$ be a sequence of balls in X with $rad(B_i) \to 0$ as $i \to \infty$. Let f be a dimension function such that $r \mapsto r^{-\delta}f(r)$ is monotonic. Suppose that for every ball $B \subset X$

 $\mathfrak{H}^{\delta}(B \cap \limsup_{i \to \infty} B_i^f) = \mathfrak{H}^{\delta}(B).$

Then for every ball $B \subset X$

 $\mathfrak{H}^{f}(B \cap \limsup_{i \to \infty} B_{i}) = \mathfrak{H}^{f}(B).$

Khintchine's Theorem \implies Jarník's Theorem

Dirichlet's Theorem \Longrightarrow Jarník–Besicovitch Theorem

Theorem (Beresnevich–Velani, Ann. Math. 2006)

Let $X \subset \mathbb{R}^d$ be Ahlfors δ -regular. Let $(B_i)_{i \in \mathbb{N}}$ be a sequence of balls in X with $rad(B_i) \to 0$ as $i \to \infty$. Let f be a dimension function such that $r \mapsto r^{-\delta}f(r)$ is monotonic. Suppose that for every ball $B \subset X$

 $\mathfrak{H}^{\delta}(B \cap \limsup_{i \to \infty} B_i^f) = \mathfrak{H}^{\delta}(B).$

Then for every ball $B \subset X$

 $\mathfrak{H}^{f}(B \cap \limsup_{i \to \infty} B_{i}) = \mathfrak{H}^{f}(B).$

Khintchine's Theorem \Longrightarrow Jarník's Theorem

Dirichlet's Theorem \implies Jarník–Besicovitch Theorem

H.–Simmons Theorem \implies Beresnevich–Velani Theorem

Definition (Dirichlet improvable sets)

Let $\psi : [t_0, \infty) \to \mathbb{R}_+$ be a non-increasing function with $t_0 \ge 1$ fixed. $D(\psi) := \begin{cases} x \in \mathbb{R} : & \exists N : \text{ the system } |qx - p| < \psi(t), |q| < t \\ & \text{has a non trivial integer solution for all } t > N \end{cases}$

Definition (Dirichlet improvable sets)

Let $\psi : [t_0, \infty) \to \mathbb{R}_+$ be a non-increasing function with $t_0 \ge 1$ fixed. $D(\psi) := \begin{cases} x \in \mathbb{R} : & \exists N : \text{ the system } |qx - p| < \psi(t), |q| < t \\ & \text{has a non trivial integer solution for all } t > N \end{cases}$

Theorem (Bos–H.–Simmons, PAMS 2023)

Let ψ be a non-increasing positive function with $t\psi(t) < 1$ for all large t. Let f be a dimension function such that $\lim_{x\to 0} x^{-1}f(x) \to \infty$ and $x^{-1}f(x)$ is decreasing. Then

$$\mathcal{H}^{f}(\mathcal{D}^{c}(\psi)) = \begin{cases} 0 & \text{if} \quad \sum_{k=1}^{\infty} \sum_{j < \log_{2} \Psi(2^{k})} 2^{2k+j} f\left(\frac{2^{-(2k+j)}}{\Psi(2^{k+j})}\right) < \infty; \\ \infty & \text{if} \quad \sum_{k=1}^{\infty} \sum_{j < \log_{2} \Psi(2^{k})} 2^{2k+j} f\left(\frac{2^{-(2k+j)}}{\Psi(2^{k+j})}\right) = \infty. \end{cases}$$

Definition (Dirichlet improvable sets)

Let $\psi : [t_0, \infty) \to \mathbb{R}_+$ be a non-increasing function with $t_0 \ge 1$ fixed. $D(\psi) := \begin{cases} x \in \mathbb{R} : & \exists N : \text{ the system } |qx - p| < \psi(t), |q| < t \\ & \text{has a non trivial integer solution for all } t > N \end{cases}$

Theorem (Bos–H.–Simmons, PAMS 2023)

Let ψ be a non-increasing positive function with $t\psi(t) < 1$ for all large t. Let f be a dimension function such that $\lim_{x\to 0} x^{-1}f(x) \to \infty$ and $x^{-1}f(x)$ is decreasing. Then

$$\mathcal{H}^{f}(D^{c}(\psi)) = \begin{cases} 0 & \text{if} \quad \sum_{k=1}^{\infty} \sum_{j < \log_{2} \Psi(2^{k})} 2^{2k+j} f\left(\frac{2^{-(2k+j)}}{\Psi(2^{k+j})}\right) < \infty; \\ \\ \infty & \text{if} \quad \sum_{k=1}^{\infty} \sum_{j < \log_{2} \Psi(2^{k})} 2^{2k+j} f\left(\frac{2^{-(2k+j)}}{\Psi(2^{k+j})}\right) = \infty. \end{cases}$$

Corollary (H.-Kleinbock-Wadleigh-Wang, Mathematika 2018)

Let ψ be a non-increasing positive function with $t\psi(t) < 1$ for all large t, and let f be an essentially sub-linear dimension function. Then

$$\mathcal{H}^{f}(D^{c}(\psi)) = \begin{cases} 0 & \text{if } \sum_{t} tf\left(\frac{1}{t^{2}\Psi(t)}\right) < \infty; \\ \infty & \text{if } \sum_{t} tf\left(\frac{1}{t^{2}\Psi(t)}\right) = \infty. \end{cases}$$

A Jarnik type criterion

Definition (Dirichlet improvable sets)

Let $\psi : [t_0, \infty) \to \mathbb{R}_+$ be a non-increasing function with $t_0 \ge 1$ fixed. $D(\psi) := \begin{cases} x \in \mathbb{R} : & \exists N : \text{ the system } |qx - p| < \psi(t), |q| < t \\ & \text{has a non trivial integer solution for all } t > N \end{cases}$

Theorem (Bos–H.–Simmons, PAMS 2023)

Let ψ be a non-increasing positive function with $t\psi(t) < 1$ for all large t. Let f be a dimension function such that $\lim_{x\to 0} x^{-1}f(x) \to \infty$ and $x^{-1}f(x)$ is decreasing. Then

$$\mathcal{H}^{f}(D^{c}(\psi)) = \begin{cases} 0 & \text{if} \quad \sum_{k=1}^{\infty} \sum_{j < \log_{2} \Psi(2^{k})} 2^{2k+j} f\left(\frac{2^{-(2k+j)}}{\Psi(2^{k+j})}\right) < \infty; \\ \\ \infty & \text{if} \quad \sum_{k=1}^{\infty} \sum_{j < \log_{2} \Psi(2^{k})} 2^{2k+j} f\left(\frac{2^{-(2k+j)}}{\Psi(2^{k+j})}\right) = \infty. \end{cases}$$

Corollary

Let ψ be a non-increasing positive function with $t\psi(t) < 1$ for all large t, and let f be a non-essentially sub-linear dimension function. Then

$$\mathcal{H}^{f}(\mathcal{D}^{c}(\psi)) = \begin{cases} 0 & \text{if } \sum_{t} t \log(\Psi(t)) f\left(\frac{1}{t^{2}\Psi(t)}\right) < \infty; \\ \infty & \text{if } \sum_{t} t \log(\Psi(t)) f\left(\frac{1}{t^{2}\Psi(t)}\right) = \infty. \end{cases}$$

A Jarnik type criterion

Definition (Dirichlet improvable sets)

Let $\psi : [t_0, \infty) \to \mathbb{R}_+$ be a non-increasing function with $t_0 \ge 1$ fixed. $D(\psi) := \begin{cases} x \in \mathbb{R} : & \exists N : \text{ the system } |qx - p| < \psi(t), |q| < t \\ & \text{has a non trivial integer solution for all } t > N \end{cases}$

Theorem (Bos-H.-Simmons, PAMS 2023)

Let ψ be a non-increasing positive function with $t\psi(t) < 1$ for all large t. Let f be a dimension function such that $\lim_{x\to 0} x^{-1}f(x) \to \infty$ and $x^{-1}f(x)$ is decreasing. Then

$$\mathcal{H}^{f}(D^{c}(\psi)) = \begin{cases} 0 & \text{if} \quad \sum_{k=1}^{\infty} \sum_{j < \log_{2} \Psi(2^{k})} 2^{2k+j} f\left(\frac{2^{-(2k+j)}}{\Psi(2^{k+j})}\right) < \infty; \\ \infty & \text{if} \quad \sum_{k=1}^{\infty} \sum_{j < \log_{2} \Psi(2^{k})} 2^{2k+j} f\left(\frac{2^{-(2k+j)}}{\Psi(2^{k+j})}\right) = \infty. \end{cases}$$

Corollary

Let ψ be a non-increasing positive function with $t\psi(t) < 1$ for all large t, and let f be a non-essentially sub-linear dimension function. Then

$$\mathcal{H}^{f}(\mathcal{D}^{c}(\psi)) = \begin{cases} 0 & \text{if} \quad \sum_{t} t \log(\Psi(t)) f\left(\frac{1}{t^{2}\Psi(t)}\right) < \infty; \\ \\ \infty & \text{if} \quad \sum_{t} t \log(\Psi(t)) f\left(\frac{1}{t^{2}\Psi(t)}\right) = \infty. \end{cases}$$

A Jarnik type criterion

Theorem (Bos-H.-Simmons, PAMS 2023)

Let ψ be a non-increasing positive function with $t\psi(t) < 1$ for all large t. Let f be a dimension function such that $\lim_{x\to 0} x^{-1}f(x) \to \infty$ and $x^{-1}f(x)$ is decreasing. Then

$$\mathcal{H}^{f}(D^{c}(\psi)) = \begin{cases} 0 & \text{if} \quad \sum_{k=1}^{\infty} \sum_{j < \log_{2} \Psi(2^{k})} 2^{2k+j} f\left(\frac{2^{-(2k+j)}}{\Psi(2^{k+j})}\right) < \infty; \\ \infty & \text{if} \quad \sum_{k=1}^{\infty} \sum_{j < \log_{2} \Psi(2^{k})} 2^{2k+j} f\left(\frac{2^{-(2k+j)}}{\Psi(2^{k+j})}\right) = \infty. \end{cases}$$

Let ψ be a non-increasing positive function with $t\psi(t) < 1$ for all large t. Let f be a dimension function such that $\lim_{x\to 0} x^{-1}f(x) \to \infty$ and $x^{-1}f(x)$ is decreasing. Let Ψ be such that, for all x > 0 and Q > 1, the following condition holds

$$\Psi(Q^{\chi}) \asymp \Psi(Q), \tag{4}$$

where the implied constant depends only on x. Then

$$\mathcal{H}^{f}(\mathcal{D}^{c}(\psi)) = \begin{cases} 0 & \text{if} \quad \sum_{q} q \log \left(\Psi(q)\right) f\left(\frac{1}{q^{2}\Psi(q)}\right) < \infty; \\ & \\ \infty & \text{if} \quad \sum_{q} q \log \left(\Psi(q)\right) f\left(\frac{1}{q^{2}\Psi(q)}\right) = \infty. \end{cases}$$

Sketch of the proof

$$G(\Psi) = \Big\{ x \in [0,1) : a_n(x)a_{n+1}(x) \ge \Psi(q_n) \text{ for i.m. } n \in \mathbb{N} \Big\},$$

$$G(\Psi) = \left\{ x \in [0,1) : a_n(x)a_{n+1}(x) \ge \Psi(q_n) \text{ for i.m. } n \in \mathbb{N} \right\}$$
$$\subseteq \left\{ x \in [0,1) : a_n(x)a_{n+1}(x) \ge \Psi(a_nq_{n-1}) \text{ for i.m. } n \in \mathbb{N} \right\}$$
$$\subseteq \bigcup_{n=N}^{\infty} \bigcup_{a_1,\dots,a_n} \bigcup_{a_{n+1} > \frac{\Psi(a_nq_{n-1})}{a_n}} I_{n+1}(a_1,\dots,a_n,a_{n+1})$$
$$= \mathcal{A}_1(\Psi) \cup \mathcal{A}_2(\Psi).$$

Where

$$\mathcal{A}_{1}(\Psi) = \bigcup_{n=N}^{\infty} \bigcup_{a_{1},\ldots,a_{n}} \bigcup_{a_{n} \leq \Psi(q_{n-1})} \bigcup_{a_{n+1} > \frac{\Psi(a_{n}q_{n-1})}{a_{n}}} I_{n+1}(a_{1},\ldots,a_{n},a_{n+1}),$$
$$\mathcal{A}_{2}(\Psi) = \bigcup_{n=N}^{\infty} \bigcup_{a_{1},\ldots,a_{n}} \bigcup_{a_{n} > \Psi(q_{n-1})} \bigcup_{a_{n+1} > \frac{\Psi(a_{n}q_{n-1})}{a_{n}}} I_{n+1}(a_{1},\ldots,a_{n},a_{n+1}).$$

$$egin{aligned} &J_n(a_1,\ldots,a_n) := igcup_{a_{n+1} > rac{\Psi(a_n q_{n-1})}{a_n}} &I_{n+1}(a_1,\ldots,a_n,a_{n+1}). \ &|J_n(a_1,\ldots,a_n)| \leq rac{1}{\Psi(a_n q_{n-1})a_n q_{n-1}^2}. \end{aligned}$$

Let Q > 1 and $Q < q_{n-1} \leq 2Q$. Then

$$|J_n(a_1,\ldots,a_n)|\ll \frac{1}{\Psi(a_nQ)a_nQ^2}.$$

Hence, the cost of the cover when $a_n < \Psi(q_{n-1})$, is

$$\sum_{a=1}^{\Psi(Q)} f\left(\frac{1}{aQ^2\Psi(aQ)}\right).$$

In the case $a_n > \Psi(q_{n-1})$, the cost of the cover is given by

$$f\left(\frac{1}{Q^2\Psi(Q)}\right).$$

Since Q > 1, it follows that for each window [Q, 2Q], there are at most Q^2 cylinders I_n of length comparable (up to a constant) to Q^{-2} . Multiplying the cost of the cover given above by Q^2 which are the number of such intervals, and then summing over all the windows $Q = 2^k$, we have

$$\sum_{Q=2^k;k\geq 1} Q^2 \sum_{a=1}^{\Psi(Q)} f\left(\frac{1}{aQ^2\Psi(aQ)}\right) + \sum_{Q=2^k;k\geq 1} Q^2 f\left(\frac{1}{Q^2\Psi(Q)}\right).$$

Applying Cauchy's condensation test on the second term, and rewriting the first term gives the total cost as

$$\sum_{\substack{k \geq 1 \\ Q=2^k}} \sum_{\substack{j \geq 1, \mathcal{A}=2^j \\ \mathcal{A} < \Psi(Q)}} Q^2 A f\left(\frac{1}{Q^2 A \Psi(Q \mathcal{A})}\right) + \sum_{q} q f\left(\frac{1}{q^2 \Psi(q)}\right).$$

Theorem

Let $(u_a)_{a \in E}$ be the Gauss iterated function system. For each finite word $\omega \in E^*$ and $a \leq \Psi(Q_\omega)$ let

$$S_{\omega a} = u_{\omega a}([0, a/\Psi(Q_{\omega}a)]).$$

Let f be a dimension function such that $\sum_{\omega,a} f(\text{diam } S_{\omega,a})$ diverges. Then

$$\mathfrak{H}^{f}\left(\limsup_{\omega,a} S_{\omega a}\right) = \infty.$$

Theorem

Let $(u_a)_{a \in E}$ be the Gauss iterated function system. For each finite word $\omega \in E^*$ and $a \leq \Psi(Q_\omega)$ let

$$S_{\omega a} = u_{\omega a}([0, a/\Psi(Q_{\omega}a)]).$$

Let f be a dimension function such that $\sum_{\omega,a} f(\text{diam } S_{\omega a})$ diverges. Then

$$\mathfrak{H}^{f}\left(\limsup_{\omega,a}S_{\omega a}\right)=\infty.$$

First we show that $\limsup_{\omega,a} S_{\omega a} \subseteq G(\Psi)$.

$$\sum_{\omega,a} f(\operatorname{diam} S_{\omega a}) \asymp \sum_{Q=2^k; k \ge 1} Q^2 \sum_{a=1}^{\Psi(Q)} f\left(\frac{1}{aQ^2\Psi(aQ)}\right) \asymp \sum_{k=1}^{\infty} \sum_{j < \log_2 \Psi(2^k)} 2^{2k+j} f\left(\frac{2^{-(2k+j)}}{\Psi(2^{k+j})}\right)$$

Fix $B_0 \subset [0, 1]$ and $N \in \mathbb{N}$, and we will construct the measure $\mu = \mu(B_0, N)$ such that the hypothesis (*) in Theorem 0 holds.

Applications: Recurrence sets

Let $(X, \mathcal{B}, \mu, T, d)$ be a metric measure preserving system (m.m.p.s.). the Poincaré recurrence theorem implies that μ -almost every $x \in X$ is recurrent in the sense that

 $\liminf_{n\to\infty} d(T^n x, x) = 0.$

Applications: Recurrence sets

Let $(X, \mathcal{B}, \mu, T, d)$ be a metric measure preserving system (m.m.p.s.). the Poincaré recurrence theorem implies that μ -almost every $x \in X$ is recurrent in the sense that

 $\liminf_{n\to\infty} d(T^n x, x) = 0.$

Boshernitzan (1991) improved this result to the following quantitative statement:

 $\liminf_{n\to\infty} n^{1/\alpha} d(T^n x, x) < \infty, \ \mu\text{-almost every } x \in X,$

with a condition that $\mathfrak{H}^{\alpha}(X)$ is σ finite for some $\alpha > 0$.

Applications: Recurrence sets

Let $(X, \mathcal{B}, \mu, T, d)$ be a metric measure preserving system (m.m.p.s.). the Poincaré recurrence theorem implies that μ -almost every $x \in X$ is recurrent in the sense that

 $\liminf_{n\to\infty} d(T^n x, x) = 0.$

Boshernitzan (1991) improved this result to the following quantitative statement:

 $\liminf_{n\to\infty} n^{1/\alpha} d(T^n x, x) < \infty, \ \mu\text{-almost every } x \in X,$

with a condition that $\mathfrak{H}^{\alpha}(X)$ is σ finite for some $\alpha > 0$.

 $\Re(\psi) = \{x \in X : d(T^n x, x) < \psi(n) \text{ for infinitely many } n \in \mathbb{N}\}.$

Theorem (H. 2023)

Let T be a beta or Gauss dynamical system. Let f be a dimension function such that

$$f(ax) \asymp a^{s} f(x) \quad \forall x \leq a^{\epsilon}$$

for some $s, \epsilon > 0$. Then

$$\sum_{n} e^{nP(s)} f(\psi(n)) = \infty \quad \iff \quad \mathcal{H}^{f}(\mathcal{R}(\psi)) = \infty$$

