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Diophantine Approximation

Theorem (Dirichlet 1842)

For any real number α and N ∈ N, there exists integers p,q with
1 ≤ q ≤ N such that ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1
qN

.

Let ψ : N→ R+ be a function such that ψ(q)→ 0 as q →∞.

W (ψ) :=
{
α ∈ R :

∣∣∣α− p
q

∣∣∣ < ψ(q), for infinitely many (p,q) ∈ Z× N
}
.

Dirichlet′s Theorem (1842) =⇒ W (q−2) = R

W (ψ) =
∞⋂

N=1

∞⋃
q=N

q⋃
p=0

{
α ∈ [0,1) :

∣∣∣α− p
q

∣∣∣ < ψ(q)
}

= lim sup
q→∞

Aq(ψ).

( )

ψ(q)

0 1
q

2
q

p−1
q

p
q

p+1
q

1
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Borel-Cantelli Lemmas

W (ψ) =
∞⋂

N=1

∞⋃
q=N

q⋃
p=0

{
α ∈ [0,1) :

∣∣∣α− p
q

∣∣∣ < ψ(q)
}

= lim sup
q→∞

Aq(ψ).

Lemma (Borel-Cantelli, 1909)
Let E1,E2, . . . be a sequence of events in some probability space.

If
∞∑

n=1

Pr(En) <∞, then Pr

(
lim sup

n→∞
En

)
= 0.

Borel–Cantelli Lemma =⇒ L(W (ψ)) = 0 if
∑∞

q=1 qψ(q) <∞.

Question
Under what conditions L(W (ψ)) > 0?

Example
Aq(ψ) = Eq = (0,1/q),

∑∞
q=1 L(Eq) =∞. But

lim sup
t→∞

Et =
∞⋂

t=1

∞⋃
q=t

Eq =
∞⋂

t=1

(0,1/t) = ∅
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Classical Diophantine Approximation

W (ψ) =
∞⋂

N=1

∞⋃
q=N

q⋃
p=0

{
α ∈ [0,1) :

∣∣∣α− p
q

∣∣∣ < ψ(q)
}

= lim sup
q→∞

Aq(ψ).

Lemma (Borel-Cantelli, 1909)
Let E1,E2, . . . be a sequence of events in some probability space.

If
∞∑

n=1

Pr(En) <∞, then Pr

(
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n→∞
En

)
= 0.

Borel–Cantelli Lemma =⇒ L(W (ψ)) = 0 if
∑∞

q=1 qψ(q) <∞.

Lemma (Borel-Cantelli, 1909)
Let E1,E2, . . . be a sequence of events in some probability space
such that

∑∞
q=1 Pr(Eq) =∞, then

Pr

(
lim sup
Q→∞

EQ

)
≥ lim sup

Q→∞

(∑Q
s=1 Pr(Es)

)2

∑Q
t,s=1 Pr(Et ∩ Es)



Lebesgue measure criterion
Theorem (Khintchine, 1924)
Let ψ : N→ R+ be a function. Then

L(W (ψ) ∩ I) =


0 if

∞∑
q=1

qψ(q) <∞

1 if
∞∑

q=1
qψ(q) =∞ ψ is decreasing.

Theorem (Koukoulopoulos-Maynard, 2020)

Let ψ : N→ R+ be a function. Then

L(Ŵ (ψ) ∩ I) = 1 if
∞∑

q=1

φ(q)ψ(q) =∞.

ψ1(q) = 1
q2 ; then

∞∑
q=1

qψ1(q) =∞ =⇒ L(W (ψ1) ∩ I) = 1.

ψ2(q) = 1
q10 ; then

∞∑
q=1

qψ2(q) <∞ =⇒ L(W (ψ2) ∩ I) = 0
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Uniform Approximation

Definition (Dirichlet improvable sets)
Let ψ : [t0,∞)→ R+ be a non-increasing function with t0 ≥ 1 fixed.

D(ψ) :=

{
x ∈ R :

∃N : the system |qx − p| < ψ(t), |q| < t
has a non trivial integer solution for all t > N

}

Theorem (Kleinbock–Wadleigh, 2018)
Let ψ be a non-increasing positive function with tψ(t) < 1 for all
large t. Then

L(D(ψ)c) =

{
0, if

∑
t

log Ψ(t)
tΨ(t) <∞,

full, if
∑

t
log Ψ(t)

tΨ(t) =∞.

Example

L(D(ψ)c) =

 0, if ψ(t) = 1
t

(
1− 1

log t(log log t)2+ε

)
for any ε > 0;

full, if ψ(t) = 1
t

(
1− 1

log t(log log t)2

)
.
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Hausdorff Measure and Dimension
Definition
Let s > 0 and {Bi} be a countable collection of Eu-
clidean balls with diam(Bi ) ≤ ρ such that X ⊂

⋃
i

Bi .

H
s
ρ(X ) = inf

{∑
i

(diam(Bi ))s : {Bi} is a ρ-cover for X

}
,

Hs(X ) = lim
ρ→0+

Hs
ρ(X ).

(0, 0)
s

Hs(X)

∞

Hdim X (X)

dim X

Example
Let K be the middle third Cantor set,

dim K =
log 2
log 3

Example
The Hausdorff dimension of
Sierpinksi Triangle is log 3

log 2 obtained
by solving the equation 2d = 3.
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Hausdorff measure and dimension
Let ψ : N→ R+ be a function such that ψ(q)→ 0 as q →∞.

W (ψ) :=
{
α ∈ R :

∣∣∣α− p
q

∣∣∣ < ψ(q), for infinitely many (p,q) ∈ Z× N
}
.

Theorem (Jarník 1928, Besicovitch 1934)

dim W (r 7→ r−τ ) =
2
τ

for τ ≥ 2.

Theorem (Jarník, 1931)
Let ψ be an approximating function. Let f be a dimension function such that
q−1f (q)→∞ as q → 0 and q−1f (q) is decreasing. Then

Hf (W (ψ)) =


0 if

∞∑
q=1

qf (ψ(q)) <∞,

∞ if
∞∑

q=1

qf (ψ(q)) =∞.

Definition (Dimension Function)
An increasing, continuous function f : R+ → R+ : f (r)→ 0 as r → 0.
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Hausdorff measure and dimension

Theorem (Jarník 1928, Besicovitch 1932)

dim W (r 7→ r−τ ) =
2
τ

for τ ≥ 2.

Theorem (Jarník, 1931)
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Jarník theorem =⇒ Jarník–Besicovitch theorem.
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How to prove Hf (W (ψ)) > 0?
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A general strategy

Lemma (Mass Distribution Principle)

Let µ be a probability measure supported on a subset F of X . Suppose there
are positive constants c > 0 and ε > 0 such that

µ(U) ≤ cf (diam(U))

for all sets U with diam(U) ≤ ε. Then Hf (F ) ≥ µ(F )/c.

construct a suitable Cantor type subset K ⊂ F = lim supi→∞ Bi and a
probability measure µ supported on K,

show that for any fixed c > 0, µ satisfies the condition that for any
measurable set U of sufficiently small diameter, µ(U) ≤ cf (diam(U)).

If this can be done, then by the mass distribution principle, it follows that

Hf (F ) ≥ Hf (K) ≥ c−1.

Then since c is arbitrary, it follows that Hf (F ) =∞.
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A general principle

Theorem (H.–Simmons, PAMS 2019)
Fix δ > 0, let (Bi )i be a sequence of open sets in an Ahlfors δ-regular metric space X, and let f
be a dimension function such that

r 7→r−δ f (r) is decreasing, and (1)

r−δ f (r)→∞ as r → 0. (2)

Fix C > 0, and suppose that the following hypothesis holds:

(*) For every ball B0 ⊂ X and for every N ∈ N, there exists a probability measure
µ = µ(B0,N) with Supp(µ) ⊂

⋃
i≥N Bi ∩ B0, such that for every ball B = B(x , ρ) ⊂ X, we

have

µ(B) . max

((
ρ

diamB0

)δ
,

f (ρ)

C

)
. (3)

Then for every ball B0,

Hf
(

B0 ∩ lim sup
i→∞

Bi

)
& C.

In particular, if the hypothesis (*) holds for all C, then Hf (B0 ∩ lim supi→∞ Bi ) =∞.
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Mass Transference Principle

Theorem (Beresnevich–Velani, Ann. Math. 2006)

Let X ⊂ Rd be Ahlfors δ-regular. Let (Bi )i∈N be a sequence of balls in X with
rad(Bi )→ 0 as i →∞. Let f be a dimension function such that r 7→ r−δf (r) is
monotonic. Suppose that for every ball B ⊂ X

Hδ(B ∩ lim sup
i→∞

Bf
i ) = Hδ(B).

Then for every ball B ⊂ X

Hf (B ∩ lim sup
i→∞

Bi ) = Hf (B).

Khintchine’s Theorem =⇒ Jarník’s Theorem

Dirichlet’s Theorem =⇒ Jarník–Besicovitch Theorem

H.–Simmons Theorem =⇒ Beresnevich–Velani Theorem
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A Jarnik type criterion for uniform approximation

Definition (Dirichlet improvable sets)
Let ψ : [t0,∞)→ R+ be a non-increasing function with t0 ≥ 1 fixed.

D(ψ) :=

{
x ∈ R :

∃N : the system |qx − p| < ψ(t), |q| < t

has a non trivial integer solution for all t > N

}

Theorem (Bos–H.–Simmons, PAMS 2023)
Let ψ be a non-increasing positive function with tψ(t) < 1 for all large t. Let f be
a dimension function such that limx→0 x−1f (x) → ∞ and x−1f (x) is decreasing.
Then

Hf (Dc(ψ)
)

=


0 if

∞∑
k=1

∑
j<log2 Ψ(2k )

22k+j f
(

2−(2k+j)

Ψ(2k+j )

)
< ∞;

∞ if
∞∑

k=1

∑
j<log2 Ψ(2k )

22k+j f
(

2−(2k+j)

Ψ(2k+j )

)
= ∞.

Corollary (H.–Kleinbock–Wadleigh–Wang, Mathematika 2018)
Let ψ be a non-increasing positive function with tψ(t) < 1 for all large t, and let f be
an essentially sub-linear dimension function. Then

Hf (Dc(ψ)
)

=


0 if

∑
t

tf
(

1
t2Ψ(t)

)
< ∞;

∞ if
∑

t
tf
(

1
t2Ψ(t)

)
= ∞.



A Jarnik type criterion for uniform approximation
Definition (Dirichlet improvable sets)
Let ψ : [t0,∞)→ R+ be a non-increasing function with t0 ≥ 1 fixed.

D(ψ) :=

{
x ∈ R :

∃N : the system |qx − p| < ψ(t), |q| < t

has a non trivial integer solution for all t > N

}

Theorem (Bos–H.–Simmons, PAMS 2023)
Let ψ be a non-increasing positive function with tψ(t) < 1 for all large t. Let f be
a dimension function such that limx→0 x−1f (x) → ∞ and x−1f (x) is decreasing.
Then

Hf (Dc(ψ)
)

=


0 if

∞∑
k=1

∑
j<log2 Ψ(2k )

22k+j f
(

2−(2k+j)

Ψ(2k+j )

)
< ∞;

∞ if
∞∑

k=1

∑
j<log2 Ψ(2k )

22k+j f
(

2−(2k+j)

Ψ(2k+j )

)
= ∞.

Corollary (H.–Kleinbock–Wadleigh–Wang, Mathematika 2018)
Let ψ be a non-increasing positive function with tψ(t) < 1 for all large t, and let f be
an essentially sub-linear dimension function. Then

Hf (Dc(ψ)
)

=


0 if

∑
t

tf
(

1
t2Ψ(t)

)
< ∞;

∞ if
∑

t
tf
(

1
t2Ψ(t)

)
= ∞.



A Jarnik type criterion for uniform approximation
Definition (Dirichlet improvable sets)
Let ψ : [t0,∞)→ R+ be a non-increasing function with t0 ≥ 1 fixed.

D(ψ) :=

{
x ∈ R :

∃N : the system |qx − p| < ψ(t), |q| < t

has a non trivial integer solution for all t > N

}

Theorem (Bos–H.–Simmons, PAMS 2023)
Let ψ be a non-increasing positive function with tψ(t) < 1 for all large t. Let f be
a dimension function such that limx→0 x−1f (x) → ∞ and x−1f (x) is decreasing.
Then

Hf (Dc(ψ)
)

=


0 if

∞∑
k=1

∑
j<log2 Ψ(2k )

22k+j f
(

2−(2k+j)

Ψ(2k+j )

)
< ∞;

∞ if
∞∑

k=1

∑
j<log2 Ψ(2k )

22k+j f
(

2−(2k+j)

Ψ(2k+j )

)
= ∞.

Corollary (H.–Kleinbock–Wadleigh–Wang, Mathematika 2018)
Let ψ be a non-increasing positive function with tψ(t) < 1 for all large t, and let f be
an essentially sub-linear dimension function. Then

Hf (Dc(ψ)
)

=


0 if

∑
t

tf
(

1
t2Ψ(t)

)
< ∞;

∞ if
∑

t
tf
(

1
t2Ψ(t)

)
= ∞.



A Jarnik type criterion for uniform approximation
Definition (Dirichlet improvable sets)
Let ψ : [t0,∞)→ R+ be a non-increasing function with t0 ≥ 1 fixed.

D(ψ) :=

{
x ∈ R :

∃N : the system |qx − p| < ψ(t), |q| < t

has a non trivial integer solution for all t > N

}

Theorem (Bos–H.–Simmons, PAMS 2023)
Let ψ be a non-increasing positive function with tψ(t) < 1 for all large t. Let f be
a dimension function such that limx→0 x−1f (x) → ∞ and x−1f (x) is decreasing.
Then

Hf (Dc(ψ)
)

=


0 if

∞∑
k=1

∑
j<log2 Ψ(2k )

22k+j f
(

2−(2k+j)

Ψ(2k+j )

)
< ∞;

∞ if
∞∑

k=1

∑
j<log2 Ψ(2k )

22k+j f
(

2−(2k+j)

Ψ(2k+j )

)
= ∞.

Corollary (H.–Kleinbock–Wadleigh–Wang, Mathematika 2018)
Let ψ be a non-increasing positive function with tψ(t) < 1 for all large t, and let f be
an essentially sub-linear dimension function. Then

Hf (Dc(ψ)
)

=


0 if

∑
t

tf
(

1
t2Ψ(t)

)
< ∞;

∞ if
∑

t
tf
(

1
t2Ψ(t)

)
= ∞.



A Jarnik type criterion
Definition (Dirichlet improvable sets)
Let ψ : [t0,∞)→ R+ be a non-increasing function with t0 ≥ 1 fixed.

D(ψ) :=

{
x ∈ R :

∃N : the system |qx − p| < ψ(t), |q| < t

has a non trivial integer solution for all t > N

}

Theorem (Bos–H.–Simmons, PAMS 2023)
Let ψ be a non-increasing positive function with tψ(t) < 1 for all large t. Let f be
a dimension function such that limx→0 x−1f (x) → ∞ and x−1f (x) is decreasing.
Then

Hf (Dc(ψ)
)

=


0 if

∞∑
k=1

∑
j<log2 Ψ(2k )

22k+j f
(

2−(2k+j)

Ψ(2k+j )

)
< ∞;

∞ if
∞∑

k=1

∑
j<log2 Ψ(2k )

22k+j f
(

2−(2k+j)

Ψ(2k+j )

)
= ∞.

Corollary
Let ψ be a non-increasing positive function with tψ(t) < 1 for all large t, and let f be a
non-essentially sub-linear dimension function. Then

Hf (Dc(ψ)
)

=


0 if

∑
t

t log(Ψ(t))f
(

1
t2Ψ(t)

)
< ∞;

∞ if
∑

t
t log(Ψ(t))f

(
1

t2Ψ(t)

)
= ∞.



A Jarnik type criterion
Definition (Dirichlet improvable sets)
Let ψ : [t0,∞)→ R+ be a non-increasing function with t0 ≥ 1 fixed.

D(ψ) :=

{
x ∈ R :

∃N : the system |qx − p| < ψ(t), |q| < t

has a non trivial integer solution for all t > N

}

Theorem (Bos–H.–Simmons, PAMS 2023)
Let ψ be a non-increasing positive function with tψ(t) < 1 for all large t. Let f be
a dimension function such that limx→0 x−1f (x) → ∞ and x−1f (x) is decreasing.
Then

Hf (Dc(ψ)
)

=


0 if

∞∑
k=1

∑
j<log2 Ψ(2k )

22k+j f
(

2−(2k+j)

Ψ(2k+j )

)
< ∞;

∞ if
∞∑

k=1

∑
j<log2 Ψ(2k )

22k+j f
(

2−(2k+j)

Ψ(2k+j )

)
= ∞.

Corollary
Let ψ be a non-increasing positive function with tψ(t) < 1 for all large t, and let f be a
non-essentially sub-linear dimension function. Then

Hf (Dc(ψ)
)

=


0 if

∑
t

t log(Ψ(t))f
(

1
t2Ψ(t)

)
< ∞;

∞ if
∑

t
t log(Ψ(t))f

(
1

t2Ψ(t)

)
= ∞.



A Jarnik type criterion
Theorem (Bos–H.–Simmons, PAMS 2023)
Let ψ be a non-increasing positive function with tψ(t) < 1 for all large t. Let f be
a dimension function such that limx→0 x−1f (x) → ∞ and x−1f (x) is decreasing.
Then

Hf (Dc(ψ)
)

=


0 if

∞∑
k=1

∑
j<log2 Ψ(2k )

22k+j f
(

2−(2k+j)

Ψ(2k+j )

)
< ∞;

∞ if
∞∑

k=1

∑
j<log2 Ψ(2k )

22k+j f
(

2−(2k+j)

Ψ(2k+j )

)
= ∞.

Corollary
Let ψ be a non-increasing positive function with tψ(t) < 1 for all large t. Let f be a dimension
function such that limx→0 x−1f (x)→∞ and x−1f (x) is decreasing. Let Ψ be such that, for all
x > 0 and Q > 1, the following condition holds

Ψ(Qx ) � Ψ(Q), (4)

where the implied constant depends only on x. Then

Hf (Dc(ψ)
)

=


0 if

∑
q

q log (Ψ(q)) f
(

1
q2Ψ(q)

)
< ∞;

∞ if
∑
q

q log (Ψ(q)) f
(

1
q2Ψ(q)

)
= ∞.



Sketch of the proof
G(Ψ) =

{
x ∈ [0,1) : an(x)an+1(x) ≥ Ψ(qn) for i.m. n ∈ N

}
,

G(Ψ) =
{

x ∈ [0,1) : an(x)an+1(x) ≥ Ψ(qn) for i.m. n ∈ N
}

⊆
{

x ∈ [0,1) : an(x)an+1(x) ≥ Ψ(anqn−1) for i.m. n ∈ N
}

⊆
∞⋃

n=N

⋃
a1,...,an

⋃
an+1>

Ψ(anqn−1)

an

In+1(a1, . . . ,an,an+1)

= A1(Ψ) ∪A2(Ψ).

Where

A1(Ψ) =
∞⋃

n=N

⋃
a1,...,an

⋃
an≤Ψ(qn−1)

⋃
an+1>

Ψ(anqn−1)

an

In+1(a1, . . . ,an,an+1),

A2(Ψ) =
∞⋃

n=N

⋃
a1,...,an

⋃
an>Ψ(qn−1)

⋃
an+1>

Ψ(anqn−1)

an

In+1(a1, . . . ,an,an+1).



Sketch of the proof
Jn(a1, . . . ,an) :=

⋃
an+1>

Ψ(anqn−1)

an

In+1(a1, . . . ,an,an+1).

|Jn(a1, . . . ,an)| ≤ 1
Ψ(anqn−1)anq2

n−1
.

Let Q > 1 and Q < qn−1 ≤ 2Q. Then

|Jn(a1, . . . ,an)| � 1
Ψ(anQ)anQ2 .

Hence, the cost of the cover when an < Ψ(qn−1), is

Ψ(Q)∑
a=1

f
(

1
aQ2Ψ(aQ)

)
.

In the case an > Ψ(qn−1), the cost of the cover is given by

f
(

1
Q2Ψ(Q)

)
.



Sketch of the proof

Since Q > 1, it follows that for each window [Q,2Q], there are at most Q2

cylinders In of length comparable (up to a constant) to Q−2. Multiplying the
cost of the cover given above by Q2 which are the number of such intervals,
and then summing over all the windows Q = 2k , we have

∑
Q=2k ;k≥1

Q2
Ψ(Q)∑
a=1

f
(

1
aQ2Ψ(aQ)

)
+

∑
Q=2k ;k≥1

Q2f
(

1
Q2Ψ(Q)

)
.

Applying Cauchy’s condensation test on the second term, and rewriting the
first term gives the total cost as∑

k≥1
Q=2k

∑
j≥1,A=2j

A<Ψ(Q)

Q2Af
(

1
Q2AΨ(QA)

)
+
∑

q

qf
(

1
q2Ψ(q)

)
.



Sketch of the proof

Theorem

Let (ua)a∈E be the Gauss iterated function system. For each finite word
ω ∈ E∗ and a ≤ Ψ(Qω) let

Sωa = uωa([0,a/Ψ(Qωa)]).

Let f be a dimension function such that
∑
ω,a f (diam Sωa) diverges. Then

Hf
(

lim sup
ω,a

Sωa

)
=∞.

First we show that lim supω,a Sωa ⊆ G(Ψ).

∑
ω,a

f (diam Sωa) �
∑

Q=2k ;k≥1

Q2
Ψ(Q)∑
a=1

f
(

1
aQ2Ψ(aQ)

)
�
∞∑

k=1

∑
j<log2 Ψ(2k )

22k+j f
(

2−(2k+j)

Ψ(2k+j )

)
.

Fix B0 ⊂ [0, 1] and N ∈ N, and we will construct the measure µ = µ(B0,N) such that
the hypothesis (*) in Theorem 0 holds.
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Applications: Recurrence sets
Let (X ,B, µ,T , d) be a metric measure preserving system (m.m.p.s.). the Poincaré recurrence
theorem implies that µ-almost every x ∈ X is recurrent in the sense that

lim inf
n→∞

d(T nx , x) = 0.

Boshernitzan (1991) improved this result to the following quantitative statement:

lim inf
n→∞

n1/αd(T nx , x) <∞, µ-almost every x ∈ X,

with a condition that Hα(X) is σ finite for some α > 0.

R(ψ) = {x ∈ X : d(T nx , x) < ψ(n) for infinitely many n ∈ N}.

Theorem (H. 2023)
Let T be a beta or Gauss dynamical system. Let f be a dimension function such that

f (ax) � as f (x) ∀x ≤ aε

for some s, ε > 0. Then∑
n

enP(s)f (ψ(n)) =∞ ⇐⇒ Hf (R(ψ)) =∞
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