

Optimization of Stellarators is a Two Stage Process

Stage I Optimization

- Last Closed Flux Surface (LCFS) Shape
- Pressure Profile
- Rotational Transform

Stage II Optimization

- Coil Shape
- Subject to Engineering Constraints

Stellarators Need Space for Breeding Blankets & Neutron Shielding

Need ~1.5 m between coils and plasma

Both ARIES-CS and W7-X report issues with not enough spacing

<u>Plasma-Coil Separation</u>: distance between the last closed flux surface and the center of an external field coil

ARIES-CS Design from *The Aries-CS Compact Fusion Power Plant* (2008)

Other Benefits of Large Plasma-Coil Separation

- 1. Reduced coil ripple
- 2. Components can shift during startup and initialization
- Plasma configurations large plasma-coil separation can be scaled down

* Precise QH, to scale

Difficulty of Increasing Plasma-Coil Separation in Stage II Optimization

Hypothesis: Plasma-Coil Separation can be Understood in Terms of Magnetic Gradient Scale Length

We shall show a **good correlation** between this magnetic gradient scale length $(L_{\nabla B})$ and the plasma-coil separations of actual coil designs of over 40 configurations calculated in REGCOIL.

Outline

- 1. Intuition for Magnetic Gradient Scale Length
- 2. Methods of Coil Optimization in REGCOIL
- 3. Comparison Between $L_{\nabla B}$ and L_{REGCOIL} and Discussion

Outline

1. Intuition for Magnetic Gradient Scale Length

- 2. Methods of Coil Optimization in REGCOIL
- 3. Comparison Between $L_{\nabla B}$ and L_{REGCOIL} and Discussion

Precedent for the Magnetic Gradient Scale Length

Arguments of scale lengths are used in plasma physics to determine which effects are negligible and significant.

A spatial gradient of the magnetic field encodes some information about the spatial distance from the coils to the plasma.

Magnetic Gradient Scale Length Has Been Used in Dipole Localization

For a dipole:

$$\mathbf{r} = -3(\nabla \mathbf{B})^{-1}\mathbf{B}$$

- Useful in RFID localization
 - single dipole-like field
- Cannot use for coil localization
 - multi-coil arrangement and not dipole-like

Conclusion: On the right track, but need a different equation!

Assumptions of $||\nabla B||$ to Formulate $L_{\nabla B}$

Many matrix norms exist. We should choose one so:

- 1. Norm uses all 9 components of gradient matrix
- 2. Norm is invariant to rotation

$$\|\mathbf{A}\|_{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}}$$
$$\nabla \mathbf{B} = \begin{bmatrix} \frac{\partial B_{x}}{\partial x} & \frac{\partial B_{x}}{\partial y} & \frac{\partial B_{x}}{\partial z} \\ \frac{\partial B_{y}}{\partial x} & \frac{\partial B_{y}}{\partial y} & \frac{\partial B_{y}}{\partial z} \\ \frac{\partial B_{z}}{\partial x} & \frac{\partial B_{z}}{\partial y} & \frac{\partial B_{z}}{\partial z} \end{bmatrix}$$
$$L_{\nabla \mathbf{B}} = \frac{\sqrt{2B}}{\|\nabla \mathbf{B}\|_{F}}$$

$L_{\nabla B}$ Behavior In Model Geometry

Outline

- 1. Intuition for Magnetic Gradient Scale Length
- 2. Methods of Coil Optimization in REGCOIL
- 3. Comparison Between $L_{\nabla B}$ and L_{REGCOIL} and Discussion

REGCOIL is a Useful Optimizer to Systematically Compare the Coils of Many Configurations (a)

For any $\delta > 0$, there exists an infinite number of current arrangements in a finite region around the plasma that match **B** on the LCFS to an error $\varepsilon < \delta$.

REGCOIL's objective function preserves convexity, so <u>any local minimum is a global</u> <u>minimum</u>.

Fewer tuning parameters than other codes.

2 free parameters: L and λ . A unique solution requires 2 constraints:

1.
$$B_{\text{RMS}} = B_{\text{RMS}}^*$$

2.
$$||K||_{\infty} = ||K||_{\infty}^{*}$$

Smaller B_{RMS} = Better Flux Surfaces

17

REGCOIL Must be Constrained by $||K||_{\infty}$ to make Buildable Coils

Code contribution by Dhairya Malhotra

Outline

- 1. Intuition for Magnetic Gradient Scale Length
- 2. Methods of Coil Optimization in REGCOIL
- 3. Comparison Between $L_{\nabla B}$ and $L_{REGCOIL}$ and Discussion

There is Good Spatial Correlation between $||K||_{\infty}$ and $L^*_{\nabla B}$ $L_{\nabla B}$ Overlayed with K on the Winding Surface 6 5 The smallest $L_{\nabla B}$ and the largest K are 4 located at the same ⊕ 3**)** coordinates 2 1 0⁺0

3

4

2

5

$L_{\nabla B}$ is Shortest on the Inside of the Bean Cross-Section

Alternative Magnetic Gradient Scale Lengths are Similar to $L_{\nabla B}$

Where σ represents the singular values of $\nabla \, \textbf{B}$

Alternative Scale Lengths

Configurations with High Coil Ripple are Outliers

Summary

We established a fundamental connection between $L_{\nabla B}$ and the plasma-coil separation. We calculated the distance of $L_{\nabla B}$ of over 40 configurations, and found a strong correlation between $L_{\nabla B}$ and the plasma-coil separation of stage II optimized configurations with magnetic field accuracy and coil complexity constrained.

 $L_{\nabla B}$ is shortest on the inside curve of the bean-shaped cross-section of the plasma, which appears to explain why some stellarators are hard to make with distant coils.

Open Questions/ Ongoing Research

- 1. Can we get better configurations by optimizing for $L_{\nabla B}$?
 - a. Currently Ongoing in DESC
- 2. Is there a better Magnetic Gradient Scale Length than $L_{\nabla B}$?

$$L_{
abla
abla \mathbf{B}} = rac{4 \|
abla \mathbf{B} \|_F}{\sqrt{2} \|
abla
abla \mathbf{B} \|}$$
, where $\|
abla
abla \mathbf{B} \| = \sqrt{\sum_{i,j,k} (
abla \mathbf{B})^2_{ijk}}$

- 3. How well does $L_{\nabla B}$ work as a plasma coil separation metric for filamentary coils?
 - a. Can we relax the assumptions that we made in REGCOIL?

Some VMEC Solutions are Inaccurate in Cartesian Coordinates

Outlier configurations do not pass at least one of the following tests. Most likely caused by computer precision error when converting from VMEC to Cartesian coordinates

$$\frac{\nabla \mathbf{B} - (\nabla \mathbf{B})^T}{2 \|\nabla \mathbf{B}\|_F} < 0.38$$

This implies that better accuracy can be achieved by either
 a) more accurate VMEC solutions

b) Finding the Frobenius norm without converting to Cartesian coordinates

Full Table of Plasma Configurations (1/2)

Description	N _{fp}	$\beta(\%)$	LREGCOIL (m)	$L^*_{\nabla \mathbf{B}}$ (m)
nfp=4 quasi-helical (QH) configuration by Ku & Boozer	4	4.00	0.4060	0.9691
Unpublished QH configuration from Michael Drevlak	5	3.92	0.4099	1.0538
Columbia Non-Neutral Torus (CNT)	2	0	0.5189	1.2507
Tokamak de la Junta II (TJ-II)	4	0	0.5638	1.3777
Wistell-B, Bader et al.	5	0	0.6047	1.1726
Quasi-axisymmetric (QA) configuration designed by Paul Garabedian	2	3.02	0.6188	1.4214
Large Helical Device (LHD), major radius 3.60m	10	0	0.6475	1.3358
Quasi-Poloidal Stellarator (QPS)	2	2.01	0.6625	1.5812
LHD, major radius 3.53m	10	0	0.7302	1.5354
LHD, major radius 3.75m ⁴³	10	0	0.7858	1.7226
Henneberg et al. QA ⁵⁰	2	3.50	0.7987	1.4390
Advanced Research Innovation and Evaluation Study-Compact Stellarator (ARIES-CS)	3	4.06	0.8655	1.8375
National Compact Stellarator Experiment (NCSX) stage-1 optimization result (known as LI383)	3	4.26	0.8771	1.9343
The first quasisymmetric configuration found	6	4.09	0.9374	1.6582
Advanced Toroidal Facility (ATF)	12	4.48	0.9913	2.1721
NCSX free-boundary (c09r00) ⁵³	3	4.08	1.0015	2.3233
Wendelstein 7-X (W7-X), without coil ripple ⁵³	5	4.48	1.2858	2.1941
Landreman, Buller, & Drevlak, QH, 5% beta	4	5.58	1.3009	2.6120
Landreman, Buller, & Drevlak, QH, vacuum ⁵⁵	4	0	1.3545	2.7385
Boundary constructed by near-axis expansion. Vacuum QH with nfp=4	3	0	1.3650	2.5722
Goodman et al. Quasi-isodynamic (QI) configuration with nfp=355	4	0	1.3712	2.5633

Full Table of Plasma Configurations (2/2)

34

Quasi-Isodynamic (QI) configuration from CIEMAT ^{D8}	4	0	1.4130	3.2634
Chinese First Quasiaxisymmetric Stellarator (CQFS)59	2	0	1.4839	3.3392
Landreman & Paul, QH with magnetic well ²⁷	4	0	1.5206	3.1882
Wistell-A. Bader et al.	4	0	1.5641	3.0210
W7-X "high narrow mirror" configuration ⁶¹	5	4.00	1.5952	3.6979
Compact Toroidal Hybrid (CTH) Stellarator, vacuum, with low rotational transform	5	0	1.6556	1.9259
Landreman & Paul, precise QH ²⁷	4	0	1.7960	3.5418
Unpublished nfp=3 QH	3	0	1.8644	3.4277
Up-down-symmetric ITER-like configuration ³⁹	1	2.28	1.9248	3.0531
Evolutive Stellarator of Lorraine (ESTELL)62	2	0	2.1860	3.2610
Helically Symmetric Experiment (HSX), standard configuration, vacuum, with coil ripple ⁴⁰	4	0	2.2377	4.9052
Compact Toroidal Hybrid (CTH) stellarator, vacuum, with high rotational transform ⁴¹	5	0	2.4102	3.6607
Boundary constructed by near-axis expansion. Vacuum QH with nfp=3 ²⁴	3	0	2.6091	3.9118
HSX, standard configuration, vacuum, without coil ripple	4	0	2.8111	4.9336
Vacuum QA configuration with 16 coils from Giuliani et al. Coil length 24m. 63	2	0	2.8602	5.2643
Landreman & Paul, precise QA ²⁷	2	0	2.8748	5.2977
Wechsung et al. QA without magnetic well, coil length 24m.64	2	0	2.8750	5.3037
Wechsung et al. QA with magnetic well, coil length 24m ⁶⁴	2	0	2.9790	5.5563
Landreman & Paul QA with magnetic well. ²⁷	2	0	2.9806	5.5532
Goodman et al. Quasi-isodynamic configuration with $nfp=2^{56}$	2	0	3.0045	5.1919
Landreman, Buller & Drevlak, QA, 2.5% beta 55	2	2.55	3.0419	5.9042
Goodman et al. Quasi-isodynamic configuration with nfp=156	1	0	4.1563	6.6993
Jorge et al. Quasi-isodynamic configuration with nfp=165	1	0	4.7133	7.5360

$L_{\nabla B}$ Behavior In A Circular Wire $L_{\nabla \mathbf{B}}$ $L_{\nabla \mathbf{B}}$ for a Magnetic Field of a Circular Wire 16.00 1.0 8.00 4.00 $\rho^2 = x^2 + v^2$; $r^2 = x^2 + v^2 + z^2$; $\alpha^2 = 1 + r^2 - 2\rho$ 0.5 $\beta^2 = 1 + r^2 + 2\rho; \ k^2 = 1 - \frac{\alpha^2}{\beta^2}$ 2.00 $B_x = \frac{x}{2\alpha^2 \beta \rho^2} [(1+r^2)E(k^2) - \alpha^2 K(k^2)] \qquad \widehat{\Xi} \quad 0.0$ 1.00 $B_{y} = \frac{y}{2\alpha^{2}\beta\rho^{2}}[(1+r^{2})E(k^{2}) - \alpha^{2}K(k^{2})]$ 0.50 $B_{z} = \frac{1}{2\alpha^{2}\beta} [(1 - r^{2})E(k^{2}) + \alpha^{2}K(k^{2})],$ -0.50.25 0.12 -1.00.06 -1.0-0.50.0 0.5 1.0 R (m)