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W) = ﬁ G LqJ {a €[0,1): )0&* g‘ < 1/)(6])} = limsup Ag ().
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Lemma (Borel-Cantelli, 1909)
Let Eq, Eo, . .. be a sequence of events in some probability space.

If ZPr(En) < oo, then Pr (Iim sup E,,> =0. E‘ 3
n=1 m}" g‘
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Borel~Cantelli Lemma = L(W () = 0 if 32, qi(q) < oo.

Question

Under what conditions L(W(v)) > 07?
Example

Aq() = Eq=(0,1/q), >4 L(Eq) = oo. But
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Lemma (Borel-Cantelli, 1909)
Let Eq, Eo, . .. be a sequence of events in some probability space.

)|l — f‘ < q)} = limsup Aq ().

Pr(E;) < oo, then Pr (Iim supE) =0. E‘- :
; " ! & i‘/‘

n—oo

Borel-Cantelli Lemma = L(W(y)) = 0 if 321 qi(q) < oo

Lemma (Borel-Cantelli, 1909)

Let Eq,E>, ... be a sequence of events in some probability space
such that 3=~ Pr(Eq) = oo, then
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| (x8, Pr(Es)
Pr <I|m sup EQ) > limsup
Q—o0 Q—o0 Ets 1 Pr(Etﬂ E. )
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Lety : N — R* be a function. Then
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Theorem (Koukoulopoulos-Maynard, 2020)

Lety : N — R be a function. Then

LW D) =1if Y é(q)u(q) = oo.
q=1
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q:




Uniform Approximation

Definition (Dirichlet improvable sets)
Let ¢ : [fy, 00) — R, be a non-increasing function with &, > 1 fixed.

3N : the system |gx — p| < (1), <t
D) = {x R D ey e =2 < AW e
has a non trivial integer solution for all t > N




Uniform Approximation

Definition (Dirichlet improvable sets)
Let ¢ : [fy, 00) — R, be a non-increasing function with &, > 1 fixed.

3N : the system |gx — p| < (1), <t
D) = {x R D ey e =2 < AW e
has a non trivial integer solution for all t > N

Theorem (Kleinbock—Wadleigh, 2018)

Let ¢ be a non-increasing positive function with ti(t) < 1 for all
large t. Then

log W(t
0, if > ,=%& ?) < 00,

full, if Y, '°t%,,"’,)’) = 0. L\ )

L(D(¥)°) = {




Uniform Approximation

Definition (Dirichlet improvable sets)
Let ¢ : [fy, 00) — R, be a non-increasing function with &, > 1 fixed.

3N : the system |gx — p| < (1), <t
D) = {x R D ey e =2 < AW e
has a non trivial integer solution for all t > N

Theorem (Kleinbock—Wadleigh, 2018)

Let ¢ be a non-increasing positive function with ti(t) < 1 for all
large t. Then

log W(t
0, it >, °tgwt)<oo,

L(D(¥)) = {full i, og () _ - 3

() : [ W
Example
G y if w(t) = 17 1-— W) for any € > O,
L(D(4)%) = : 1
full, if (1) = (1~ qorern? )-




Hausdorff Measure and Dimension

Definition
Let s > 0 and {B;} be a countable collection of Eu-
clidean balls with diam(B;) < p such that X c | B..

H(X) = inf {Z(diam(B;))s : {Bi} is a p-cover for X} ,
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Hausdorff Measure and Dimension

Definition

Let s > 0 and {B;} be a countable collection of Eu-
clidean balls with diam(B;) < p such that X c | B..

Hi(X) = inf{

> “(diam(By))° : {Bj} is a p-cover for X} :

I

35(X)

o0 ——-

F¢dim X(X)

(0,0) dimX

S

Example

Let K be the middle third Cantor set,

Example

log 2

The Hausdorff dimension of
Sierpinksi Triangle is €3 obtained

2

by solving the equation 29 = 3.
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Letvy : N — R be a function such that ¢(q) — 0 as g — co.

W() = {a cR: ‘a _ g‘ < ¢(q), for infinitely many (p, §) € Z x N} :

Theorem (Jarnik 1928, Besicovitch 1934)
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Theorem (Jarnik, 1931)

Let be an approximating function. Let f be a dimension function such that
g~ 'f(q) — oo as g — 0 and g~ 'f(q) is decreasing. Then

0 if ) qgf(y(q)) < o,
g=1

-
H(W()) = = v
oo if > af(y(g)) = oo.
q=1

Definition (Dimension Function)

An increasing, continuous function f : R, — R, : f(r) - 0asr — 0.




Hausdorff measure and dimension

Theorem (Jarnik 1928, Besicovitch 1932)

2 =F .
dimW(r—r 7)== for 7>2 |

Theorem (Jarnik, 1931)

Let ) be an approximating function. Let f be a dimension function such that
g 'f(q) — oo as g — 0 and g~ '1(q) is decreasing. Then

0 if Z af(4(q)) < oo, -
H(W(y)) = “
o if qu Q) =

Jarnik theorem — Jarnik—Besicovitch theorem.
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Hausdorff measure and dimension

Theorem (Jarnik, 1931)

Let ) be an approximating function. Let f be a dimension function such that
g 'f(q) — oo as g — 0 and g~ 'f(q) is decreasing. Then

0 if ) af(¥(a)) < oo, -
H(W(Y)) = = ﬁ
o if Y qgf(¥(q)) = oo
g=1

Hausdorff-Cantelli Lemma —> H'(W(z))) = 0 if ioj gf(¥(q)) < occ.
q=1

Hausdorff-Cantelli Lemma — upper bound of Hausdorff dimension

Question
How to prove H'(W(x)) > 0?
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A general strategy

Lemma (Mass Distribution Principle)

Let 1. be a probability measure supported on a subset F of X. Suppose there
are positive constants ¢ > 0 and e > 0 such that

w(U) < cf(diam(U))

for all sets U with diam(U) < e. Then H'(F) > u(F)/c.

@ construct a suitable Cantor type subset X C F = limsup,_,., B; and a
probability measure 1 supported on X,

@ show that for any fixed ¢ > 0, i satisfies the condition that for any
measurable set U of sufficiently small diameter, u(U) < cf(diam(U)).

If this can be done, then by the mass distribution principle, it follows that
H'(F) > H'(K) > c .

Then since c is arbitrary, it follows that 3('(F) = cc.



A general principle

Theorem (H.—Simmons, PAMS 2019)

Fix 6 > 0, let (B;); be a sequence of open sets in an Ahlfors §-regular metric space X, and let f
be a dimension function such that

r—r=%f(r) is decreasing, and
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r=2f(r) > coas r — 0.
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A general principle

Theorem (H.—Simmons, PAMS 2019)

Fix 8 > 0, let (B;); be a sequence of open sets in an Ahlfors §-regular metric space X, and let f
be a dimension function such that

r »—>r_5f(r) is decreasing, and (1) - ’ >
r=2f(r) > coas r — 0. ) £
Fix C > 0, and suppose that the following hypothesis holds:

(*) Forevery ball By C X and for every N € N, there exists a probability measure
p = p(Bo, N) with Supp(n) C Uj»n Bi N Bo, such that for every ball B = B(x, p) C X, we

have
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A general principle

Theorem (H.—Simmons, PAMS 2019)

Fix 8 > 0, let (B;); be a sequence of open sets in an Ahlfors §-regular metric space X, and let f
be a dimension function such that

r —r—%f(r) is decreasing, and (1)

r=2f(r) > coas r — 0. )
Fix C > 0, and suppose that the following hypothesis holds:
(*) Forevery ball By C X and for every N € N, there exists a probability measure
p = p(Bo, N) with Supp(n) C Uj»n Bi N Bo, such that for every ball B = B(x, p) C X, we

have s
p f(p)
B) < — .
u(B) 5 max <(diamBo) " C ) ®)
Then for every ball By,
3 (BO A lim sup B,-) > C.
i— o0

In particular, if the hypothesis (*) holds for all C, then H' (By N lim sup;_, o B;) = oo.
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Let X c RY be Ahlfors 6-regular. Let (B;)icn be a sequence of balls in X with
rad(B;) — 0 as i — oc. Let f be a dimension function such that r — r=°f(r) is
monotonic. Suppose that for every ball B C X

H° (BN limsup Bf) = 3°(B).

I—00

Then for every ball B ¢ X

H'(Bnlimsup B)) = H'(B).

i— o0




Mass Transference Principle

Theorem (Beresnevich—Velani, Ann. Math. 2006)

Let X c RY be Ahlfors 6-regular. Let (B;)icn be a sequence of balls in X with
rad(B;) — 0 as i — oc. Let f be a dimension function such that r — r=°f(r) is
monotonic. Suppose that for every ball B C X

H° (BN limsup Bf) = 3°(B).

I—00

Then for every ball B ¢ X

H'(Bnlimsup B)) = H'(B).

i— o0

Khintchine’s Theorem — Jarnik’s Theorem




Mass Transference Principle

Theorem (Beresnevich—Velani, Ann. Math. 2006)

Let X c RY be Ahlfors 6-regular. Let (B;)icn be a sequence of balls in X with
rad(B;) — 0 as i — oc. Let f be a dimension function such that r — r=°f(r) is
monotonic. Suppose that for every ball B C X

H° (BN limsup Bf) = 3°(B).

I—00

Then for every ball B ¢ X

H'(Bnlimsup B)) = H'(B).

i— o0

Khintchine’s Theorem — Jarnik’s Theorem

Dirichlet's Theorem — Jarnik—Besicovitch Theorem




Mass Transference Principle

Theorem (Beresnevich—Velani, Ann. Math. 2006)

Let X c RY be Ahlfors 6-regular. Let (B;)icn be a sequence of balls in X with
rad(B;) — 0 as i — oc. Let f be a dimension function such that r — r=°f(r) is
monotonic. Suppose that for every ball B C X
H(B N limsup Bf) = H*(B).
i— 00

Then for every ball B ¢ X & z
>

J/‘

H'(Bnlimsup B)) = H'(B).

i— o0

Khintchine’s Theorem — Jarnik’s Theorem )

Dirichlet's Theorem — Jarnik—Besicovitch Theorem )

H.—Simmons Theorem —> Beresnevich—Velani Theorem )
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Let ¢ : [, 00) — R4 be a non-increasing function with f{, > 1 fixed.
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has a non trivial integer solution for all t > N

Theorem (Bos—H.—Simmons, PAMS 2023)

Let ¢ be a non-increasing positive function with tiy(t) < 1 for all large t. Let f be
a dimension function such that limy_,o x~1f(x) — oo and x—'f(x) is decreasing.
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o0 \;'
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Corollary (H.—Kleinbock—Wadleigh—Wang, Mathematika 2018)

Let ) be a non-increasing positive function with t1(t) < 1 for all large t, and let f be o
an essentially sub-linear dimension function. Then

0 if th(tzW )<oo;
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Let ¢ : [, 00) — R4 be a non-increasing function with f{, > 1 fixed.
3N : the system |gx — p| < ¥(t <t
DY) = IxeRr: y lax —p| < (1), |al
has a non trivial integer solution for all t > N

Theorem (Bos—H.—Simmons, PAMS 2023)
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a dimension function such that limy_.q x~'f(x) — oo and x—'1f(x) is decreasing. =4

Then
(2k+))

0 i > 0% 224l (280 < oo
f(nC k=1 j<log, W(2k) ¢ )
H'(D°(v)) = ki)

oo if f} > 22kt = co.
k=1 j<log, W(2K) ( Ve )

Corollary
Let 1 be a non-increasing positive function with ti)(t) < 1 for all large t, and let f be a
non-essentially sub-linear dimension function. Then

0 if Ztlog(\ll(t))f (tzw 1)) < o0;

H(D°(¢)) =
o W Ztlog(\u(t))f(tzw t))




A Jarnik type criterion
Theorem (Bos—H.—Simmons, PAMS 2023)

Let ¢ be a non-increasing positive function with tiy(t) < 1 for all large t. Let f be
a dimension function such that limy_,o x~1f(x) — oo and x—'f(x) is decreasing.
Then

0

0o if >0 22k+ff(2w’((22[j,’;) < o0
f}'Cf(Dc(d))) — k0:01 j<logp \U(Zk)

o if Y3 22k+if(2’(2:jj”) — o
k=1 j<logp W(2K) Ve

Corollary

Let v be a non-increasing positive function with t1(t) < 1 for all large t. Let f be a dimension
function such that limy_,o x~1f(x) — oo and x~"f(x) is decreasing. Let W be such that, for all
x > 0 and Q > 1, the following condition holds

V(@) < v(Q), (4)

where the implied constant depends only on x. Then

o if %:qlog(\l’(Q))f<q2u1l(q) -




Sketch of the proof
G(V) = {x €[0,1) : @n(x)ans1(x) > W(qn) forim. ne N},

G(v) :{x €10,1) : an(x)ant1(x) > V(qy) forim. ne N}
g{x €[0,1) : an(X)@ns1(x) > W(anGn_1) forim. ne N}

<J U U (@ an an)

n=N ay,...,an V(angp_1)
e an+1>T

= A4 (\U) @) .Ag(\ll).

Where

U U U U In+1(a17""af77an+1)a

n=N ai,...,an a,<WV(qn— 1) > V(angn—1)
an

.AQ(W) = U U U U /,,+1(a17...,a,,7an+1).

n=N ai,...,an a,>WV(qn—_1) apir> V(angy_1)
an



Sketch of the proof

Jn(a17~-~yan) = U In+1(a17~-~;anvan+1)~
Ani> w(an::,ﬂ
1
|Jn(at, .., an)| <

V(anGn-1)anq?_;’
LetQ>1and Q< gnr_1 <2Q. Then

1
|Jn(ai, ..., an)| < V(a, Qa2

Hence, the cost of the cover when a, < V(q,-1), is
v(Q
@1y
— \aQ?¥(aQ)

In the case a, > V(qgn_1), the cost of the cover is given by

()



Sketch of the proof

Since Q > 1, it follows that for each window [Q, 2Q)], there are at most Q?
cylinders I, of length comparable (up to a constant) to Q2. Multiplying the
cost of the cover given above by Q? which are the number of such intervals,
and then summing over all the windows Q = 2*, we have

> 02\§)f(aQQ\I1aQ)> > ()

Q=2k:k>1 a=1 Q=2k;k>1

Applying Cauchy’s condensation test on the second term, and rewriting the
first term gives the total cost as

> 3 QzAf(QZA\;(@L\>+Zq (q2\111(q)>

k>1 " j>1,A=2
Q=2 "A<v(Q)



Sketch of the proof

Theorem

Let (uz)ace be the Gauss iterated function system. For each finite word
we E*anda<v(Q,) let

Swa = U.a([0, a/V(Q,a)]).

Let f be a dimension function such that 3~ , , f(diam S,,a) diverges. Then

H' (Iim sup Swa) = o0.

w,a




Sketch of the proof

Theorem

Let (uz)ace be the Gauss iterated function system. For each finite word
we E*anda<v(Q,) let

Sua = U.a([0, a/V(Q.a)])-

Let f be a dimension function such that 3~ , , f(diam S,,a) diverges. Then

H' (Iim sup Swa) = o0.

w,a

First we show that limsup,, , S.a € G(V).

w(Q)

%;f(diamswa B Ozzf( e aO) Z > 22k+jf(%)'

Q=2k;k>1 a=1 k=1 j<log, W(2k)

Fix By C [0,1] and N € N, and we will construct the measure u = u(Bo, N) such that
the hypothesis (*) in Theorem 0 holds.



Applications: Recurrence sets

Let (X, B, u, T, d) be a metric measure preserving system (m.m.p.s.). the Poincaré recurrence
theorem implies that p.-almost every x € X is recurrent in the sense that

liminf d(T"x, x) = 0.
n—o00
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Boshernitzan (1991) improved this result to the following quantitative statement:
liminf n'/*d(T"x, x) < oo, p-almostevery x € X,

with a condition that H(X) is o finite for some o > 0.




Applications: Recurrence sets

Let (X, B, u, T, d) be a metric measure preserving system (m.m.p.s.). the Poincaré recurrence
theorem implies that j.-almost every x € X is recurrent in the sense that

liminf d(T"x, x) = 0.
n—o00

Boshernitzan (1991) improved this result to the following quantitative statement:
lim inf n'/*d(T"x, x) < oo, p-almostevery x € X,

with a condition that H*(X) is o finite for some o > 0.

R() = {x € X : d(T"x, x) < +(n) for infinitely many n € N}.

Theorem (H. 2023)

Let T be a beta or Gauss dynamical system. Let f be a dimension function such that
f(ax) < a°f(x) vx < a°

for some s,e > 0. Then

S ePOf(p(n) =0 = H(R@®)) =00

"







