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| am going to explain today a surprising perspective — due
originally to Kevin Costello, and further extended by Costello,
Masahito Yamazaki, and me — on the classical Yang-Baxter
equation. By now, this work is not new, but the perspective may
be unfamiliar to many.
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Because time is limited, | will be very schematic in explaining what
the Yang-Baxter equation is and why it is important, assuming that
most of you are already familiar with the Yang-Baxter equation.



The basic picture is this one:
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Here in Baxter's interpretation of the equation, 7, k, / label the
possible states of a classical spin (in a model of classical statistical
mechanics in two dimensions). The spins live on lines, as shown.
Each line has a “spectral parameter” 0 or 6, and where two lines
cross, the statistical sum gets a factor Rjjyy, which depends on the
difference 0 — ¢'.



(In the quantum many-body interpretation of the Yang-Baxter
equation, developed by Yang, Faddeev, A. and Al. Zamolodchikov,
and many others, the labels i, j, k, | represent particle types, 0 is
the momentum or “rapidity” of a particle, and Rjy(0 — ¢’) is an
S-matrix element.)



The Yang-Baxter equation is a cubic equation for Rjj(6), very
schematically
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or in formulas
Rx3R13R12 = R12R13Ro3.

In the picture, it is understood that one sums over the
intermediate spins or particle types (that is, over the labels g, r,s
on the left or u, t, v on the right) and in a crossing of two lines
a,b=1,2,3 labeled by rapidities 0,, 05, one inserts an appropriate
factor Rp(f,j, k,1;0, — 0p).



For every solution of Yang-Baxter, one can construct an integrable
spin system, described by this picture:
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Here the vertical and horizontal lines are labeled by rapidities 6 or
f;, a line segment is labeled by a spin state /,j, k,..., and a
crossing is labeled by the appropriate R-matrix element.

To get the partition function, one sums over all the labels
i,j,k,..., weighting each choice by the product of the
corresponding R-matrix elements, one factor at each vertex.



Perhaps the most obvious question about the Yang-Baxter
equation is “why" solutions of this highly overdetermined equation
exist. My goal today is to explain a perspective on this question.
As a clue, the usual solutions of Yang-Baxter are determined by the
choice of a simple Lie group G and an irreducible representation p.
Why does that data lead to a solution of Yang-Baxter?



There is another area in which one finds something a lot like the
Yang-Baxter equations. This is the theory of knots in three
dimensions. Here is one of the Reidemeister moves:
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The resemblance to the Yang-Baxter equation is obvious, but there
are also conspicuous differences:

(1) In knot theory, one strand passes “over” or “under” the other,

while Yang-Baxter theory is a purely two-dimensional theory in
which lines simply cross, with no “over” or “under”:
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(2) In knot theory, there is another Reidemeister move that has no
analog for Yang-Baxter:




These two points refer to structure that is present in knot theory
and not in Yang-Baxter theory. But there is also an important
difference in the opposite direction:

(3) In Yang-Baxter theory, the spectral parameter is crucial, but it
has no analog in knot theory.



Despite these differences, there is an obvious analogy between the
Yang-Baxter equation and the first Reidemeister move of knot
theory, so let us pursue this a little bit. The usual solutions of
Yang-Baxter depend, as I've said, on the choice of a simple Lie
group G and an irreducible representation p. There are knot
invariants that depend on the same data. To define them at least
formally, consider a three-dimensional gauge theory with gauge
group G. In mathematical language, let M be a three-manifold,
E — M a G-bundle, and A a connection on G. Then one has the
Chern-Simons function

CS(A):k/ Tr <AdA—|—§A/\A/\A>,
M
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where k is a parameter that must be an integer to make the
Feynman path integral well-defined.



A quantum field theory with this action is a “topological quantum
field theory,” since there is no metric tensor in sight. Let us just
take the three-manifold M to be R3, and let K C R3 be an
embedded knot.

We pick an irreducible representation p of G, and define

W,(K) = Tr,Pexp <7€< A)

i.e. the trace, in the representation p, of the holonomy of A around
K. This is the “Wilson loop operator.”



Physically, it is part of the amplitude for a charged particle in the
representation p, coupling to the gauge field A, to propagate
around the path K in spacetime.



The usual “quantum knot invariants” can be defined via the
expectation value of the Wilson operator,

(W,(K)) = (Tr,Pexp($, A)). For G = SU(2) and p the
two-dimensional representation of SU(2), the invariant we get this
way is the Jones polynomial, the prototype of the quantum
invariants of knots.

From these quantum invariants, one cannot really extract the usual
solutions of the Yang-Baxter equation since one is missing the
spectral parameter.



How can we modify or generalize Chern-Simons gauge theory to
include the spectral parameter? A naive idea is to replace the
finite-dimensional gauge group G with its loop group £LG. The
loop group is the group of G-valued functions g(é) of an angular
variable 8. They are multiplied in the obvious way by pointwise
multiplication. It is important that here we take the loop group
itself, and not its central extension, which one often encounters in
two-dimensional quantum field theory, string theory, and statistical
mechanics. The central extension would force us to construct
infinite-dimensional representations, but the loop group itself has
some very simple representations: the “evaluation” representations
that “live” at a particular value 8 = 0y along the loop. In such a
representation, a loop g(f) just acts according to its value g(6p) at
0 = 6y. We hope that 6y will be the spectral parameter label
carried by a particle in the solution of the Yang-Baxter equation.



Taking the gauge group to be a loop group means that the gauge
field A= >". Ai(x)dx’ now depends also on # and so is

A =" Ai(x,0)dx". Note that there is no df term so this is not a
full four-dimensional gauge field. The Chern-Simons action has a
generalization to this situation:

k

| =—
47 MxS1

déf Tr <AdA—|—§A/\A/\A>.

This is perfectly gauge-invariant.



What goes wrong is that because there is no 9/96 in the action,
the “kinetic energy” of A is not elliptic and the perturbative
expansion is not well-behaved. The propagator is

. e;jk(x — X’)k
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with a delta function because the kinetic energy was not elliptic,
and because of the delta function, loop amplitudes will be
proportional to §(0):

This loop will come with a factor §(8 — 6)%2 = §(6 — 6)5(0).



What Kevin Costello did was to cure this problem via a very simple
deformation. Take our three-manifold to be R3, and write x, y, t
for the three coordinates of R3, so overall we have x, y, t, and 6.
Costello combined t and 6 into a complex variable

z=c¢ct+16.

Here ¢ is a real parameter. The theory will reduce to the bad case
that | just described if ¢ = 0. As soon as ¢ # 0, its value does not
matter and one can set € = 1. | just included ¢ to explain in what
sense we are making an infinitesimal deformation away from the
ill-defined Chern-Simons theory of the loop group.



One replaces df (or (k/4m)d6) in the naive theory with dz (or
dz/h) and one now regards A as a partial connection on R3 x S!
that is missing a dz term (rather than missing df, as before). The
action is now

/:/ dzTr (AdA—i—zA/\AAA).
h Jr3xst 3



We've lost the three-dimensional symmetry of standard
Chern-Simons theory, because of splitting away one of the three
coordinates of R3 and combining it with §. We still have
two-dimensional diffeomorphism symmetry. However, as we
discussed when we were comparing Yang-Baxter theory to knot
theory, Yang-Baxter theory does not have three-dimensional
symmetry, only two-dimensional symmetry. Modifying standard
Chern-Simons theory in this fashion turns out to have exactly the
right properties to give Yang-Baxter theory rather than knot
theory: the three-dimensional diffeomorphism invariance is reduced
to two-dimensional diffeomorphism invariance, but on the other
hand, now there is a complex variable z that will turn out to be
the spectral parameter.



I've described the action so far on R? x C* where C* = R x S?
(parametrized by z = et + i), with the complex 1-form dz. The
theory works just as well if C* is replaced by C or by an elliptic
curve (the quotient of C by a lattice of rank 2). The three cases
turn out to correspond to rational, trigonometric, and elliptic
solutions of Yang-Baxter.



The first point is that this theory has a sensible propagator and a
sensible perturbation expansion. The basic reason for a sensible
propagator is that on R x R or R x S! parametrized by t and 6,
the operator 9/t that appeared in the naive action of LG is not
elliptic, but the operator 9/0z that appears in the deformed
version is elliptic. After a suitable gauge-fixing, the propagator (on
R2 x C for the rational model, i.e. C =C ]RZ) is
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where i, j, k take the values x, y,Z and the metric on R* = R? x C
is dx? 4+ dy? + |dz|?. As Costello proves, there is no difficulty in
doing perturbation theory.



Now we consider Wilson operators, that is holonomy operators

Tr,P exp?{A
L

where £ is a loop in & x C. Here X is the topological two-manifold,
and C is a complex Riemann surface (with the differential
w = dz). But we only have a partial gauge field or connection

A=Adx+ A dy + Azdz

so we would not know how to do any parallel transport in the z
direction. (We cannot interpret A as a gauge field with A, =0
because this condition would not be gauge-invariant, and
quantizing the theory requires gauge-invariance. We have to
interpret it as a theory with A, undefined, so we cannot do parallel
transport in the z direction.) This means that we must take ¢ to
be a loop that lies in X, at a particular value of z.



That is actually what we want for Yang-Baxter theory: z is the
spectral parameter at which the given knot “lives.” In Yang-Baxter
theory, the spectral parameter is indeed in general a complex
parameter.



Now let us consider some lines that meet in X in the familiar
configuration associated to the Yang-Baxter equation:
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Two-dimensional diffeomorphism invariance means that we are free
to move the lines around as long as we don't change the topology
of the configuration. But assuming that z;, z», and z3 are all
distinct, it is manifest that there is no discontinuity when we move
the middle line from left to right even when we do cross between
the two pictures. Thus two configurations of Wilson operators that
differ by what we might call a Yang-Baxter move are equivalent.



But why is there as elementary a picture as in the lattice spin
systems, where one can evaluate the path integral by labeling each
line by a basis element of the representation p and each crossing by
a local factor Rjj xi(z)?

It turns out that this has a simple proof using two facts: (1) the
theory is “topological” in the ¥ direction, meaning that it does not
depend on a length scale; (2) by power-counting, the theory is
infrared-free.



A metric on X x C entered only when we fixed the gauge to pick a
propagator. Recall that we used the metric dx? + dy? + |dz|?. We
could equally well scale up the metric along ¥ by any factor and
use instead eB(dx? 4 dy?) + |dz|? for very large B.



That means that when you look at this picture

Zy

Z3

Z4

z z z z

which is drawn in ¥ = R? (with the lines being labeled by points
z; € C) you can consider the vertical lines and likewise the
horizontal lines to be very far apart (compared to z — z; or z; — z;).



In that limit, effects that involve a gauge boson exchange between
two nonintersecting lines are negligible:
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One should worry about gauge boson exchange from one line to

itself

a b

because then the distance |a — b| need not be large. Such effects
correspond roughly to “mass renormalization” in standard
quantum field theory. In the present problem, in the case of a
straight Wilson line, the symmetries do not allow any interesting
effect analogous to mass renormalization.



When two lines cross we get an integral

over a and b that converges, and receives significant contributions
only from the region |a|, |b| < |z — Z/|. | will say what it converges
to in a few minutes.



Now when we study a general configuration such as the one related

to the integrable lattice models
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we can draw very complicated diagrams, but the complications are

all localized near one crossing point or another.



The diagrams localized near one crossing point simply build up a
universal R-matrix associated to that crossing, and the discussion
makes it obvious that the Yang-Baxter equation
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is obeyed.



Moreover, this makes it clear that the path integral in the presence
of the configuration of Wilson operators associated to the
integrable lattice models

Zy

Z3

Z4

can be evaluated by the standard rules — label each vertical or
horizontal line segment by a basis vector i, J, k, ... of the
representation p, and include the appropriate R-matrix element at
each crossing; then sum over all such labelings.



With a little more work, one can show that this construction
accounts for the standard rational, trigonometric, and elliptic
solutions of the Yang-Baxter equation.



The story goes farther that | have been able to explain today. For
example, a slight extension of the picture accounts for the
“modified Yang-Baxter equation” of Felder. Costello and D.
Gaiotto showed that Baxter's Q operator (which is a key tool in
actually solving for the partition function of one of these spin
systems) arises in the four-dimensional gauge theory as the "'t
Hooft operator,” a basic ingredient in gauge theory. And Costello
and Yamazaki used the same setup to account for many properties
of integrable models of many-body physics in 1 + 1 dimensions. |
suspect that much more can be done.



Personally, what | find most satisfying about this perspective is
that it gives a unified picture of many different phenomena, and in
some sense, it explains “why" the highly overdetermined
Yang-Baxter equation has non-trivial solutions or equivalently why
the corresponding integrable systems exist.



