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Information Theory

• How do we quantify “information” in data?

• Information theory [Shannon, 1948]:

▶ Fundamental limits of data communication

Source Codeword Output Reconstruction

Encoder Channel Decoder

(X1, . . . , Xn) (Y1, . . . , Yn)(U1, . . . , Up) (Û1, . . . , Ûp)

▶ Information of source: Entropy

▶ Information learned at channel output: Mutual information

Principles:

▶ First fundamental limits without complexity constraints, then practical methods

▶ First asymptotic analyses, then convergence rates, finite-length, etc.

▶ Mathematically tractable probabilistic models
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Information Theory and Data

• Conventional view:

Information theory is a theory of communication
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Information Theory

• Extracting information from channel output vs. Extracting information from data
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Examples

• Information theory in machine learning and statistics:
▶ Statistical estimation [Le Cam, 1973]

▶ Group testing [Malyutov, 1978]

▶ Multi-armed bandits [Lai and Robbins, 1985]

▶ Phylogeny [Mossel, 2004]

▶ Sparse recovery [Wainwright, 2009]

▶ Graphical model selection [Santhanam and Wainwright, 2012]

▶ Convex optimization [Agarwal et al., 2012]

▶ DNA sequencing [Motahari et al., 2012]

▶ Sparse PCA [Birnbaum et al., 2013]

▶ Community detection [Abbe, 2014]

▶ Matrix completion [Riegler et al., 2015]

▶ Ranking [Shah and Wainwright, 2015]

▶ Adaptive data analysis [Russo and Zou, 2015]

▶ Supervised learning [Nokleby, 2016]

▶ Crowdsourcing [Lahouti and Hassibi, 2016]

▶ Distributed computation [Lee et al., 2018]

▶ Bayesian optimization [Scarlett, 2018]

• Note: More than just using entropy / mutual information...
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Analogies

Same concepts, different terminology:

Communication Problems Data Problems

Feedback Active learning / adaptivity

Rate-distortion theory Approximate recovery

Joint source-channel coding Non-uniform prior

. . . . . .
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Analogies

Same concepts, different terminology:

Communication Problems Data Problems

Channels with feedback Active learning / adaptivity

Rate distortion theory Approximate recovery

Joint source-channel coding Non-uniform prior

Error probability Error probability

Random coding Random sampling

Side information Side information

Channels with memory Statistically dependent measurements

Mismatched decoding Model mismatch

. . . . . .
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Cautionary Notes

Some cautionary notes on the information-theoretic viewpoint:

▶ The simple models we can analyze may be over-simplified
(more so than in communication)

▶ Compared to communication, we often can’t get matching achievability/converse
(often settle with correct scaling laws)

▶ Information-theoretic limits not (yet) considered much in practice
(to my knowledge) ... but they do guide the algorithm design

▶ Often encounter gaps between information-theoretic limits and computation limits

▶ Often information theory simply isn’t the right tool for the job
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Terminology: Achievability and Converse

Achievability result (example): Given n(ϵ) data samples, there exists an algorithm
achieving an “error” of at most ϵ

▶ Estimation error: ∥θ̂ − θtrue∥ ≤ ϵ

▶ Optimization error: f (xselected) ≤ minx f (x) + ϵ

Converse result (example): In order to achieve an “error” of at most ϵ, any algorithm
requires at least n(ϵ) data samples
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Information Measures



Entropy

▶ Definition: The entropy of a discrete random variable X is defined as

H(X ) =
∑
x∈X

PX (x) log
1

PX (x)
= E

[
log

1

PX (X )

]
.

This is measured in bits for log2(·), or nats for loge(·).
▶ Interpetation: If we observe that X = x then the amount of information learned is

log 1
PX (x) (log 1

p satisfies natural axioms). Entropy is the average information learned by

observing X , or equivalently, the average uncertainty in X before observing it.
▶ Examples: (i) If X is deterministic then H(X ) = 0;

(ii) If X ∼ Uniform(X ) then H(X ) = log |X |
▶ Source coding theorem: H(X ) is the fundamental limit of compression when a source

emits i.i.d. symbols from PX

▶ Joint version: H(X ,Y ) = E
[
log 1

PXY (X ,Y )

]
; generally H(X) = E

[
log 1

PX(X)

]
.

▶ Interpetation: Overall information/uncertainty in multiple variables

▶ Conditional version: H(Y |X ) =
∑

x∈X PX (x)H(Y |X = x)
▶ Interpetation: Remaining uncertainty in Y after observing X (on average)

▶ Continuous RVs: A counterpart exists for continuous RVs, but not as
“well-behaved” (can be negative, no longer invariant under 1-to-1 maps)
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Properties of Entropy
▶ Non-negativity:

H(X ) ≥ 0

with equality iff X is deterministic

▶ Uniform distribution has highest entropy:

H(X ) ≤ log |X |

with equality iff X is uniform

▶ Conditioning can’t increase entropy: (on average)

H(X |Y ) ≤ H(X )

with equality iff X and Y are independent

▶ Chain rule:
H(X ,Y ) = H(X ) + H(Y |X ) = H(Y ) + H(X |Y )

H(X1, . . . ,Xn) =
n∑

i=1

H(Xi |Xi−1)

▶ Tensorization / sub-additivity:

H(X1, . . . ,Xn) ≤
n∑

i=1

H(Xi )
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Relative Entropy (KL Divergence)

▶ Definition: For two distributions P and Q, the relative entropy (KL divergence) is
defined as

D(P∥Q) =
∑
x

P(x) log
P(x)

Q(x)
= EP

[
log

P(X )

Q(X )

]
▶ Example usage: If we draw n i.i.d. samples from Q, the probability of getting symbol

proportions P is roughly e−nD(P∥Q) (a more general statement: Sanov’s theorem)

▶ Key property:
D(P∥Q) ≥ 0

with equality iff P = Q
▶ Conditional version: D(PY |X ∥QY |X |PX ) =

∑
x PX (x)D(PY |X=x∥QY |X=x )

▶ This also leads to a chain rule: D(PXY ∥QXY ) = D(PX∥QX ) + D(PY |X∥QY |X |PX )

▶ Extends readily to continuous RVs (and beyond) while saying “well-behaved”
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Mutual Information

▶ Definition: The mutual information between X and Y is defined as

I (X ;Y ) = H(X )− H(X |Y )

= H(Y )− H(Y |X )

= D(PXY ∥PX × PY )

▶ Interpretation 1: X has uncertainty H(X ), but after observing Y it has remaining

uncertainty H(X |Y ), so I (X ;Y ) is how much information Y revealed about X .
▶ Interpretation 2: By the D(PXY ∥PX × PY ) form, this measures how far X and Y are

from being independent
▶ Channel coding theorem: maxPX I (X ;Y ) is the fundamental limit of communication

when the communication channel is probabilistic with transition law PY |X

▶ Can again have joint version, e.g., I (X1,X2;Y1,Y2), and conditional version, e.g.,
I (X ;Y |Z) =

∑
z PZ (z)I (X ;Y |Z = z)

▶ Again well-behaved even for continuous variables
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Properties of Mutual Information

▶ Non-negativity:
I (X ;Y ) ≥ 0

with equality iff X and Y are independent

▶ Chain rule:
I (X1,X2;Y ) = I (X1;Y ) + I (X2;Y |X1)

and similarly with n variables

▶ Tensorization: If PY|X =
∏n

i=1 PYi |Xi
, then

I (X;Y) ≤
n∑

i=1

I (Xi ;Yi )

(not true in general if the assumption on PY|X is dropped)

▶ Data processing inequality: If X → Y → Z forms a Markov chain, then

I (X ;Z) ≤ I (X ;Y ).

Similarly with more variables (e.g., W → X → Y → Z gives I (W ;Z) ≤ I (X ;Y ))
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Converse Bounds for Statistical Estimation
via Fano’s Inequality

(Based on survey chapter https://arxiv.org/abs/1901.00555)

https://arxiv.org/abs/1901.00555


Statistical Estimation

Parameter ✓V

Index V
Select

Parameter

Algorithm

Samples

Y X
Infer

✓̂Output

Estimate V̂

Index

Parameter

Algorithm

Samples

Y X

✓

Estimate ✓̂

• General statistical estimation setup:

▶ Unknown parameter θ ∈ Θ
▶ Samples Y = (Y1, . . . ,Yn) drawn from Pθ(y)

▶ More generally, from Pθ,X with inputs X = (X1, . . . ,Xn)

▶ Given Y (and possibly X), construct estimate θ̂

• Goal. Minimize some loss ℓ(θ, θ̂)

▶ 0-1 loss: ℓ(θ, θ̂) = 1{θ̂ ̸= θ}
▶ Squared ℓ2 loss: ∥θ − θ̂∥2

• Typical example. Linear regression

▶ Estimate θ ∈ Rp from Y = Xθ + Z
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Defining Features

• There are many properties that impact the analysis:

▶ Discrete θ (e.g., graph learning, sparsity pattern recovery)

▶ Continuous θ (e.g., regression, density estimation)

▶ Bayesian θ (average-case performance)

▶ Minimax bounds over Θ (worst-case performance)

▶ Non-adaptive inputs (all X1, . . . ,Xn chosen in advance)

▶ Adaptive inputs (Xi can be chosen based on Y1, . . . ,Yi−1)

• This talk. Minimax bounds, mostly non-adaptive, first discrete and then continuous
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High-Level Steps

Steps in attaining a minimax lower bound (converse):

1. Reduce estimation problem to multiple hypothesis testing

2. Apply a form of Fano’s inequality

3. Bound the resulting mutual information term

(Multiple hypothesis testing: Given samples Y1, . . . ,Yn, determine which distribution
among P1(y), . . . ,PM(y) generated them. M = 2 gives binary hypothesis testing.)
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Step I: Reduction to Multiple Hypothesis Testing

• Lower bound worst-case error by average over hard subset θ1, . . . , θM :

Parameter ✓V

Index V
Select

Parameter

Algorithm

Samples

Y X
Infer

✓̂Output

Estimate V̂

Index

Idea:

▶ Show “successful” algorithm θ̂ =⇒ Correct estimation of V (When is this true?)

▶ Equivalent statement: If V can’t be estimated reliably, then θ̂ can’t be successful.
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Step I: Example

• Example: Suppose algorithm is claimed to return θ̂ such that ∥θ̂ − θ∥2 ≤ ϵ

✏

• If θ1, . . . , θM are separated by 2ϵ, then we can identify the correct V ∈ {1, . . . ,M}

• Note: Tension between number of hypotheses, difficulty in distinguishing them, and
sufficient separation. Choosing a suitable set {θ1, . . . , θM} can be challenging.
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Step II: Application of Fano’s Inequality

• Standard form of Fano’s inequality from textbooks: For a random variable V and its
estimate V̂ , defining Pe = P[V̂ ̸= V ], we have

H(V |V̂ ) ≤ H2(Pe) + Pe log
(
M − 1

)
,

where H2(α) = α log 1
α
+ (1− α) log 1

1−α
is the entropy of Bernoulli(α).

Intuition:

▶ Considering asking questions to resolve the uncertainty in V given V̂ ?.

▶ First ask whether the two are equal; this has uncertainty H2(Pe)

▶ When they differ, the remaining uncertainty is at most log
(
M − 1

)
.

• Re-arranged and slightly weakened form for V uniform over M outcomes:

P[V̂ ̸= V ] ≥ 1−
I (V ; V̂ ) + log 2

logM
.

▶ Intuition: Need learned information I (V ; V̂ ) to be close to prior uncertainty logM

• Variations:

▶ Non-uniform V

▶ Approximate recovery

▶ Conditional version
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Step III: Bounding the Mutual Information

• The key quantity remaining after applying Fano’s inequality is I (V ; V̂ )

• Data processing inequality: (Based on V → Y → V̂ or similar)

▶ No inputs: I (V ; V̂ ) ≤ I (V ;Y)

▶ Non-adaptive inputs: I (V ; V̂ |X) ≤ I (V ;Y|X)
▶ Adaptive inputs: I (V ; V̂ ) ≤ I (V ;X,Y)

• Tensorization: (Based on conditional independence of the samples)

▶ No inputs: I (V ;Y) ≤
∑n

i=1 I (V ;Yi )

▶ Non-adaptive inputs: I (V ;Y|X) ≤
∑n

i=1 I (V ;Yi |Xi )

▶ Adaptive inputs: I (V ;X,Y) ≤
∑n

i=1 I (V ;Yi |Xi )

• KL Divergence Bounds:

▶ I (V ;Y ) ≤ maxv,v′ D
(
PY |V (·|v)∥PY |V (·|v ′)

)
▶ I (V ;Y ) ≤ maxv D

(
PY |V (·|v)∥QY

)
for any QY

▶ If each PY |V (·|v) is ϵ-close to the closest Q1(y), . . . ,QN(y) in KL divergence,
then I (V ;Y ) ≤ logN + ϵ

▶ (Similarly with conditioning on X )
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▶ (Similarly with conditioning on X )
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Discrete Example 1

Group Testing



Group Testing

Items

Tests

Outcomes

Items

Tests

Noiseless 
Outcomes

Noisy 
Outcomes

Contaminated ContaminatedClean Clean

▶ Goal:

Given test matrix X and outcomes Y, recover item vector β

▶ Sample complexity: Required number of tests n
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Information Theory and Group Testing

Items

Tests

Outcomes

Items

Tests

Noiseless 
Outcomes

Noisy 
Outcomes

• Information-theoretic viewpoint:

S : Defective set
XS : Columns indexed by S

S

Codeword

Y ∼ P n
Y |XS Ŝ

Encoder Channel Decoder

Message

XS

Output
Estimate
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Information Theory and Group Testing

• Example formulation of general result:

Entropy

Mutual Information

(Model uncertainty)

(Information learned from measurements)

Number of tests

n⇤ ⇠ H(S)

I(PY |XS
)
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Converse via Fano’s Inequality

• Reduction to multiple hypothesis testing: Trivial! Set V = S .

• Application of Fano’s Inequality:

P[Ŝ ̸= S] ≥ 1−
I (S ; Ŝ|X) + log 2

log
(p
k

)
where p = (#items) and k = (#defectives).

• Bounding the mutual information:

▶ Data processing inequality: I (S ; Ŝ |X) ≤ I (U;Y) where U are pre-noise outputs

▶ Tensorization: I (U;Y) ≤
∑n

i=1 I (Ui ;Yi )

▶ Capacity bound: I (Ui ;Yi ) ≤ C if outcome passed through channel of capacity C

• Final result:

n ≤
log

(p
k

)
C

(1− ϵ) =⇒ P[Ŝ ̸= S] ̸→ 0
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Illustration of Bounds

Noiseless bounds: Noisy bounds:

0 0.2 0.4 0.6 0.8 1
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Counting Bound
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Near-Constant (Exact)
Bernoulli (Exact)
Bernoulli (Existing)
Near-Constant (NDD)
Bernoulli (NDD)

• Other Implications:
▶ Adaptivity and approximate recovery:

▶ No gain at low sparsity levels
▶ Significant gain at high sparsity levels

▶ Information-theoretically optimal non-adaptive algorithms are now known
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Discrete Example 2

Graphical Model Selection



Graphical Model Representations of Joint Distributions

Motivating example:

▶ In a population of p people, let

Yi =

{
1 person i is infected

−1 person i is healthy,
i = 1, . . . , p

▶ Example models:

[Abbe and Wainwright, ISIT Tutorial, 2015]

▶ Joint distribution for a given graph G = (V ,E):

P
[
(Y1, . . . ,Yp) = (y1, . . . , yp)

]
=

1

Z
exp

( ∑
(i,j)∈E

λijyiyj

)
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Graphical Model Selection: Illustration

▶ A larger example from [Abbe and Wainwright, ISIT Tutorial 2015]:
▶ Example graphs:

▶ Sample images (Ising model):
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Graphical Model Selection: Illustration

▶ A larger example from [Abbe and Wainwright, ISIT Tutorial, 2015]:
▶ Example graphs:

▶ Sample images (Ising model):

▶ Goal: Identify graph given n independent samples
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Graphical Model Selection: Definition

General problem statement.
▶ Given n i.i.d. samples of (Y1, . . . ,Yp) ∼ PG , recover the underlying graph G

▶ Applications: Statistical physics, social and biological networks

▶ Error probability:
Pe = max

G∈G
P[Ĝ ̸= G |G ].

Assumptions.
▶ Distribution class:

▶ Ising model

PG (x1, . . . , xp) =
1

Z
exp

( ∑
(i,j)∈E

λijxixj

)
▶ Gaussian model

(X1, . . . ,Xp) ∼ N (µ,Σ)

where (Σ−1)ij ̸= 0 ⇐⇒ (i, j) ∈ E [Hammersley-Clifford theorem]

▶ Graph class:

▶ Bounded-edge (at most k edges total)
▶ Bounded-degree (at most d edges out of each node)
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Information-Theoretic Viewpoint

• Information-theoretic viewpoint:

Channel
Decoder

G ĜY

PY|G
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Converse via Fano’s Inequality

• Reduction to multiple hypothesis testing: Let G be uniform on hard subset G0 ⊆ G
▶ Ideally many graphs (lots of graphs to distinguish)

▶ Ideally close together (harder to distinguish)

• Application of Fano’s Inequality:

P[Ĝ ̸= G ] ≥ 1−
I (G ; Ĝ) + log 2

log |G0|

• Bounding the mutual information:

▶ Data processing inequality: I (G ; Ĝ) ≤ I (G ;Y)

▶ Tensorization: I (G ;Y) ≤
∑n

i=1 I (G ;Yi )

▶ KL divergence bound: Bound I (G ;Yi ) ≤ maxG D(PY |G (·|G)∥QY ) case-by-case
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Graph Ensembles

▶ Graphs that are difficult to distinguish from the empty graph:

▶ Reveals n = Ω
(

1
λ2 log p

)
necessary condition with “edge strength” λ and p nodes

▶ Graphs that are difficult to distinguish from the complete (sub-)graph:

▶ Reveals n = Ω
(
eλd

)
necessary condition with “edge strength” λ and degree d
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Upper vs. Lower Bounds

• Example results with maximal degree d , edge strength λ (slightly informal):

▶ (Converse) n = Ω
(
max

{
1
λ2 , e

λd
}
log p

)
[Santhanam and Wainwright, 2012]

▶ (Achievability) n = O
(
max

{
1
λ2 , e

λd
}
d log p

)
[Santhanam and Wainwright, 2012]

▶ (Early Practical) n = O(d2 log p) but extra assumptions that are hard to cerify
[Ravikumar/Wainwright/Lafferty, 2010]

▶ (Further Practical) n = O
(
d2eλd

λ2 log p
)

[Klivans/Meka 2017]

[Wu/Sanghavi/Dimakis 2018]
▶ (Near-Optimality in Many Regimes)

▶ Ising models [Lokhov/Vuffray/Misra/Chertkov, 2018]
▶ Gaussian models [Misra/Vuffray/Lokhov, 2020]
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What About Continuous-Valued Estimation?



Statistical Estimation

Parameter ✓V

Index V
Select

Parameter

Algorithm

Samples

Y X
Infer

✓̂Output

Estimate V̂

Index

Parameter

Algorithm

Samples

Y X

✓

Estimate ✓̂

• General statistical estimation setup:

▶ Unknown parameter θ ∈ Θ
▶ Samples Y = (Y1, . . . ,Yn) drawn from Pθ(y)

▶ More generally, from Pθ,X with inputs X = (X1, . . . ,Xn)

▶ Given Y (and possibly X), construct estimate θ̂

• Goal. Minimize some loss ℓ(θ, θ̂)

▶ 0-1 loss: ℓ(θ, θ̂) = 1{θ̂ ̸= θ}
▶ Squared ℓ2 loss: ∥θ − θ̂∥2

• Typical example. Linear regression

▶ Estimate θ ∈ Rp from Y = Xθ + Z

Lower Bounds for Estimation and Learning — Jonathan Scarlett Slide 30/ 50



Statistical Estimation

Parameter ✓V

Index V
Select

Parameter

Algorithm

Samples

Y X
Infer

✓̂Output

Estimate V̂

Index

Parameter

Algorithm

Samples

Y X

✓

Estimate ✓̂

• General statistical estimation setup:

▶ Unknown parameter θ ∈ Θ
▶ Samples Y = (Y1, . . . ,Yn) drawn from Pθ(y)

▶ More generally, from Pθ,X with inputs X = (X1, . . . ,Xn)

▶ Given Y (and possibly X), construct estimate θ̂

• Goal. Minimize some loss ℓ(θ, θ̂)

▶ 0-1 loss: ℓ(θ, θ̂) = 1{θ̂ ̸= θ}
▶ Squared ℓ2 loss: ∥θ − θ̂∥2

• Typical example. Linear regression

▶ Estimate θ ∈ Rp from Y = Xθ + Z

Lower Bounds for Estimation and Learning — Jonathan Scarlett Slide 30/ 50



Statistical Estimation

Parameter ✓V

Index V
Select

Parameter

Algorithm

Samples

Y X
Infer

✓̂Output

Estimate V̂

Index

Parameter

Algorithm

Samples

Y X

✓

Estimate ✓̂

• General statistical estimation setup:

▶ Unknown parameter θ ∈ Θ
▶ Samples Y = (Y1, . . . ,Yn) drawn from Pθ(y)

▶ More generally, from Pθ,X with inputs X = (X1, . . . ,Xn)

▶ Given Y (and possibly X), construct estimate θ̂

• Goal. Minimize some loss ℓ(θ, θ̂)

▶ 0-1 loss: ℓ(θ, θ̂) = 1{θ̂ ̸= θ}
▶ Squared ℓ2 loss: ∥θ − θ̂∥2

• Typical example. Linear regression

▶ Estimate θ ∈ Rp from Y = Xθ + Z

Lower Bounds for Estimation and Learning — Jonathan Scarlett Slide 30/ 50



Minimax Risk

• Since the samples are random, so is θ̂ and hence ℓ(θ, θ̂)

• So seek to minimize the average loss Eθ[ℓ(θ, θ̂)].

▶ Note: Eθ and Pθ denote averages w.r.t. Y when the true parameter is θ.

• Minimax risk:
Mn(Θ, ℓ) = inf

θ̂
sup
θ∈Θ

Eθ

[
ℓ(θ, θ̂)

]
,

i.e., worst case average loss over all θ ∈ Θ

• Approach: Lower bound worst-case error by average over hard subset θ1, . . . , θM :

Parameter ✓V

Index V
Select

Parameter

Algorithm

Samples

Y X
Infer

✓̂Output

Estimate V̂

Index
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General Lower Bound via Fano’s Inequality

• To get a meaningful result, need a sufficiently “well-behaved” loss function.
Subsequently, focus on loss functions of the form

ℓ(θ, θ̂) = Φ
(
ρ(θ, θ̂)

)
where ρ(θ, θ′) is some metric, and Φ(·) is some non-negative and increasing function

(e.g., ℓ(θ, θ̂) = ∥θ − θ̂∥2)

• Claim. Fix ϵ > 0, and let {θ1, . . . , θM} be a finite subset of Θ such that

ρ(θv , θv′ ) ≥ ϵ, ∀v , v ′ ∈ {1, . . . ,M}, v ̸= v ′.

Then, we have

Mn(Θ, ℓ) ≥ Φ
( ϵ

2

)(
1−

I (V ;Y) + log 2

logM

)
,

where V is uniform on {1, . . . ,M}, and I (V ;Y) is with respect to V → θV → Y.
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Proof of General Lower Bound
• Using Markov’s inequality:

sup
θ∈Θ

Eθ

[
ℓ(θ, θ̂)

]
≥ sup

θ∈Θ
Φ(ϵ0)Pθ[ℓ(θ, θ̂) ≥ Φ(ϵ0)]

= Φ(ϵ0) sup
θ∈Θ

Pθ[ρ(θ, θ̂) ≥ ϵ0]

• Suppose that V̂ = argminj=1,...,M ρ(θj , θ̂). Then by the triangle inequality and

ρ(θv , θv′ ) ≥ ϵ, if ρ(θv , θ̂) <
ϵ
2
then we must have V̂ = v :

Pθv

[
ρ(θv , θ̂) ≥

ϵ

2

]
≥ Pθv [V̂ ̸= v ].

• Hence,

sup
θ∈Θ

Pθ

[
ρ(θ, θ̂) ≥

ϵ

2

]
≥ max

v=1,...,M
Pθv

[
ρ(θv , θ̂) ≥

ϵ

2

]
≥ max

v=1,...,M
Pθv [V̂ ̸= v ]

≥
1

M

∑
v=1,...,M

Pθv [V̂ ̸= v ]

≥ 1−
I (V ;Y) + log 2

logM

where the final step uses Fano’s inequality.
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sup
θ∈Θ

Eθ

[
ℓ(θ, θ̂)

]
≥ sup

θ∈Θ
Φ(ϵ0)Pθ[ℓ(θ, θ̂) ≥ Φ(ϵ0)]

= Φ(ϵ0) sup
θ∈Θ

Pθ[ρ(θ, θ̂) ≥ ϵ0]

• Suppose that V̂ = argminj=1,...,M ρ(θj , θ̂). Then by the triangle inequality and

ρ(θv , θv′ ) ≥ ϵ, if ρ(θv , θ̂) <
ϵ
2
then we must have V̂ = v :

Pθv

[
ρ(θv , θ̂) ≥

ϵ

2

]
≥ Pθv [V̂ ̸= v ].

• Hence,

sup
θ∈Θ

Pθ

[
ρ(θ, θ̂) ≥

ϵ

2

]
≥ max

v=1,...,M
Pθv

[
ρ(θv , θ̂) ≥

ϵ

2

]
≥ max

v=1,...,M
Pθv [V̂ ̸= v ]

≥
1

M

∑
v=1,...,M

Pθv [V̂ ̸= v ]

≥ 1−
I (V ;Y) + log 2

logM

where the final step uses Fano’s inequality.
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Local Approach

• General bound: If ρ(θv , θv′ ) ≥ ϵ for all v , v ′ then

Mn(Θ, ℓ) ≥ Φ
( ϵ

2

)(
1−

I (V ;Y) + log 2

logM

)
,

• Local approach: Carefully-chosen “local” hard subset:

✏/2

✏/2

⇥ PY

x x
x x

KL Divergence Ball

P✓v

⇥ PY

x x
x x

x
x

x x

x
x x

Resulting bound:

Mn(Θ, ℓ) ≥ Φ
( ϵ

2

)(
1−

minv=1,...,M D(Pn
θv
∥Qn

Y ) + log 2

logM

)
.
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Global Approach

• General bound: If ρ(θv , θv′ ) ≥ ϵ for all v , v ′ then

Mn(Θ, ℓ) ≥ Φ
( ϵ

2

)(
1−

I (V ;Y) + log 2

logM

)
,

• Global approach: Pack as many ϵ-separated points as possible:

✏/2

✏/2

⇥ PY

x x
x x

KL Divergence Ball

P✓v

⇥ PY

x x
x x

x
x

x x

x
x x

▶ Typically suited to infinite-dimensional problems (e.g., non-parametric regression)

• Resulting bound:

Mn(Θ, ℓ) ≥ Φ
( ϵp

2

)(
1−

logN∗
KL,n(Θ, ϵc,n) + ϵc,n + log 2

logM∗
ρ (Θ, ϵp)

)
.

▶ M∗
ρ (Θ, ϵp): No. ϵ-separated θ we can pack into Θ (packing number)

▶ N∗
KL,n(Θ, ϵc,n): No. ϵc,n-size KL divergence balls to cover PY (covering number)
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Continuous Example 1

Sparse Linear Regression



Sparse Linear Regression

• Linear regression model Y = Xθ + Z:

� 2 RpY 2 Rn X 2 Rn⇥p

= +

Z 2 Rn

Samples Feature Matrix Coefficients Noise

⇥

p

n

▶ Feature matrix X is given, noise is i.i.d. N(0, σ2)

▶ Coefficients are sparse – at most k non-zeros
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Converse via Fano’s Inequality

• Reduction to hyp. testing: Fix ϵ > 0 and restrict to sparse vectors of the form

θ = (0, 0, 0,±ϵ, 0,±ϵ, 0, 0, 0, 0, 0,±ϵ, 0)

▶ Total number of such sequences = 2k
(p
k

)
≈ exp

(
k log p

k

)
(if k ≪ p)

▶ Choose a “well separated” subset of size exp
(
k
4
log p

k

)
(Gilbert-Varshamov)

▶ Well-separated: Non-zero entries differ in at least k
8
indices

• Application of Fano’s inequality:

▶ Using the general bound given previously:

Mn(Θ, ℓ) ≥
kϵ2

32

(
1−

I (V ;Y|X) + log 2
k
4
log p

k

)

• Bounding the mutual information:

▶ By a direct calculation, I (V ;Y|X) ≤ ϵ2

2σ2 · k
p
∥X∥2F (Gaussian noise) [Actually

extra steps (e.g., matrix Bernstein) needed when using Fano’s inequality with
exact recovery. But an “approximate recovery” version avoids it.]

▶ Substitute and choose ϵ to optimize the bound: ϵ2 =
σ2p log p

k

2∥X∥2
F

• Final result: If ∥X∥2F ≤ npΓ, then E[∥θ − θ̂∥22] ≤ δ requires n ≥ cσ2

Γδ
· k log p

k
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Upper vs. Lower Bounds

• Recap of model: Y = Xθ + Z, where θ is k-sparse

• Lower bound: If ∥X∥2F ≤ npΓ, achieving E[∥θ − θ̂∥22] ≤ δ requires n ≤ cσ2

Γδ
· k log p

k

• Upper bound: If X is a zero-mean random Gaussian matrix with power Γ per entry,

then we can achieve E[∥θ − θ̂∥22] ≤ δ using at most n ≥ c′σ2

Γδ
· k log p

k
samples

▶ Maximum-likelihood estimation suffices

• Tighter lower bounds could potentially be obtained under additional restrictions on X
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Continuous Example 2

Convex Optimization



Stochastic Convex Optimization

• A basic optimization problem

x⋆ = argminx∈D f (x)

For simplicity, we focus on the 1D case D ⊆ R (extensions to Rd are possible)

• Model:

▶ Noisy samples: When we query x , we get a noisy value and noisy gradient:

Y = f (x) + Z , Y ′ = f ′(x) + Z ′

where Z ∼ N(0, σ2) an Z ′ ∼ N(0, σ2)

▶ Adaptive sampling: Chosen Xi may depend on Y1, . . . ,Yi−1

• Function classes: Convex, strongly convex, Lipschitz, self-concordant, etc.

▶ We will focus on the class of strongly convex functions

▶ Strong convexity: f (x)− c
2
x2 is a convex function for some c > 0 (we set c = 1)

Lower Bounds for Estimation and Learning — Jonathan Scarlett Slide 39/ 50



Stochastic Convex Optimization

• A basic optimization problem

x⋆ = argminx∈D f (x)

For simplicity, we focus on the 1D case D ⊆ R (extensions to Rd are possible)

• Model:

▶ Noisy samples: When we query x , we get a noisy value and noisy gradient:

Y = f (x) + Z , Y ′ = f ′(x) + Z ′

where Z ∼ N(0, σ2) an Z ′ ∼ N(0, σ2)

▶ Adaptive sampling: Chosen Xi may depend on Y1, . . . ,Yi−1

• Function classes: Convex, strongly convex, Lipschitz, self-concordant, etc.

▶ We will focus on the class of strongly convex functions

▶ Strong convexity: f (x)− c
2
x2 is a convex function for some c > 0 (we set c = 1)

Lower Bounds for Estimation and Learning — Jonathan Scarlett Slide 39/ 50



Stochastic Convex Optimization

• A basic optimization problem

x⋆ = argminx∈D f (x)

For simplicity, we focus on the 1D case D ⊆ R (extensions to Rd are possible)

• Model:

▶ Noisy samples: When we query x , we get a noisy value and noisy gradient:

Y = f (x) + Z , Y ′ = f ′(x) + Z ′

where Z ∼ N(0, σ2) an Z ′ ∼ N(0, σ2)

▶ Adaptive sampling: Chosen Xi may depend on Y1, . . . ,Yi−1

• Function classes: Convex, strongly convex, Lipschitz, self-concordant, etc.

▶ We will focus on the class of strongly convex functions

▶ Strong convexity: f (x)− c
2
x2 is a convex function for some c > 0 (we set c = 1)

Lower Bounds for Estimation and Learning — Jonathan Scarlett Slide 39/ 50



Performance Measure and Minimax Risk

• After sampling n points, the algorithm returns a final point x̂

• The loss incurred is ℓf (x̂) = f (x̂)−minx∈X f (x), i.e., the gap to the optimum

• For a given class of functions F , the minimax risk is given by

Mn(F) = inf
X̂

sup
f∈F

Ef [ℓf (X̂ )]
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Reduction to Multiple Hypothesis Testing

• The picture remains the same:

Index V Select

Algorithm

Samples

Infer
Estimate V̂

Index

Function fV

Function
xy

x̂Selection

▶ Successful optimization =⇒ Successful identification of V
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General Minimax Lower Bound

• Claim 1. Fix ϵ > 0, and let {f1, . . . , fM} ⊆ F be a subset of F such that for each
x ∈ X , we have ℓfv (x) ≤ ϵ for at most one value of v ∈ {1, . . . ,M}. Then we have

Mn(F) ≥ ϵ ·
(
1−

I (V ;X,Y) + log 2

logM

)
, (1)

where V is uniform on {1, . . . ,M}, and I (V ;X,Y) is w.r.t V → fV → (X,Y).

• Claim 2. In the special case M = 2, we have

Mn(F) ≥ ϵ · H−1
2

(
log 2− I (V ;X,Y)

)
, (2)

where H−1
2 (·) ∈ [0, 0.5] is the inverse binary entropy function.

• Proof is like with estimation, starting with Markov’s inequality:

sup
f∈F

Ef [ℓf (X̂ )] ≥ sup
f∈F

ϵ · Pf [ℓf (X̂ ) ≥ ϵ].

• Proof for M = 2 uses a (somewhat less well-known) form of Fano’s inequality for
binary hypothesis testing
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Strongly Convex Class: Choice of Hard Subset

• Reduction to hyp. testing. In 1D, it suffices to choose just two similar functions!

▶ (Becomes 2constant×d in d dimensions)

0 0.2 0.4 0.6 0.8 1

Input x

0

0.05

0.1

0.15

F
u
n
ct
io
n
v
a
lu
e

• The precise functions:

fv (x) =
1

2
(x − x∗v )

2, v = 1, 2,

x∗1 =
1

2
−

√
2ϵ′ x∗2 =

1

2
+

√
2ϵ′
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Analysis

• Application of Fano’s Inequality. As above,

Mn(F) ≥ ϵ · H−1
2 (log 2− I (V ;X,Y))

▶ Approach: H−1
2 (α) ≥ 1

10
if α ≥ log 2

2

▶ How few samples ensure I (V ;X,Y) ≤ log 2
2

?

• Bounding the Mutual Information. Let PY ,PY ′ be the observation distributions
(function and gradient), and QY ,QY ′ similar but with f0(x) =

1
2
x2. Then:

D(PY × PY ′∥QY × QY ′ ) =
(f1(x)− f0(x))2

2σ2
+

(f ′1 (x)− f ′0 (x))
2

2σ2

▶ Simplifications: (f1(x)− f0(x))2 ≤
(
ϵ+

√
ϵ
2

)2 ≤ 2ϵ and (f ′1 (x)− f ′0 (x))
2 = 2ϵ

▶ With some manipulation, I (V ;X,Y) ≤ log 2
2

when ϵ = σ2 log 2
4n

• Final result: Mn(F) ≥ σ2 log 2
40n
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Upper vs. Lower Bounds

• Lower bound for 1D strongly convex functions: Mn(F) ≥ c σ2

n

• Upper bound for 1D strongly convex functions: Mn(F) ≤ c ′ σ
2

n

▶ Achieved by stochastic gradient descent

• Analogous results (and proof techniques) known for d-dimensional functions,
additional Lipschitz assumptions, etc. [Raginsky and Rakhlin, 2011]
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Continuous Example 3

Density Estimation



Density Estimation Example
• An example density estimation problem:

▶ Goal: Estimate the density f given n i.i.d. samples

▶ Here we consider random variables defined on [0, 1], and consider the class Fη,Γ

of density functions satisfying the following:

f (y) ≥ η,∀y ∈ [0, 1], ∥f ∥TV ≤ Γ,

where ∥f ∥TV = supL sup0≤x1≤...≤xL≤1

∑L
l=2

(
f (xl )− f (xl−1)

)
.

▶ We measure performance via the ℓ22-loss:

ℓ(f , f̂ ) = ∥f − f̂ ∥22 =

∫ 1

0
(f (x)− f̂ (x))2dx

▶ Minimax risk:
Mn(η, Γ) = inf

f̂
sup

f∈Fη,Γ

Ef

[
∥f − f̂ ∥22

]
,

• Claim: For constant η and Γ, attaining Mn(η, Γ) ≤ δ requires n ≥ c
(
1
δ

)3/2
.

▶ This scaling is tight; a matching upper bound is known

▶ The proof uses the global packing/covering approach

▶ See our survey introductory guide to Fano’s inequality for this specific example,
or Yang/Barron’s original paper for many more classes
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Limitations and Generalizations

• Limitations of Fano’s Inequality.

▶ Non-asymptotic weakness

▶ Often hard to tightly bound mutual information in adaptive settings
▶ Restriction to KL divergence

▶ Other useful measures: Total variation, Hellinger distance, χ2-divergence, etc.

• Generalizations of Fano’s Inequality.

▶ Non-uniform V [Han/Verdú, 1994]

▶ More general f -divergences [Guntuboyina, 2011]

▶ Continuous V [Duchi/Wainwright, 2013]

(This list is certainly incomplete!)
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Example: Difficulties in Adaptive Settings

• A simple search problem: Find the (only) biased coin using few flips

| {z } | {z }
P[heads] = 1

2 P[heads] = 1
2

P[heads] = 1
2 + ✏

▶ Heavy coin V ∈ {1, . . . ,M} uniformly at random

▶ Selected coin at time i = 1, . . . , n is Xi , observation is Yi ∈ {0, 1} (1 for heads)

• Non-adaptive setting:

▶ Since Xi and V are independent, can show I (V ;Yi |Xi ) ≲
ϵ2

M

▶ Substituting into Fano’s inequality gives the requirement n ≳ M logM
ϵ2

• Adaptive setting:

▶ Nuisance to characterize I (V ;Yi |Xi ), as Xi depends on V due to adaptivity!

▶ Worst-case bounding only gives n ≳ logM
ϵ2

▶ Next lecture: An alternative tool that gives n ≳ M
ϵ2
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Conclusion

• Information theory as a theory of data:

Inference &
Learning

Data 
Generation

Inference &
Learning

Optimization

Storage &
Transmission

Inference &
Learning

Optimization

Data 
Generation

Data 
Generation

OptimizationInference &
Learning

OptimizationData 
Generation

Inference &
Learning OptimizationData 

Generation

Information
Theory

Storage &
Transmission

Inference &
Learning

OptimizationData 
Generation

Information Theory

• Approach highlighted in this talk:

▶ Reduction to multiple hypothesis testing

▶ Application of Fano’s inequality

▶ Bounding the mutual information

• Examples:

▶ Group testing

▶ Graphical model selection

▶ Sparse regression

▶ Convex optimization

▶ ...and many more!
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Tutorial Chapter

• Tutorial Chapter: “An Introductory Guide to Fano’s Inequality
with Applications in Statistical Estimation” [S. and Cevher, 2019]

https://arxiv.org/abs/1901.00555

(Chapter in 2021 book Information-Theoretic Methods in Data
Science, Cambridge University Press)
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