Hausdorff measure for limsup sets

Mumtaz Hussain

Diophantine Approximation

Diophantine Approximation

Theorem (Dirichlet 1842)
For any real number α and $N \in \mathbb{N}$, there exists integers p, q with $1 \leq q \leq N$ such that

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q N} .
$$

Diophantine Approximation

Theorem (Dirichlet 1842)
For any real number α and $N \in \mathbb{N}$, there exists integers p, q with $1 \leq q \leq N$ such that

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q N} .
$$

Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function such that $\psi(q) \rightarrow 0$ as $q \rightarrow \infty$.

$$
W(\psi):=\left\{\alpha \in \mathbb{R}:\left|\alpha-\frac{p}{q}\right|<\psi(q), \text { for infinitely many }(p, q) \in \mathbb{Z} \times \mathbb{N}\right\} .
$$

Diophantine Approximation

Theorem (Dirichlet 1842)
For any real number α and $N \in \mathbb{N}$, there exists integers p, q with $1 \leq q \leq N$ such that

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q N} .
$$

Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function such that $\psi(q) \rightarrow 0$ as $q \rightarrow \infty$.

$$
W(\psi):=\left\{\alpha \in \mathbb{R}:\left|\alpha-\frac{p}{q}\right|<\psi(q), \text { for infinitely many }(p, q) \in \mathbb{Z} \times \mathbb{N}\right\} .
$$

$$
\text { Dirichlet's Theorem }(1842) \quad \Longrightarrow \quad W\left(q^{-2}\right)=\mathbb{R}
$$

Diophantine Approximation

Theorem (Dirichlet 1842)
For any real number α and $N \in \mathbb{N}$, there exists integers p, q with $1 \leq q \leq N$ such that

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q N} .
$$

Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function such that $\psi(q) \rightarrow 0$ as $q \rightarrow \infty$.

$$
W(\psi):=\left\{\alpha \in \mathbb{R}:\left|\alpha-\frac{p}{q}\right|<\psi(q), \text { for infinitely many }(p, q) \in \mathbb{Z} \times \mathbb{N}\right\} .
$$

$$
\text { Dirichlet's Theorem }(1842) \quad \Longrightarrow \quad W\left(q^{-2}\right)=\mathbb{R}
$$

$$
W(\psi)=\bigcap_{N=1}^{\infty} \bigcup_{q=N}^{\infty} \bigcup_{p=0}^{q}\left\{\alpha \in[0,1):\left|\alpha-\frac{p}{q}\right|<\psi(q)\right\}=\limsup _{q \rightarrow \infty} A_{q}(\psi) .
$$

Borel-Cantelli Lemmas

$$
W(\psi)=\bigcap_{N=1}^{\infty} \bigcup_{q=N}^{\infty} \bigcup_{p=0}^{q}\left\{\alpha \in[0,1):\left|\alpha-\frac{p}{q}\right|<\psi(q)\right\}=\limsup _{q \rightarrow \infty} A_{q}(\psi)
$$

Borel-Cantelli Lemmas

$$
W(\psi)=\bigcap_{N=1}^{\infty} \bigcup_{q=N}^{\infty} \bigcup_{p=0}^{q}\left\{\alpha \in[0,1):\left|\alpha-\frac{p}{q}\right|<\psi(q)\right\}=\limsup _{q \rightarrow \infty} A_{q}(\psi)
$$

Lemma (Borel-Cantelli, 1909)

Let E_{1}, E_{2}, \ldots be a sequence of events in some probability space.
If $\sum_{n=1}^{\infty} \operatorname{Pr}\left(E_{n}\right)<\infty$, then $\operatorname{Pr}\left(\limsup _{n \rightarrow \infty} E_{n}\right)=0$.

Borel-Cantelli Lemmas

$$
W(\psi)=\bigcap_{N=1}^{\infty} \bigcup_{q=N}^{\infty} \bigcup_{p=0}^{q}\left\{\alpha \in[0,1):\left|\alpha-\frac{p}{q}\right|<\psi(q)\right\}=\limsup _{q \rightarrow \infty} A_{q}(\psi)
$$

Lemma (Borel-Cantelli, 1909)

Let E_{1}, E_{2}, \ldots be a sequence of events in some probability space.
If $\sum_{n=1}^{\infty} \operatorname{Pr}\left(E_{n}\right)<\infty$, then $\operatorname{Pr}\left(\limsup _{n \rightarrow \infty} E_{n}\right)=0$.
Borel-Cantelli Lemma $\Longrightarrow \mathcal{L}(W(\psi))=0$ if $\sum_{q=1}^{\infty} q \psi(q)<\infty$.

Borel-Cantelli Lemmas

$$
W(\psi)=\bigcap_{N=1}^{\infty} \bigcup_{q=N}^{\infty} \bigcup_{p=0}^{q}\left\{\alpha \in[0,1):\left|\alpha-\frac{p}{q}\right|<\psi(q)\right\}=\limsup _{q \rightarrow \infty} A_{q}(\psi) .
$$

Lemma (Borel-Cantelli, 1909)
Let E_{1}, E_{2}, \ldots be a sequence of events in some probability space.
If $\sum_{n=1}^{\infty} \operatorname{Pr}\left(E_{n}\right)<\infty$, then $\operatorname{Pr}\left(\limsup _{n \rightarrow \infty} E_{n}\right)=0$.
Borel-Cantelli Lemma $\Longrightarrow \mathcal{L}(W(\psi))=0$ if $\sum_{q=1}^{\infty} q \psi(q)<\infty$.

Question

Under what conditions $\mathcal{L}(W(\psi))>0$?

Borel-Cantelli Lemmas

$$
W(\psi)=\bigcap_{N=1}^{\infty} \bigcup_{q=N}^{\infty} \bigcup_{p=0}^{q}\left\{\alpha \in[0,1):\left|\alpha-\frac{p}{q}\right|<\psi(q)\right\}=\limsup _{q \rightarrow \infty} A_{q}(\psi) .
$$

Lemma (Borel-Cantelli, 1909)

Let E_{1}, E_{2}, \ldots be a sequence of events in some probability space.

$$
\text { If } \sum_{n=1}^{\infty} \operatorname{Pr}\left(E_{n}\right)<\infty, \quad \text { then } \operatorname{Pr}\left(\limsup _{n \rightarrow \infty} E_{n}\right)=0
$$

Borel-Cantelli Lemma $\Longrightarrow \mathcal{L}(W(\psi))=0$ if $\sum_{q=1}^{\infty} q \psi(q)<\infty$.

Question

Under what conditions $\mathcal{L}(W(\psi))>0$?
Example

$$
\begin{aligned}
& A_{q}(\psi)=E_{q}=(0,1 / q), \quad \sum_{q=1}^{\infty} \mathcal{L}\left(E_{q}\right)=\infty . \text { But } \\
& \limsup _{t \rightarrow \infty} E_{t}=\bigcap_{t=1}^{\infty} \bigcup_{q=t}^{\infty} E_{q}=\bigcap_{t=1}^{\infty}(0,1 / t)=\emptyset
\end{aligned}
$$

Classical Diophantine Approximation

$$
W(\psi)=\bigcap_{N=1}^{\infty} \bigcup_{q=N}^{\infty} \bigcup_{p=0}^{q}\left\{\alpha \in[0,1):\left|\alpha-\frac{p}{q}\right|<\psi(q)\right\}=\limsup _{q \rightarrow \infty} A_{q}(\psi)
$$

Lemma (Borel-Cantelli, 1909)

Let E_{1}, E_{2}, \ldots be a sequence of events in some probability space.

$$
\text { If } \sum_{n=1}^{\infty} \operatorname{Pr}\left(E_{n}\right)<\infty, \text { then } \operatorname{Pr}\left(\limsup _{n \rightarrow \infty} E_{n}\right)=0
$$

Borel-Cantelli Lemma $\Longrightarrow \mathcal{L}(W(\psi))=0$ if $\sum_{q=1}^{\infty} q \psi(q)<\infty$.

Lemma (Borel-Cantelli, 1909)

Let E_{1}, E_{2}, \ldots be a sequence of events in some probability space such that $\sum_{q=1}^{\infty} \operatorname{Pr}\left(E_{q}\right)=\infty$, then

$$
\operatorname{Pr}\left(\limsup _{Q \rightarrow \infty} E_{Q}\right) \geq \limsup _{Q \rightarrow \infty} \frac{\left(\sum_{s=1}^{Q} \operatorname{Pr}\left(E_{s}\right)\right)^{2}}{\sum_{t, s=1}^{Q} \operatorname{Pr}\left(E_{t} \cap E_{s}\right)}
$$

Lebesgue measure criterion

Theorem (Khintchine, 1924)
Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function. Then

$$
\mathcal{L}(W(\psi) \cap \mathbb{I})=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{q=1}^{\infty} q \psi(q)<\infty \\
1 & \text { if } & \sum_{q=1}^{\infty} q \psi(q)=\infty \psi \text { is decreasing }
\end{array}\right.
$$

Lebesgue measure criterion

Theorem (Khintchine, 1924)
Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function. Then

$$
\mathcal{L}(W(\psi) \cap \mathbb{I})=\left\{\begin{array}{lll}
0 & \text { if } \quad \sum_{q=1}^{\infty} q \psi(q)<\infty \\
1 & \text { if } \quad \sum_{q=1}^{\infty} q \psi(q)=\infty \quad \psi \text { is decreasing }
\end{array}\right.
$$

Theorem (Koukoulopoulos-Maynard, 2020)
Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function. Then

$$
\mathcal{L}(\widehat{W}(\psi) \cap \mathbb{I})=1 \text { if } \quad \sum_{q=1}^{\infty} \phi(q) \psi(q)=\infty
$$

Lebesgue measure criterion

Theorem (Khintchine, 1924)
Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function. Then

$$
\mathcal{L}(W(\psi) \cap \mathbb{I})=\left\{\begin{array}{lll}
0 & \text { if } \quad \sum_{q=1}^{\infty} q \psi(q)<\infty \\
1 & \text { if } \quad \sum_{q=1}^{\infty} q \psi(q)=\infty \quad \psi \text { is decreasing }
\end{array}\right.
$$

Theorem (Koukoulopoulos-Maynard, 2020)
Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function. Then

$$
\mathcal{L}(\widehat{W}(\psi) \cap \mathbb{I})=1 \text { if } \quad \sum_{q=1}^{\infty} \phi(q) \psi(q)=\infty
$$

- $\psi_{1}(q)=\frac{1}{q^{2}}$; then $\sum_{q=1}^{\infty} q \psi_{1}(q)=\infty \Longrightarrow \mathcal{L}\left(W\left(\psi_{1}\right) \cap \mathbb{I}\right)=1$.
- $\psi_{2}(q)=\frac{1}{q^{10}}$; then $\sum_{q=1}^{\infty} q \psi_{2}(q)<\infty \Longrightarrow \mathcal{L}\left(W\left(\psi_{2}\right) \cap \mathbb{I}\right)=0$

Uniform Approximation

Definition (Dirichlet improvable sets)
Let $\psi:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}_{+}$be a non-increasing function with $t_{0} \geq 1$ fixed.

$$
D(\psi):=\left\{x \in \mathbb{R}: \begin{array}{c}
\exists N: \text { the system }|q x-p|<\psi(t),|q|<t \\
\text { has a non trivial integer solution for all } t>N
\end{array}\right\}
$$

Uniform Approximation

Definition (Dirichlet improvable sets)
Let $\psi:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}_{+}$be a non-increasing function with $t_{0} \geq 1$ fixed.

$$
D(\psi):=\left\{x \in \mathbb{R}: \begin{array}{r}
\exists N: \text { the system }|q x-p|<\psi(t),|q|<t \\
\text { has a non trivial integer solution for all } t>N
\end{array}\right\}
$$

Theorem (Kleinbock-Wadleigh, 2018)
Let ψ be a non-increasing positive function with $t \psi(t)<1$ for all large t. Then

$$
\mathcal{L}\left(D(\psi)^{c}\right)=\left\{\begin{array}{lll}
0, & \text { if } & \sum_{t} \frac{\log \psi(t)}{t \psi(t)}<\infty, \\
\text { full, } & \text { if } & \sum_{t} \frac{\log \psi(t)}{t \psi(t)}=\infty .
\end{array}\right.
$$

Uniform Approximation

Definition (Dirichlet improvable sets)
Let $\psi:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}_{+}$be a non-increasing function with $t_{0} \geq 1$ fixed.

$$
D(\psi):=\left\{x \in \mathbb{R}: \begin{array}{r}
\exists N: \text { the system }|q x-p|<\psi(t),|q|<t \\
\text { has a non trivial integer solution for all } t>N
\end{array}\right\}
$$

Theorem (Kleinbock-Wadleigh, 2018)
Let ψ be a non-increasing positive function with $t \psi(t)<1$ for all large t. Then

$$
\mathcal{L}\left(D(\psi)^{c}\right)=\left\{\begin{array}{lll}
0, & \text { if } & \sum_{t} \frac{\log \Psi(t)}{t \psi(t)}<\infty, \\
\text { full, } & \text { if } & \sum_{t} \frac{\log \psi(t)}{t \Psi(t)}=\infty .
\end{array}\right.
$$

Example

$$
\mathcal{L}\left(D(\psi)^{c}\right)=\left\{\begin{array}{lll}
0, & \text { if } & \psi(t)=\frac{1}{t}\left(1-\frac{1}{\log t(\log \log t)^{2+\epsilon}}\right) \text { for any } \epsilon>0 ; \\
\text { full, } & \text { if } & \psi(t)=\frac{1}{t}\left(1-\frac{1}{\log t(\log \log t)^{2}}\right) .
\end{array}\right.
$$

Hausdorff Measure and Dimension

Definition

Let $s>0$ and $\left\{B_{i}\right\}$ be a countable collection of Euclidean balls with $\operatorname{diam}\left(B_{i}\right) \leq \rho$ such that $X \subset \bigcup_{i} B_{i}$. $\mathcal{H}_{\rho}^{s}(X)=\inf \left\{\sum_{i}\left(\operatorname{diam}\left(B_{i}\right)\right)^{s}:\left\{B_{i}\right\}\right.$ is a ρ-cover for $\left.X\right\}$,

$$
\mathcal{H}^{s}(X)=\lim _{\rho \rightarrow 0^{+}} \mathcal{H}_{\rho}^{s}(X)
$$

Hausdorff Measure and Dimension

Definition

Let $s>0$ and $\left\{B_{i}\right\}$ be a countable collection of Euclidean balls with $\operatorname{diam}\left(B_{i}\right) \leq \rho$ such that $X \subset \bigcup_{i} B_{i}$. $\mathcal{H}_{\rho}^{s}(X)=\inf \left\{\sum_{i}\left(\operatorname{diam}\left(B_{i}\right)\right)^{s}:\left\{B_{i}\right\}\right.$ is a ρ-cover for $\left.X\right\}$,

$$
\mathcal{H}^{s}(X)=\lim _{\rho \rightarrow 0^{+}} \mathcal{H}_{\rho}^{s}(X) .
$$

Example

Let K be the middle third Cantor set,
dim

Hausdorff Measure and Dimension

Definition

Let $s>0$ and $\left\{B_{i}\right\}$ be a countable collection of Euclidean balls with $\operatorname{diam}\left(B_{i}\right) \leq \rho$ such that $X \subset \bigcup_{i} B_{i}$. $\mathcal{H}_{\rho}^{s}(X)=\inf \left\{\sum_{i}\left(\operatorname{diam}\left(B_{i}\right)\right)^{s}:\left\{B_{i}\right\}\right.$ is a ρ-cover for $\left.X\right\}$,

$$
\mathcal{H}^{s}(X)=\lim _{\rho \rightarrow 0^{+}} \mathcal{H}_{\rho}^{s}(X) .
$$

Example

Let K be the middle third Cantor set,

$$
\operatorname{dim} K=\frac{\log 2}{\log 3}
$$

Example

The Hausdorff dimension of Sierpinksi Triangle is $\frac{\log 3}{\log 2}$ obtained by solving the equation $2^{d}=3$.

Hausdorff measure and dimension

Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function such that $\psi(q) \rightarrow 0$ as $q \rightarrow \infty$.

$$
W(\psi):=\left\{\alpha \in \mathbb{R}:\left|\alpha-\frac{p}{q}\right|<\psi(q), \text { for infinitely many }(p, q) \in \mathbb{Z} \times \mathbb{N}\right\}
$$

Hausdorff measure and dimension

Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function such that $\psi(q) \rightarrow 0$ as $q \rightarrow \infty$.

$$
W(\psi):=\left\{\alpha \in \mathbb{R}:\left|\alpha-\frac{p}{q}\right|<\psi(q), \text { for infinitely many }(p, q) \in \mathbb{Z} \times \mathbb{N}\right\}
$$

Theorem (Jarník 1928, Besicovitch 1934)

$$
\operatorname{dim} W\left(r \mapsto r^{-\tau}\right)=\frac{2}{\tau} \text { for } \tau \geq 2
$$

Hausdorff measure and dimension

Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function such that $\psi(q) \rightarrow 0$ as $q \rightarrow \infty$.

$$
W(\psi):=\left\{\alpha \in \mathbb{R}:\left|\alpha-\frac{p}{q}\right|<\psi(q), \text { for infinitely many }(p, q) \in \mathbb{Z} \times \mathbb{N}\right\}
$$

Theorem (Jarník 1928, Besicovitch 1934)

$$
\operatorname{dim} W\left(r \mapsto r^{-\tau}\right)=\frac{2}{\tau} \quad \text { for } \quad \tau \geq 2
$$

Theorem (Jarník, 1931)
Let ψ be an approximating function. Let f be a dimension function such that $q^{-1} f(q) \rightarrow \infty$ as $q \rightarrow 0$ and $q^{-1} f(q)$ is decreasing. Then

$$
\mathcal{H}^{f}(W(\psi))=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{q=1}^{\infty} q f(\psi(q))<\infty, \\
\infty & \text { if } & \sum_{q=1}^{\infty} q f(\psi(q))=\infty
\end{array}\right.
$$

Hausdorff measure and dimension

Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function such that $\psi(q) \rightarrow 0$ as $q \rightarrow \infty$.

$$
W(\psi):=\left\{\alpha \in \mathbb{R}:\left|\alpha-\frac{p}{q}\right|<\psi(q), \text { for infinitely many }(p, q) \in \mathbb{Z} \times \mathbb{N}\right\}
$$

Theorem (Jarník 1928, Besicovitch 1934)

$$
\operatorname{dim} W\left(r \mapsto r^{-\tau}\right)=\frac{2}{\tau} \text { for } \tau \geq 2 .
$$

Theorem (Jarník, 1931)
Let ψ be an approximating function. Let f be a dimension function such that $q^{-1} f(q) \rightarrow \infty$ as $q \rightarrow 0$ and $q^{-1} f(q)$ is decreasing. Then

$$
\mathcal{H}^{f}(W(\psi))=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{q=1}^{\infty} q f(\psi(q))<\infty \\
\infty & \text { if } & \sum_{q=1}^{\infty} q f(\psi(q))=\infty
\end{array}\right.
$$

Definition (Dimension Function)
An increasing, continuous function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}: f(r) \rightarrow 0$ as $r \rightarrow 0$.

Hausdorff measure and dimension

Theorem (Jarník 1928, Besicovitch 1932)

$$
\operatorname{dim} W\left(r \mapsto r^{-\tau}\right)=\frac{2}{\tau} \text { for } \tau \geq 2
$$

Theorem (Jarník, 1931)
Let ψ be an approximating function. Let f be a dimension function such that $q^{-1} f(q) \rightarrow \infty$ as $q \rightarrow 0$ and $q^{-1} f(q)$ is decreasing. Then

$$
\mathcal{H}^{f}(W(\psi))=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{q=1}^{\infty} q f(\psi(q))<\infty, \\
\infty & \text { if } & \sum_{q=1}^{\infty} q f(\psi(q))=\infty
\end{array}\right.
$$

Jarník theorem \Longrightarrow Jarník-Besicovitch theorem.

Hausdorff measure and dimension

Theorem (Jarník, 1931)
Let ψ be an approximating function. Let f be a dimension function such that $q^{-1} f(q) \rightarrow \infty$ as $q \rightarrow 0$ and $q^{-1} f(q)$ is decreasing. Then

$$
\mathcal{H}^{f}(W(\psi))=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{q=1}^{\infty} q f(\psi(q))<\infty \\
\infty & \text { if } & \sum_{q=1}^{\infty} q f(\psi(q))=\infty
\end{array}\right.
$$

Hausdorff-Cantelli Lemma $\Longrightarrow \mathcal{H}^{f}(W(\psi))=0$ if $\sum_{q=1}^{\infty} q f(\psi(q))<\infty$.

Hausdorff measure and dimension

Theorem (Jarník, 1931)
Let ψ be an approximating function. Let f be a dimension function such that $q^{-1} f(q) \rightarrow \infty$ as $q \rightarrow 0$ and $q^{-1} f(q)$ is decreasing. Then

$$
\mathcal{H}^{f}(W(\psi))=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{q=1}^{\infty} q f(\psi(q))<\infty \\
\infty & \text { if } & \sum_{q=1}^{\infty} q f(\psi(q))=\infty
\end{array}\right.
$$

Hausdorff-Cantelli Lemma $\Longrightarrow \mathcal{H}^{f}(W(\psi))=0$ if $\sum_{q=1}^{\infty} q f(\psi(q))<\infty$.

Hausdorff-Cantelli Lemma \Longrightarrow upper bound of Hausdorff dimension

Hausdorff measure and dimension

Theorem (Jarník, 1931)
Let ψ be an approximating function. Let f be a dimension function such that $q^{-1} f(q) \rightarrow \infty$ as $q \rightarrow 0$ and $q^{-1} f(q)$ is decreasing. Then

$$
\mathcal{H}^{f}(W(\psi))=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{q=1}^{\infty} q f(\psi(q))<\infty \\
\infty & \text { if } & \sum_{q=1}^{\infty} q f(\psi(q))=\infty
\end{array}\right.
$$

Hausdorff-Cantelli Lemma $\Longrightarrow \mathcal{H}^{f}(W(\psi))=0$ if $\sum_{q=1}^{\infty} q f(\psi(q))<\infty$.

Hausdorff-Cantelli Lemma \Longrightarrow upper bound of Hausdorff dimension

Question

How to prove $\mathscr{H}^{f}(W(\psi))>0$?

A general strategy

A general strategy

Lemma (Mass Distribution Principle)

Let μ be a probability measure supported on a subset F of X. Suppose there are positive constants $c>0$ and $\epsilon>0$ such that

$$
\mu(U) \leq c f(\operatorname{diam}(U))
$$

for all sets U with $\operatorname{diam}(U) \leq \epsilon$. Then $\mathcal{H}^{f}(F) \geq \mu(F) / c$.

A general strategy

Lemma (Mass Distribution Principle)

Let μ be a probability measure supported on a subset F of X. Suppose there are positive constants $c>0$ and $\epsilon>0$ such that

$$
\mu(U) \leq \operatorname{cf}(\operatorname{diam}(U))
$$

for all sets U with $\operatorname{diam}(U) \leq \epsilon$. Then $\mathcal{H}^{f}(F) \geq \mu(F) / c$.

- construct a suitable Cantor type subset $\mathcal{K} \subset F=\lim \sup _{i \rightarrow \infty} B_{i}$ and a probability measure μ supported on \mathcal{K},

A general strategy

Lemma (Mass Distribution Principle)

Let μ be a probability measure supported on a subset F of X. Suppose there are positive constants $c>0$ and $\epsilon>0$ such that

$$
\mu(U) \leq c f(\operatorname{diam}(U))
$$

for all sets U with $\operatorname{diam}(U) \leq \epsilon$. Then $\mathcal{H}^{f}(F) \geq \mu(F) / c$.

- construct a suitable Cantor type subset $\mathcal{K} \subset F=\lim \sup _{i \rightarrow \infty} B_{i}$ and a probability measure μ supported on \mathcal{K},
- show that for any fixed $c>0, \mu$ satisfies the condition that for any measurable set U of sufficiently small diameter, $\mu(U) \leq c f(\operatorname{diam}(U))$.

A general strategy

Lemma (Mass Distribution Principle)

Let μ be a probability measure supported on a subset F of X. Suppose there are positive constants $c>0$ and $\epsilon>0$ such that

$$
\mu(U) \leq \operatorname{cf}(\operatorname{diam}(U))
$$

for all sets U with $\operatorname{diam}(U) \leq \epsilon$. Then $\mathcal{H}^{f}(F) \geq \mu(F) / c$.

- construct a suitable Cantor type subset $\mathcal{K} \subset F=\lim \sup _{i_{\rightarrow \infty}} B_{i}$ and a probability measure μ supported on \mathcal{K},
- show that for any fixed $c>0, \mu$ satisfies the condition that for any measurable set U of sufficiently small diameter, $\mu(U) \leq c f(\operatorname{diam}(U))$.

If this can be done, then by the mass distribution principle, it follows that

$$
\mathcal{H}^{f}(F) \geq \mathcal{H}^{f}(\mathcal{K}) \geq c^{-1} .
$$

Then since c is arbitrary, it follows that $\mathcal{H}^{f}(F)=\infty$.

A general principle

Theorem (H.-Simmons, PAMS 2019)

Fix $\delta>0$, let $\left(B_{i}\right)_{i}$ be a sequence of open sets in an Ahlfors δ-regular metric space X, and let f be a dimension function such that

$$
\begin{gather*}
r \mapsto r^{-\delta} f(r) \text { is decreasing, and } \tag{1}\\
r^{-\delta} f(r) \rightarrow \infty \text { as } r \rightarrow 0 . \tag{2}
\end{gather*}
$$

A general principle

Theorem (H.-Simmons, PAMS 2019)

Fix $\delta>0$, let $\left(B_{i}\right)_{i}$ be a sequence of open sets in an Ahlfors δ-regular metric space X, and let f be a dimension function such that

$$
\begin{gather*}
r \mapsto r^{-\delta} f(r) \text { is decreasing, and } \tag{1}\\
r^{-\delta} f(r) \rightarrow \infty \text { as } r \rightarrow 0 \tag{2}
\end{gather*}
$$

Fix $C>0$, and suppose that the following hypothesis holds:
(*) For every ball $B_{0} \subset X$ and for every $N \in \mathbb{N}$, there exists a probability measure $\mu=\mu\left(B_{0}, N\right)$ with $\operatorname{Supp}(\mu) \subset \bigcup_{i \geq N} B_{i} \cap B_{0}$, such that for every ball $B=B(x, \rho) \subset X$, we have

$$
\begin{equation*}
\mu(B) \lesssim \max \left(\left(\frac{\rho}{\operatorname{diam} B_{0}}\right)^{\delta}, \frac{f(\rho)}{C}\right) . \tag{3}
\end{equation*}
$$

A general principle

Theorem (H.-Simmons, PAMS 2019)

Fix $\delta>0$, let $\left(B_{i}\right)_{i}$ be a sequence of open sets in an Ahlfors δ-regular metric space X, and let f be a dimension function such that

$$
\begin{gather*}
r \mapsto r^{-\delta} f(r) \text { is decreasing, and } \tag{1}\\
r^{-\delta} f(r) \rightarrow \infty \text { as } r \rightarrow 0 \tag{2}
\end{gather*}
$$

Fix $C>0$, and suppose that the following hypothesis holds:
(*) For every ball $B_{0} \subset X$ and for every $N \in \mathbb{N}$, there exists a probability measure $\mu=\mu\left(B_{0}, N\right)$ with $\operatorname{Supp}(\mu) \subset \bigcup_{i \geq N} B_{i} \cap B_{0}$, such that for every ball $B=B(x, \rho) \subset X$, we have

$$
\begin{equation*}
\mu(B) \lesssim \max \left(\left(\frac{\rho}{\operatorname{diam} B_{0}}\right)^{\delta}, \frac{f(\rho)}{C}\right) . \tag{3}
\end{equation*}
$$

Then for every ball B_{0},

$$
\mathcal{H}^{f}\left(B_{0} \cap \underset{i \rightarrow \infty}{\limsup } B_{i}\right) \gtrsim C .
$$

In particular, if the hypothesis (*) holds for all C, then $\mathcal{H}^{f}\left(B_{0} \cap \lim \sup _{i \rightarrow \infty} B_{i}\right)=\infty$.

Mass Transference Principle

Mass Transference Principle

Theorem (Beresnevich-Velani, Ann. Math. 2006)

Let $X \subset \mathbb{R}^{d}$ be Ahlfors δ-regular. Let $\left(B_{i}\right)_{i \in \mathbb{N}}$ be a sequence of balls in X with $\operatorname{rad}\left(B_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$. Let f be a dimension function such that $r \mapsto r^{-\delta} f(r)$ is monotonic. Suppose that for every ball $B \subset X$

$$
\mathcal{H}^{\delta}\left(B \cap \limsup _{i \rightarrow \infty} B_{i}^{f}\right)=\mathcal{H}^{\delta}(B) .
$$

Then for every ball $B \subset X$

$$
\mathcal{H}^{f}\left(B \cap \limsup _{i \rightarrow \infty} B_{i}\right)=\mathcal{H}^{f}(B)
$$

Mass Transference Principle

Theorem (Beresnevich-Velani, Ann. Math. 2006)

Let $X \subset \mathbb{R}^{d}$ be Ahlfors δ-regular. Let $\left(B_{i}\right)_{i \in \mathbb{N}}$ be a sequence of balls in X with $\operatorname{rad}\left(B_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$. Let f be a dimension function such that $r \mapsto r^{-\delta} f(r)$ is monotonic. Suppose that for every ball $B \subset X$

$$
\mathcal{H}^{\delta}\left(B \cap \limsup _{i \rightarrow \infty} B_{i}^{f}\right)=\mathcal{H}^{\delta}(B)
$$

Then for every ball $B \subset X$

$$
\mathcal{H}^{f}\left(B \cap \limsup _{i \rightarrow \infty} B_{i}\right)=\mathcal{H}^{f}(B)
$$

Khintchine's Theorem \Longrightarrow Jarnik's Theorem

Mass Transference Principle

Theorem (Beresnevich-Velani, Ann. Math. 2006)
Let $X \subset \mathbb{R}^{d}$ be Ahlfors δ-regular. Let $\left(B_{i}\right)_{i \in \mathbb{N}}$ be a sequence of balls in X with $\operatorname{rad}\left(B_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$. Let f be a dimension function such that $r \mapsto r^{-\delta} f(r)$ is monotonic. Suppose that for every ball $B \subset X$

$$
\mathcal{H}^{\delta}\left(B \cap \limsup _{i \rightarrow \infty} B_{i}^{f}\right)=\mathcal{H}^{\delta}(B)
$$

Then for every ball $B \subset X$

$$
\mathcal{H}^{f}\left(B \cap \limsup _{i \rightarrow \infty} B_{i}\right)=\mathcal{H}^{f}(B) .
$$

Khintchine's Theorem \Longrightarrow Jarník's Theorem

Dirichlet's Theorem \Longrightarrow Jarník-Besicovitch Theorem

Mass Transference Principle

Theorem (Beresnevich-Velani, Ann. Math. 2006)
Let $X \subset \mathbb{R}^{d}$ be Ahlfors δ-regular. Let $\left(B_{i}\right)_{i \in \mathbb{N}}$ be a sequence of balls in X with $\operatorname{rad}\left(B_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$. Let f be a dimension function such that $r \mapsto r^{-\delta} f(r)$ is monotonic. Suppose that for every ball $B \subset X$

$$
\mathcal{H}^{\delta}\left(B \cap \limsup _{i \rightarrow \infty} B_{i}^{f}\right)=\mathcal{H}^{\delta}(B)
$$

Then for every ball $B \subset X$

$$
\mathcal{H}^{f}\left(B \cap \limsup _{i \rightarrow \infty} B_{i}\right)=\mathcal{H}^{f}(B) .
$$

Khintchine's Theorem \Longrightarrow Jarník's Theorem

Dirichlet's Theorem \Longrightarrow Jarník-Besicovitch Theorem
H.-Simmons Theorem \Longrightarrow Beresnevich-Velani Theorem

A Jarnik type criterion for uniform approximation

A Jarnik type criterion for uniform approximation

Definition (Dirichlet improvable sets)
Let $\psi:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}_{+}$be a non-increasing function with $t_{0} \geq 1$ fixed.

$$
D(\psi):=\left\{\begin{aligned}
\exists N: \text { the system }|q x-p|<\psi(t),|q|<t \\
x \in \mathbb{R}: \begin{array}{c}
\exists \\
\text { has a non trivial integer solution for all } t>N
\end{array}
\end{aligned}\right\}
$$

A Jarnik type criterion for uniform approximation

Definition (Dirichlet improvable sets)

Let $\psi:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}_{+}$be a non-increasing function with $t_{0} \geq 1$ fixed.

$$
D(\psi):=\left\{\begin{aligned}
\quad \exists N: \text { the system }|q x-p|<\psi(t),|q|<t \\
x \in \mathbb{R}: \\
\text { has a non trivial integer solution for all } t>N
\end{aligned}\right\}
$$

Theorem (Bos-H.-Simmons, PAMS 2023)
Let ψ be a non-increasing positive function with $t \psi(t)<1$ for all large t. Let f be a dimension function such that $\lim _{x \rightarrow 0} x^{-1} f(x) \rightarrow \infty$ and $x^{-1} f(x)$ is decreasing. Then

$$
\mathcal{H}^{f}\left(D^{c}(\psi)\right)=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{k=1}^{\infty} \sum_{j<\log _{2} \psi\left(2^{k}\right)} 2^{2 k+j} f\left(\frac{2^{-(2 k+j)}}{\psi\left(2^{k+j}\right)}\right)<\infty ; \\
\infty & \text { if } & \sum_{k=1}^{\infty} \sum_{j<\log _{2} \psi\left(2^{k}\right)} 2^{2 k+j} f\left(\frac{2^{-(2 k+j)}}{\psi\left(2^{k+j}\right)}\right)=\infty .
\end{array}\right.
$$

A Jarnik type criterion for uniform approximation

Definition (Dirichlet improvable sets)

Let $\psi:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}_{+}$be a non-increasing function with $t_{0} \geq 1$ fixed.

$$
D(\psi):=\left\{\begin{aligned}
\quad \exists N: \text { the system }|q x-p|<\psi(t),|q|<t \\
x \in \mathbb{R}: \\
\text { has a non trivial integer solution for all } t>N
\end{aligned}\right\}
$$

Theorem (Bos-H.-Simmons, PAMS 2023)

Let ψ be a non-increasing positive function with $t \psi(t)<1$ for all large t. Let f be a dimension function such that $\lim _{x \rightarrow 0} x^{-1} f(x) \rightarrow \infty$ and $x^{-1} f(x)$ is decreasing. Then

$$
\mathcal{H}^{f}\left(D^{c}(\psi)\right)=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{k=1}^{\infty} \sum_{j<\log _{2} \Psi\left(2^{k}\right)} 2^{2 k+j} f\left(\frac{2^{-(2 k+j)}}{\Psi\left(2^{k+j}\right)}\right)<\infty ; \\
\infty & \text { if } & \sum_{k=1}^{\infty} \sum_{j<\log _{2} \Psi\left(2^{k}\right)} 2^{2 k+j} f\left(\frac{2^{-(2 k+j)}}{\Psi\left(2^{k+j}\right)}\right)=\infty .
\end{array}\right.
$$

Corollary (H.-Kleinbock-Wadleigh-Wang, Mathematika 2018)

Let ψ be a non-increasing positive function with $t \psi(t)<1$ for all large t, and let f be an essentially sub-linear dimension function. Then

$$
\mathcal{H}^{f}\left(D^{c}(\psi)\right)=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{t} t f\left(\frac{1}{t^{2} \Psi(t)}\right)<\infty \\
\infty & \text { if } & \sum_{t} t f\left(\frac{1}{t^{2} \psi(t)}\right)=\infty
\end{array}\right.
$$

A Jarnik type criterion

Definition (Dirichlet improvable sets)

Let $\psi:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}_{+}$be a non-increasing function with $t_{0} \geq 1$ fixed.

$$
D(\psi):=\left\{\begin{aligned}
\quad \exists N: \text { the system }|q x-p|<\psi(t),|q|<t \\
x \in \mathbb{R}: \\
\text { has a non trivial integer solution for all } t>N
\end{aligned}\right\}
$$

Theorem (Bos-H.-Simmons, PAMS 2023)

Let ψ be a non-increasing positive function with $t \psi(t)<1$ for all large t. Let f be a dimension function such that $\lim _{x \rightarrow 0} x^{-1} f(x) \rightarrow \infty$ and $x^{-1} f(x)$ is decreasing. Then

$$
\mathcal{H}^{f}\left(D^{c}(\psi)\right)=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{k=1}^{\infty} \sum_{j<\log _{2} \Psi\left(2^{k}\right)} 2^{2 k+j} f\left(\frac{2^{-(2 k+j)}}{\Psi\left(2^{k+j}\right)}\right)<\infty ; \\
\infty & \text { if } & \sum_{k=1}^{\infty} \sum_{j<\log _{2} \Psi\left(2^{k}\right)} 2^{2 k+j} f\left(\frac{2^{-(2 k+j)}}{\Psi\left(2^{k+j}\right)}\right)=\infty
\end{array}\right.
$$

Corollary

Let ψ be a non-increasing positive function with $t \psi(t)<1$ for all large t, and let f be a non-essentially sub-linear dimension function. Then
$\mathcal{H}^{f}\left(D^{c}(\psi)\right)=\left\{\begin{array}{lll}0 & \text { if } & \sum_{t} t \log (\Psi(t)) f\left(\frac{1}{t^{2} \Psi(t)}\right)<\infty ; \\ \infty & \text { if } & \sum_{t} t \log (\Psi(t)) f\left(\frac{1}{t^{2} \Psi(t)}\right)=\infty .\end{array}\right.$

A Jarnik type criterion

Definition (Dirichlet improvable sets)

Let $\psi:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}_{+}$be a non-increasing function with $t_{0} \geq 1$ fixed.

$$
D(\psi):=\left\{\begin{aligned}
\quad \exists N: \text { the system }|q x-p|<\psi(t),|q|<t \\
x \in \mathbb{R}: \\
\text { has a non trivial integer solution for all } t>N
\end{aligned}\right\}
$$

Theorem (Bos-H.-Simmons, PAMS 2023)

Let ψ be a non-increasing positive function with $t \psi(t)<1$ for all large t. Let f be a dimension function such that $\lim _{x \rightarrow 0} x^{-1} f(x) \rightarrow \infty$ and $x^{-1} f(x)$ is decreasing. Then

$$
\mathcal{H}^{f}\left(D^{c}(\psi)\right)=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{k=1}^{\infty} \sum_{j<\log _{2} \Psi\left(2^{k}\right)} 2^{2 k+j} f\left(\frac{2^{-(2 k+j)}}{\Psi\left(2^{k+j}\right)}\right)<\infty ; \\
\infty & \text { if } & \sum_{k=1}^{\infty} \sum_{j<\log _{2} \Psi\left(2^{k}\right)} 2^{2 k+j} f\left(\frac{2^{-(2 k+j)}}{\Psi\left(2^{k+j}\right)}\right)=\infty .
\end{array}\right.
$$

Corollary

Let ψ be a non-increasing positive function with $t \psi(t)<1$ for all large t, and let f be a non-essentially sub-linear dimension function. Then

$$
\mathcal{H}^{f}\left(D^{c}(\psi)\right)=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{t} t \log (\Psi(t)) f\left(\frac{1}{t^{2} \Psi(t)}\right)<\infty ; \\
\infty & \text { if } & \sum_{t} t \log (\Psi(t)) f\left(\frac{1}{t^{2} \Psi(t)}\right)=\infty
\end{array}\right.
$$

A Jarnik type criterion

Theorem (Bos-H.-Simmons, PAMS 2023)

Let ψ be a non-increasing positive function with $t \psi(t)<1$ for all large t. Let f be a dimension function such that $\lim _{x \rightarrow 0} x^{-1} f(x) \rightarrow \infty$ and $x^{-1} f(x)$ is decreasing. Then

$$
\mathcal{H}^{f}\left(D^{c}(\psi)\right)=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{k=1}^{\infty} \sum_{j<\log _{2} \Psi\left(2^{k}\right)} 2^{2 k+j} f\left(\frac{2^{-(2 k+j)}}{\Psi\left(2^{k+j}\right)}\right)<\infty ; \\
\infty & \text { if } & \sum_{k=1}^{\infty} \sum_{j<\log _{2} \Psi\left(2^{k}\right)} 2^{2 k+j} f\left(\frac{2^{-(2 k+j)}}{\Psi\left(2^{k+j}\right)}\right)=\infty .
\end{array}\right.
$$

Corollary

Let ψ be a non-increasing positive function with $t \psi(t)<1$ for all large t. Let f be a dimension function such that $\lim _{x \rightarrow 0} x^{-1} f(x) \rightarrow \infty$ and $x^{-1} f(x)$ is decreasing. Let Ψ be such that, for all $x>0$ and $Q>1$, the following condition holds

$$
\begin{equation*}
\Psi\left(Q^{X}\right) \asymp \Psi(Q) \tag{4}
\end{equation*}
$$

where the implied constant depends only on x. Then

$$
\mathcal{H}^{f}\left(D^{c}(\psi)\right)=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{q} q \log (\Psi(q)) f\left(\frac{1}{q^{2} \Psi(q)}\right)<\infty ; \\
\infty & \text { if } & \sum_{q} q \log (\Psi(q)) f\left(\frac{1}{q^{2} \Psi(q)}\right)=\infty .
\end{array}\right.
$$

Sketch of the proof

$$
G(\Psi)=\left\{x \in[0,1): a_{n}(x) a_{n+1}(x) \geq \psi\left(q_{n}\right) \text { for i.m. } n \in \mathbb{N}\right\},
$$

$$
\begin{aligned}
G(\Psi) & =\left\{x \in[0,1): a_{n}(x) a_{n+1}(x) \geq \Psi\left(a_{n}\right) \text { for i.m. } n \in \mathbb{N}\right\} \\
\subseteq & \left\{x \in[0,1): a_{n}(x) a_{n+1}(x) \geq \Psi\left(a_{n} q_{n-1}\right) \text { for i.m. } n \in \mathbb{N}\right\} \\
\subseteq & \bigcup_{n=N}^{\infty} \bigcup_{1, \ldots, a_{n}} \bigcup_{a_{n+1}>\frac{\psi\left(e_{n} q_{n-1}\right)}{a_{n}}} I_{n+1}\left(a_{1}, \ldots, a_{n}, a_{n+1}\right) \\
& =\mathcal{A}_{1}(\Psi) \cup \mathcal{A}_{2}(\Psi) .
\end{aligned}
$$

Where

$$
\begin{aligned}
& \mathcal{A}_{1}(\Psi)=\bigcup_{n=N}^{\infty} \bigcup_{a_{1}, \ldots, a_{n}} \bigcup_{a_{n} \leq \Psi\left(q_{n-1}\right)} \bigcup_{a_{n+1}>\frac{\psi\left(a_{n} q_{n-1}\right)}{a_{n}}} I_{n+1}\left(a_{1}, \ldots, a_{n}, a_{n+1}\right), \\
& \mathcal{A}_{2}(\Psi)=\bigcup_{n=N}^{\infty} \bigcup_{a_{1}, \ldots, a_{n}} \bigcup_{a_{n}>\psi\left(q_{n-1}\right)} \bigcup_{a_{n+1}>\frac{\psi\left(a_{n} q_{n-1}\right)}{a_{n}}} I_{n+1}\left(a_{1}, \ldots, a_{n}, a_{n+1}\right) .
\end{aligned}
$$

Sketch of the proof

$$
\begin{aligned}
& \qquad \begin{array}{l}
J_{n}\left(a_{1}, \ldots, a_{n}\right):=\bigcup_{a_{n+1}>\frac{\psi\left(a n q_{n-1}\right)}{a_{n}}} I_{n+1}\left(a_{1}, \ldots, a_{n}, a_{n+1}\right) . \\
\left|J_{n}\left(a_{1}, \ldots, a_{n}\right)\right| \leq \frac{1}{\psi\left(a_{n} q_{n-1}\right) a_{n} q_{n-1}^{2}} . \\
\text { Let } Q>1 \text { and } Q<q_{n-1} \leq 2 Q \text {. Then }
\end{array} \text {. }
\end{aligned}
$$

$$
\left|J_{n}\left(a_{1}, \ldots, a_{n}\right)\right| \ll \frac{1}{\Psi\left(a_{n} Q\right) a_{n} Q^{2}}
$$

Hence, the cost of the cover when $a_{n}<\Psi\left(q_{n-1}\right)$, is

$$
\sum_{a=1}^{\Psi(Q)} f\left(\frac{1}{a Q^{2} \Psi(a Q)}\right)
$$

In the case $a_{n}>\Psi\left(q_{n-1}\right)$, the cost of the cover is given by

$$
f\left(\frac{1}{Q^{2} \Psi(Q)}\right)
$$

Sketch of the proof

Since $Q>1$, it follows that for each window $[Q, 2 Q]$, there are at most Q^{2} cylinders I_{n} of length comparable (up to a constant) to Q^{-2}. Multiplying the cost of the cover given above by Q^{2} which are the number of such intervals, and then summing over all the windows $Q=2^{k}$, we have

$$
\sum_{Q=2^{k} ; k \geq 1} Q^{2} \sum_{a=1}^{\Psi(Q)} f\left(\frac{1}{a Q^{2} \Psi(a Q)}\right)+\sum_{Q=2^{k} ; k \geq 1} Q^{2} f\left(\frac{1}{Q^{2} \Psi(Q)}\right) .
$$

Applying Cauchy's condensation test on the second term, and rewriting the first term gives the total cost as

$$
\sum_{\substack{k \geq 1 \\ Q=2^{k}}} \sum_{\substack{j \geq 1, A=2^{j} \\ A<\Psi(Q)}} Q^{2} A f\left(\frac{1}{Q^{2} A \Psi(Q A)}\right)+\sum_{q} q f\left(\frac{1}{q^{2} \Psi(q)}\right) .
$$

Sketch of the proof

Theorem

Let $\left(u_{a}\right)_{a \in E}$ be the Gauss iterated function system. For each finite word $\omega \in E^{*}$ and $a \leq \Psi\left(Q_{\omega}\right)$ let

$$
S_{\omega a}=u_{\omega a}\left(\left[0, a / \Psi\left(Q_{\omega} a\right)\right]\right)
$$

Let f be a dimension function such that $\sum_{\omega, a} f\left(\operatorname{diam} S_{\omega a}\right)$ diverges. Then

$$
\mathcal{H}^{f}\left(\limsup _{\omega, a} S_{\omega a}\right)=\infty .
$$

Sketch of the proof

Theorem

Let $\left(u_{a}\right)_{a \in E}$ be the Gauss iterated function system. For each finite word $\omega \in E^{*}$ and $a \leq \Psi\left(Q_{\omega}\right)$ let

$$
S_{\omega a}=u_{\omega a}\left(\left[0, a / \Psi\left(Q_{\omega} a\right)\right]\right)
$$

Let f be a dimension function such that $\sum_{\omega, a} f\left(\operatorname{diam} S_{\omega a}\right)$ diverges. Then

$$
\mathcal{H}^{f}\left(\limsup _{\omega, a} S_{\omega a}\right)=\infty .
$$

First we show that $\lim \sup _{\omega, a} S_{\omega a} \subseteq G(\Psi)$.
$\sum_{\omega, a} f\left(\operatorname{diam} S_{\omega a}\right) \asymp \sum_{Q=2^{k} ; k \geq 1} Q^{2} \sum_{a=1}^{\Psi(Q)} f\left(\frac{1}{a Q^{2} \Psi(a Q)}\right) \asymp \sum_{k=1}^{\infty} \sum_{j<\log _{2} \psi\left(2^{k}\right)} 2^{2 k+j} f\left(\frac{2^{-(2 k+j)}}{\Psi\left(2^{k+j}\right)}\right)$.
Fix $B_{0} \subset[0,1]$ and $N \in \mathbb{N}$, and we will construct the measure $\mu=\mu\left(B_{0}, N\right)$ such that the hypothesis (${ }^{*}$) in Theorem 0 holds.

Applications: Recurrence sets

Let $(X, \mathcal{B}, \mu, T, d)$ be a metric measure preserving system (m.m.p.s.). the Poincaré recurrence theorem implies that μ-almost every $x \in X$ is recurrent in the sense that

$$
\liminf _{n \rightarrow \infty} d\left(T^{n} x, x\right)=0
$$

Applications: Recurrence sets

Let $(X, \mathcal{B}, \mu, T, d)$ be a metric measure preserving system (m.m.p.s.). the Poincaré recurrence theorem implies that μ-almost every $x \in X$ is recurrent in the sense that

$$
\liminf _{n \rightarrow \infty} d\left(T^{n} x, x\right)=0
$$

Boshernitzan (1991) improved this result to the following quantitative statement:

$$
\liminf _{n \rightarrow \infty} n^{1 / \alpha} d\left(T^{n} x, x\right)<\infty, \quad \mu \text {-almost every } x \in X
$$

with a condition that $\mathcal{H}^{\alpha}(X)$ is σ finite for some $\alpha>0$.

Applications: Recurrence sets

Let $(X, \mathcal{B}, \mu, T, d)$ be a metric measure preserving system (m.m.p.s.). the Poincaré recurrence theorem implies that μ-almost every $x \in X$ is recurrent in the sense that

$$
\liminf _{n \rightarrow \infty} d\left(T^{n} x, x\right)=0
$$

Boshernitzan (1991) improved this result to the following quantitative statement:

$$
\liminf _{n \rightarrow \infty} n^{1 / \alpha} d\left(T^{n} x, x\right)<\infty, \quad \mu \text {-almost every } x \in X
$$

with a condition that $\mathcal{H}^{\alpha}(X)$ is σ finite for some $\alpha>0$.

$$
\mathcal{R}(\psi)=\left\{x \in X: d\left(T^{n} x, x\right)<\psi(n) \text { for infinitely many } n \in \mathbb{N}\right\}
$$

Theorem (H. 2023)

Let T be a beta or Gauss dynamical system. Let f be a dimension function such that

$$
f(a x) \asymp a^{S} f(x) \quad \forall x \leq a^{\epsilon}
$$

for some $s, \epsilon>0$. Then

$$
\sum_{n} e^{n P(s)} f(\psi(n))=\infty \quad \Longleftrightarrow \quad \mathcal{H}^{f}(\mathcal{R}(\psi))=\infty
$$

