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Information Theory
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e How do we quantify “information” in data?

o Information theory [Shannon, 1948]:

» Fundamental limits of data communication
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» Information learned at channel output: Mutual information
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Information Theory

e How do we quantify “information” in data?

o Information theory [Shannon, 1948]:

» Fundamental limits of data communication

Source Codeword Output Reconstruction
=1 Encoder » Channel »| Decoder f——mp

» Information of source: Entropy

» Information learned at channel output: Mutual information

Principles:
> First fundamental limits without complexity constraints, then practical methods
> First asymptotic analyses, then convergence rates, finite-length, etc.

P> Mathematically tractable probabilistic models
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Information Theory and Data
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e Conventional view:

Information theory is a theory of communication
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Information Theory and Data

e Conventional view:

Information theory is a theory of communication
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o Emerging view:

Information theory is a theory of data
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Information Theory

e Extracting information from channel output vs. Extracting information from data
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Examples

e Information theory in machine learning and statistics:

P Statistical estimation [Le Cam, 1973]
» Group testing [Malyutov, 1978]
» Multi-armed bandits [Lai and Robbins, 1985]
» Phylogeny [Mossel, 2004]
P Sparse recovery [Wainwright, 2009]
P Graphical model selection [Santhanam and Wainwright, 2012]
» Convex optimization [Agarwal et al., 2012]
» DNA sequencing [Motahari et al., 2012]
» Sparse PCA [Birnbaum et al., 2013]
» Community detection [Abbe, 2014]
P Matrix completion [Riegler et al., 2015]
» Ranking [Shah and Wainwright, 2015]
P Adaptive data analysis [Russo and Zou, 2015]
P Supervised learning [Nokleby, 2016]
» Crowdsourcing [Lahouti and Hassibi, 2016]
» Distributed computation [Lee et al., 2018]
> Bayesian optimization [Scarlett, 2018]
e Note: More than just using entropy / mutual information...
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Anal

%NUS

ogies

Same concepts, different terminology:

Communication Problems

Data Problems

Feedback

Active learning / adaptivity

Rate-distortion theory

Approximate recovery

Joint source-channel coding

Non-uniform prior
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Analogies

Same concepts, different terminology:

Communication Problems Data Problems

Channels with feedback Active learning / adaptivity

Rate distortion theory Approximate recovery

Joint source-channel coding Non-uniform prior

Error probability Error probability

Random coding Random sampling

Side information Side information

Channels with memory Statistically dependent measurements

Mismatched decoding Model mismatch

F’?NUS
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Cautionary Notes

Some cautionary notes on the information-theoretic viewpoint:

» The simple models we can analyze may be over-simplified
(more so than in communication)

> Compared to communication, we often can't get matching achievability/converse
(often settle with correct scaling laws)

> Information-theoretic limits not (yet) considered much in practice
(to my knowledge) ... but they do guide the algorithm design

» Often encounter gaps between information-theoretic limits and computation limits

> Often information theory simply isn't the right tool for the job
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Terminology: Achievability and Converse

Achievability result (example): Given 7i(€) data samples, there exists an algorithm
achieving an “error” of at most €

> Estimation error: ||6 — Oyrue|| < €

> Optimization error: f(Xselected) < mMiny f(x) + €
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Terminology: Achievability and Converse

Achievability result (example): Given 7i(€) data samples, there exists an algorithm
achieving an “error” of at most €

» Estimation error: Hé — Otruel| < €

> Optimization error: f(Xselected) < mMiny f(x) + €

Converse result (example): In order to achieve an “error” of at most ¢, any algorithm
requires at least n(e) data samples
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Information Measures



Entropy

» Definition: The entropy of a discrete random variable X is defined as
H(X) =3 Px(x)log 1 E[Iog #]
oy Px(x) Px(X)

This is measured in bits for log,(-), or nats for log,(-).
P Interpetation: If we observe that X = x then the amount of information learned is
log % (Iog% satisfies natural axioms). Entropy is the average information learned by
observing X, or equivalently, the average uncertainty in X before observing it.
P> Examples: (i) If X is deterministic then H(X) = 0;
(ii) If X ~ Uniform(X) then H(X) = log | X|
» Source coding theorem: H(X) is the fundamental limit of compression when a source
emits i.i.d. symbols from Px

FINUS | wer Bounds for Estimation and Learning — Jonathan Scarlett Slide 7/ 50



Entropy

» Definition: The entropy of a discrete random variable X is defined as
H(X) =3 Px(x)log 1 E[Iog #]
oy Px(x) Px(X)

This is measured in bits for log,(-), or nats for log,(-).

P Interpetation: If we observe that X = x then the amount of information learned is
log % (Iog% satisfies natural axioms). Entropy is the average information learned by
observing X, or equivalently, the average uncertainty in X before observing it.

P> Examples: (i) If X is deterministic then H(X) = 0;

(ii) If X ~ Uniform(X) then H(X) = log | X|
» Source coding theorem: H(X) is the fundamental limit of compression when a source
emits i.i.d. symbols from Px
> Joint version: H(X,Y) =E[log W}; generally H(X) = E[log ﬁ]
P Interpetation: Overall information/uncertainty in multiple variables
> Conditional version: H(Y|X) =3 .y Px(x)H(Y|X = x)

P Interpetation: Remaining uncertainty in Y after observing X (on average)

» Continuous RVs: A counterpart exists for continuous RVs, but not as
“well-behaved” (can be negative, no longer invariant under 1-to-1 maps)
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Properties of Entropy

> Non-negativity:
H(X)>0

with equality iff X is deterministic
> Uniform distribution has highest entropy:

H(X) < log|X|

with equality iff X is uniform

> Conditioning can’t increase entropy: (on average)
H(X|Y) < H(X)

with equality iff X and Y are independent

» Chain rule:
H(X,Y)=H(X)+ H(Y|X) = H(Y) + H(X|Y)

H(X1, .., Xa) = > H(Xi| Xi—1)
i=1

> Tensorization / sub-additivity:

H(X1,...,Xn) < iH(Xi)
i=1
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Relative Entropy (KL Divergence)

> Definition: For two distributions P and Q, the relative entropy (KL divergence) is
defined as
P(x)

Q)

Ep[log m]

D(PIIQ) = 3 P(x)log o)

P Example usage: If we draw n i.i.d. samples from Q, the probability of getting symbol

Pll@

proportions P is roughly e~ "D( ) (a more general statement: Sanov’s theorem)

> Key property:
D(PIQ) =0
with equality iff P = Q
> Conditional version: D(Py |x||Qyx|Px) = >, Px(x)D(Py|x=x|lQy|x=x)
» This also leads to a chain rule: D(Pxy ||Qxy) = D(Px||Qx) + D(Py x| Qyx|Px)

> Extends readily to continuous RVs (and beyond) while saying “well-behaved”
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Mutual Information

» Definition: The mutual information between X and Y is defined as

1(X; Y) = H(X) — H(X|Y)
— H(Y) — H(Y|X)
= D(Pxy||Px x Py)

P Interpretation 1: X has uncertainty H(X), but after observing Y it has remaining
uncertainty H(X|Y'), so I(X; Y) is how much information Y revealed about X.
P Interpretation 2: By the D(Pxy||Px X Py) form, this measures how far X and Y are

from being independent
P Channel coding theorem: maxp, 1(X; Y) is the fundamental limit of communication
when the communication channel is probabilistic with transition law Py x
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Mutual Information

» Definition: The mutual information between X and Y is defined as

1(X; Y) = H(X) — H(X|Y)
— H(Y) — H(Y|X)
= D(Pxy||Px x Py)

P Interpretation 1: X has uncertainty H(X), but after observing Y it has remaining
uncertainty H(X|Y'), so I(X; Y) is how much information Y revealed about X.

P Interpretation 2: By the D(Pxy||Px X Py) form, this measures how far X and Y are
from being independent

P Channel coding theorem: maxp, 1(X; Y) is the fundamental limit of communication
when the communication channel is probabilistic with transition law Py x

> Can again have joint version, e.g., (X1, X2; Y1, Y2), and conditional version, e.g.,
I(X;Y|Z)=3%,Pz2(2)I(X; Y|Z = 2)
> Again well-behaved even for continuous variables
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Properties of Mutual Information

> Non-negativity:
I(X;Y)>0

with equality iff X and Y are independent

» Chain rule:
I(Xl,Xz; Y) = I(Xl; Y) + /(XQ; Y‘Xl)

and similarly with n variables
> Tensorization: If Py|x = []_; Py,|x;, then

I(X;Y) < zn:I(X;; Yi)
i=1

(not true in general if the assumption on Pyx is dropped)

> Data processing inequality: If X — Y — Z forms a Markov chain, then

I(X; 2) < I(X; Y).

Similarly with more variables (e.g., W — X — Y — Z gives I(W; Z) < I(X;Y))

RENUS
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Converse Bounds for Statistical Estimation
via Fano’s Inequality

(Based on survey chapter https://arxiv.org/abs/1901.00555)


https://arxiv.org/abs/1901.00555

Statistical Estimation

e General statistical estimation setup:

» Unknown parameter 6 € ©
> Samples Y = (Yi,..., Ys) drawn from Py(y)
P More generally, from Py x with inputs X = (X1, ..., X))

> Given Y (and possibly X), construct estimate 4

Algorithm ~ [r=——————————mxp
Estimate 6

N

'
' X
4

Parameter 6
Samples
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Statistical Estimation

e General statistical estimation setup:

» Unknown parameter 6 € ©
> Samples Y = (Yi,..., Ys) drawn from Py(y)
P More generally, from Py x with inputs X = (X1, ..., X))

> Given Y (and possibly X), construct estimate 4

e Goal. Minimize some loss £(6, §)
> 0-1 loss: £(6,0) = 1{0 # 6}
> Squared £, loss: ||6 — 0|2

Algorithm f=—>
Estimate 6

K
X

]
]
[

A4

Parameter 6
Samples
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Statistical Estimation

e General statistical estimation setup:

» Unknown parameter 6 € ©
> Samples Y = (Yi,..., Ys) drawn from Py(y)
P More generally, from Py x with inputs X = (X1, ..., X))

> Given Y (and possibly X), construct estimate 4

e Goal. Minimize some loss £(6, §)
> 0-1 loss: £(6,0) = 1{0 # 6}
> Squared £, loss: ||6 — 0|2

Algorithm f=—>
Estimate 6

e Typical example. Linear regression Y

» Estimate # € RP fromY = X0 + Z Y X

]
]
[

A4

Parameter 6
Samples
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Defining Features

e There are many properties that impact the analysis:

> Discrete 0 (e.g., graph learning, sparsity pattern recovery)
Continuous 6 (e.g., regression, density estimation)
Bayesian 6 (average-case performance)
Minimax bounds over © (worst-case performance)

Non-adaptive inputs (all Xi,...,Xs chosen in advance)

vVvyVYyVvyy

Adaptive inputs (X; can be chosen based on Yi,...,Y;_1)

e This talk. Minimax bounds, mostly non-adaptive, first discrete and then continuous
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High-Level Steps

Steps in attaining a minimax lower bound (converse):
1. Reduce estimation problem to multiple hypothesis testing
2. Apply a form of Fano's inequality

3. Bound the resulting mutual information term

(Multiple hypothesis testing: Given samples Yi,..., Y, determine which distribution
among Pi(y),. .., Pm(y) generated them. M = 2 gives binary hypothesis testing.)
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Step I: Reduction to Multiple Hypothesis Testing

e Lower bound worst-case error by average over hard subset 601, ...,0\:

Algorithm =
Output § 1

Infer Estimate V

X —
Index

IndexV Select

Parameter Y

'
'
'

A4

| Parameter 6y
Samples

Idea:
> Show “successful” algorithm § = Correct estimation of V (When is this true?)

» Equivalent statement: If V can’t be estimated reliably, then 6 can't be successful.

BINUS  Lower Bounds for Estimation and Learning — Jonathan Scarlett Slide 15/ 50



Step |: Example

o Example: Suppose algorithm is claimed to return 6 such that || — 6] < €

N

e If 01,...,0p are separated by 2¢, then we can identify the correct V € {1,..., M}

e Note: Tension between number of hypotheses, difficulty in distinguishing them, and
sufficient separation. Choosing a suitable set {01, ...,0m} can be challenging.
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Step Il: Application of Fano's Inequality

e Standard form of Fano's inequality from textbooks: For a random variable V' and its
estimate V/, defining P = P[V # V], we have

H(V|V) < Ha(Pe) + Pelog (M — 1),
where Hax(a) = « Iogé +(1— «)log ﬁ is the entropy of Bernoulli(«).

Intuition:
» Considering asking questions to resolve the uncertainty in V given %2
» First ask whether the two are equal; this has uncertainty H(Pe)
» When they differ, the remaining uncertainty is at most log (M — 1).

e
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Step Il: Application of Fano's Inequality

e Standard form of Fano's inequality from textbooks: For a random variable V' and its
estimate V/, defining P = P[V # V], we have

H(V|V) < Ha(Pe) + Pelog (M — 1),
where Hax(a) = « Iogé +(1— «)log ﬁ is the entropy of Bernoulli(«).

Intuition:
» Considering asking questions to resolve the uncertainty in V given %2
» First ask whether the two are equal; this has uncertainty H(Pe)
» When they differ, the remaining uncertainty is at most log (M — 1).

e Re-arranged and slightly weakened form for V' uniform over M outcomes:

I(V; V) +log2

PV # V] > oo

> Intuition: Need learned information /(V; \7) to be close to prior uncertainty log M
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Step Il: Application of Fano's Inequality

e Standard form of Fano's inequality from textbooks: For a random variable V' and its
estimate V/, defining P = P[V # V], we have

H(V|V) < Ha(Pe) + Pelog (M — 1),
where Hax(a) = « Iogé +(1— «)log ﬁ is the entropy of Bernoulli(«).

Intuition:
» Considering asking questions to resolve the uncertainty in V given %2
» First ask whether the two are equal; this has uncertainty H(Pe)
» When they differ, the remaining uncertainty is at most log (M — 1).

e Re-arranged and slightly weakened form for V' uniform over M outcomes:

. I(V; V) +log2
PV #V]>1— M

> Intuition: Need learned information /(V; \7) to be close to prior uncertainty log M

e Variations:
» Non-uniform V
» Approximate recovery

» Conditional version
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Step Ill: Bounding the Mutual Information

e The key quantity remaining after applying Fano's inequality is I(V; V)

e Data processing inequality: (Based on V — Y — V or similar)
> No inputs: 1(V; V) < I(V;Y)
> Non-adaptive inputs: I(V; V|X) < I(V;Y|X)
> Adaptive inputs: /(V; \7) <I(V;X,Y)

e

NUS
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Step Ill: Bounding the Mutual Information

e The key quantity remaining after applying Fano's inequality is I(V; V)

e Data processing inequality: (Based on V — Y — V or similar)
> No inputs: 1(V; V) < I(V;Y)
> Non-adaptive inputs: I(V; V|X) < I(V;Y|X)
> Adaptive inputs: /(V; \7) <I(V;X,Y)

e Tensorization: (Based on conditional independence of the samples)
» Noinputs: I(V;Y) <37, I(V;Y))
» Non-adaptive inputs: /(V;Y[X) < >7, I(V;Yj|X;)
» Adaptive inputs: /(V;X,Y) <37 I(V; Yi|Xi)
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Step Ill: Bounding the Mutual Information

e The key quantity remaining after applying Fano's inequality is /(V/; \7)

e Data processing inequality: (Based on V — Y — V or similar)
> No inputs: 1(V; V) < I(V;Y)
> Non-adaptive inputs: I(V; V|X) < I(V;Y|X)
> Adaptive inputs: /(V; \7) <I(V;X,Y)

Tensorization: (Based on conditional independence of the samples)
» Noinputs: I(V;Y) <37, I(V;Y))

» Non-adaptive inputs: /(V;Y[X) < >7, I(V;Yj|X;)

» Adaptive inputs: /(V;X,Y) <37 I(V; Yi|Xi)

KL Divergence Bounds:
> I(V;Y) < max, s D(Pyv(:[v)[Pyv(-Iv"))
> [(V;Y) < max, D(Py‘\/("V)HQy) for any Qy

> If each Py y(-|v) is e-close to the closest Qi(y), ..., Qu(y) in KL divergence,
then I(V;Y) <logN + ¢

> (Similarly with conditioning on X)
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Discrete Example 1

Group Testing



Group Testing

Tests »

|-

Outcomes

Items

o

NUS
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Group Testing

Tests »

|-

Items

Outcomes

Contaminated Clean

» Goal:

Given test matrix X and outcomes Y, recover item vector

> Sample complexity: Required number of tests n

£
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Information Theory and Group Testing

Tests

Outcomes
e Information-theoretic viewpoint:
S : Defective set
Xs : Columns indexed by S
Message Codeword Output Estimate
S Xs Y ~ PPy, K
—| Encoder > Channel ' Decoder [—9
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Information Theory and Group Testing

e Example formulation of general result:

Entropy

Number of tests (Model uncertainty)

N ()

*
n
I (P Y|Xs )
Mutual Information
(Information learned from measurements)
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Converse via Fano's Inequality

e

NUS

e Reduction to multiple hypothesis testing: Triviall Set V = S.
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Converse via Fano's Inequality

e Reduction to multiple hypothesis testing: Triviall Set V = S.

e Application of Fano’s Inequality:

I(S;§|X) + log 2

P8 # S| 21— =200 7

where p = (#items) and k = (#defectives).
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Converse via Fano's Inequality

e Reduction to multiple hypothesis testing: Triviall Set V = S.

e Application of Fano’s Inequality:

I(S;§|X) + log 2

P8 # S| 21— =200 A

where p = (#items) and k = (#defectives).

e Bounding the mutual information:
> Data processing inequality: /(S; §\X) < I(U;Y) where U are pre-noise outputs
» Tensorization: [(U;Y) < Y7, I(Ui; Y;)
» Capacity bound: I(U;; Y;) < C if outcome passed through channel of capacity C
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Converse via Fano's Inequality

e Reduction to multiple hypothesis testing: Triviall Set V = S.

e Application of Fano’s Inequality:

I(S;§|X) + log 2

P8 # S| 21— =200 A

where p = (#items) and k = (#defectives).

e Bounding the mutual information:
> Data processing inequality: /(S; §\X) < I(U;Y) where U are pre-noise outputs
» Tensorization: [(U;Y) < Y7, I(Ui; Y;)
» Capacity bound: I(U;; Y;) < C if outcome passed through channel of capacity C

e Final result:

'°g()(1 ) = P[5 £5] 40
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[llustration of Bounds

&

NUS

Noiseless bounds:

Noisy bounds:

1
1 - —— Near-Constant (Exact)
\ Counting Bound —— Bernoulli (Exact)
—— Bernoulli (Existing)
08 \ - . 08 — — Near-Constant (NDD)
=0 \lnfurmaton-lheureuc — — Bernoulli (NDD)
17
7S PO AL W =
Eo.@ ~ S DD \\ Near-Const. g 0.6
= ~ \ Bernoulli %
g < S~
£ 04 COMP>» - < § 04 R
~ ~ \ X ~<
~ N
SN \\ NN
0.2 N 02 BRNNNN
0 0 =
0 0.2 0.4 0.6 0.8 0 02 0.4 0.6 08 1
Sparsity Parameter Sparsity Parameter
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[llustration of Bounds

Noiseless bounds: Noisy bounds:
1
1 - —— Near-Constant (Exact)
\ Counting Bound —— Bernoulli (Exact)
—— Bernouli (Existing)
\ - . 08 — — Near-Constant (NDD)
= 0.8 \lnfurmaton-lheureuc — — Bernoulli (NDD)
Z
ko --- -\ —
&
EO'G ~ o DD \ Near-Const. g 06 N
= ~ \ Bernoulli % Ss
o < L~
£ 04 com> ~o §0.4 AN ~<o
~ < N =N <2
~ - D
S N T~ N
02 "8 02 BRENNN
0
0 0.2 0.4 0.6 0.8 1 0 02 0.4 06 08 1
Sparsity Parameter Sparsity Parameter

e Other Implications:
P> Adaptivity and approximate recovery:

P No gain at low sparsity levels
P Significant gain at high sparsity levels

P Information-theoretically optimal non-adaptive algorithms are now known
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Discrete Example 2

Graphical Model Selection



Graphical Model Representations of Joint Distributions

Motivating example:

» In a population of p people, let

v 1 person i is infected 1
i = .. r=1,. P
—1 person i is healthy,
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Graphical Model Representations of Joint Distributions

Motivating example:

» In a population of p people, let

v, — 1 person i is infected
"7 1 =1 person iis healthy,

> Example models:

O
O O

o O

[Abbe and Wainwright, ISIT Tutorial, 2015]

e
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Graphical Model Representations of Joint Distributions
Motivating example:

» In a population of p people, let

v, — 1 person i is infected
T person i is healthy,

> Example models:

O
O O

o O

[Abbe and Wainwright, ISIT Tutorial, 2015]
> Joint distribution for a given graph G = (V, E):

Pl(Y1,.., Yp) = (1,5 ¥p)] = fexp( > Auy,y,)

(i.J)EE

e
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Graphical Model Selection: Illustration

> A larger example from [Abbe and Wainwright, ISIT Tutorial 2015]:
P> Example graphs:

P Sample images (Ising model):
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Graphical Model Selection: Illustration

> A larger example from [Abbe and Wainwright, ISIT Tutorial 2015]:
» Example graphs:

P Sample images (Ising model):
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Graphical Model Selection: Illustration

> A larger example from [Abbe and Wainwright, ISIT Tutorial 2015]:
» Example graphs:

aes
aes
08
i a0eanean!
aes
88
a0
(11
I.l
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Graphical Model Selection: Illustration

> A larger example from [Abbe and Wainwright, ISIT Tutorial 2015]:
» Example graphs:

| aen VA V4 4 V4 Y4 Y Y
‘ a8s \
| aen [ BT
. T O
i aes A
T Ot
| [ & T
288 [ X ]
I.l
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Graphical Model Selection: Illustration

> A larger example from [Abbe and Wainwright, ISIT Tutorial, 2015]:
P Example graphs:

» Sample images (Ising model):
w

» Goal: Identify graph given n independent samples
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Graphical Model Selection: Definition

e

NUS

General problem statement.
» Given n i.i.d. samples of (Y1,...,Yp) ~ Pg, recover the underlying graph G
P Applications: Statistical physics, social and biological networks

> Error probability: N
P = maxP[G # G| G].
Geg
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Graphical Model Selection: Definition

General problem statement.
» Given n i.i.d. samples of (Y1,...,Yp) ~ Pg, recover the underlying graph G
P Applications: Statistical physics, social and biological networks

> Error probability: N
P = maxP[G # G| G].
Geg

Assumptions.
» Distribution class:
> Ising model
Po(X1, ... Xp) = = exp < Z )\,JX,XJ)
(i.J)EE
P Gaussian model
(X11 B 7XP) NN(,u,,Z)
where (E71); #£0 <= (i,j) € E [Hammersley-Clifford theorem|
» Graph class:

> Bounded-edge (at most k edges total)
P Bounded-degree (at most d edges out of each node)

£
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Information-Theoretic Viewpoint

e Information-theoretic viewpoint:

Channel

Py

@QNUS Lower Bounds for Estimation and Learning — Jonathan Scarlett
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Converse via Fano's Inequality

e

NUS

e Reduction to multiple hypothesis testing: Let G be uniform on hard subset Gy C G
» |deally many graphs (lots of graphs to distinguish)
> |deally close together (harder to distinguish)
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Converse via Fano's Inequality

e Reduction to multiple hypothesis testing: Let G be uniform on hard subset Gy C G
» |deally many graphs (lots of graphs to distinguish)
> |deally close together (harder to distinguish)

e Application of Fano’s Inequality:

1(G; G) + log2

P[6#£G]>1—
[G# Gl > log [Go]
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Converse via Fano's Inequality

e Reduction to multiple hypothesis testing: Let G be uniform on hard subset Gy C G
» |deally many graphs (lots of graphs to distinguish)
> |deally close together (harder to distinguish)

e Application of Fano’s Inequality:

PG £G]>1— 1(G; G) + log2
log |Gol
e Bounding the mutual information:
> Data processing inequality: I(G; G) < I(G;Y)
» Tensorization: I(G;Y) <> 7, 1(G;Y))
> KL divergence bound: Bound /(G; Y;) < maxg D(Py|c(-|G)||Qy) case-by-case
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Graph Ensembles

» Graphs that are difficult to distinguish from the empty graph:

(o] (o]

o o

» Reveals n = Q( - log p) necessary condition with “edge strength” X and p nodes
2
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Graph Ensembles

» Graphs that are difficult to distinguish from the empty graph:

(o] (o]

o o

» Reveals n = Q( - log p) necessary condition with “edge strength” X and p nodes
2

> Graphs that are difficult to distinguish from the complete (sub-)graph:

P> Reveals n = Q(ekd) necessary condition with “edge strength” X\ and degree d
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Upper vs. Lower Bounds

e Example results with maximal degree d, edge strength X (slightly informal):
> (Converse) n = Q(max {5,e*} log p) [Santhanam and Wainwright, 2012]

> (Achievability) n = O(max {%, e>‘d}d log p) [Santhanam and Wainwright, 2012]

> (Early Practical) n = O(d? log p) but extra assumptions that are hard to cerify
[Ravikumar/Wainwright/Lafferty, 2010]

(Further Practical) n = O(dz/\e;d log p) [Klivans/Meka 2017]
[Wu/Sanghavi/Dimakis 2018]

v

> (Near-Optimality in Many Regimes)
> Ising models [Lokhov/Vuffray /Misra/Chertkov, 2018]
P Gaussian models [Misra/Vuffray/Lokhov, 2020]
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What About Continuous-Valued Estimation?



Statistical Estimation

e General statistical estimation setup:

» Unknown parameter 6 € ©
> Samples Y = (Yi,..., Ys) drawn from Py(y)
P More generally, from Py x with inputs X = (X1, ..., X))

> Given Y (and possibly X), construct estimate 4

Algorithm ~ [r=——————————mxp
Estimate 6

N

'
' X
4

Parameter 6
Samples
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Statistical Estimation

e General statistical estimation setup:

» Unknown parameter 6 € ©
> Samples Y = (Yi,..., Ys) drawn from Py(y)
P More generally, from Py x with inputs X = (X1, ..., X))

> Given Y (and possibly X), construct estimate 4

e Goal. Minimize some loss £(6, §)
> 0-1 loss: £(6,0) = 1{0 # 6}
> Squared £, loss: ||6 — 0|2

Algorithm f=—>
Estimate 6

K
X

]
]
[

A4

Parameter 6
Samples
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Statistical Estimation

e General statistical estimation setup:

» Unknown parameter 6 € ©
> Samples Y = (Yi,..., Ys) drawn from Py(y)
P More generally, from Py x with inputs X = (X1, ..., X))

> Given Y (and possibly X), construct estimate 4

e Goal. Minimize some loss £(6, §)
> 0-1 loss: £(6,0) = 1{0 # 6}
> Squared £, loss: ||6 — 0|2

Algorithm f=—>
Estimate 6

e Typical example. Linear regression Y

» Estimate # € RP fromY = X0 + Z Y X

]
]
[

A4

Parameter 6
Samples
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Minimax Risk

e Since the samples are random, so is f and hence £(0, é)

e So seek to minimize the average loss Eg[£(6, 0)].

» Note: Ey and Py denote averages w.r.t. Y when the true parameter is 6.
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Minimax Risk

e Since the samples are random, so is f and hence £(0, é)

e So seek to minimize the average loss Eg[£(6, 0)].

» Note: Ey and Py denote averages w.r.t. Y when the true parameter is 6.

e Minimax risk: .
Mp(©,£) = inf sup Eg [4(9, 9)]7
9 9co

i.e., worst case average loss over all 6 € ©
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Minimax Risk

e Since the samples are random, so is f and hence £(0, é)

e So seek to minimize the average loss Eg[£(6, 0)].

» Note: Ey and Py denote averages w.r.t. Y when the true parameter is 6.

e Minimax risk:

Ma(©,€) = inf sup Eq [£(0,8)],
0 6€e

i.e., worst case average loss over all 6 € ©

e Approach: Lower bound worst-case error by average over hard subset 61, ...,60y:
Algorithm -
Output § 1
Index V Select 4 Infor Estimate V
Parameter Y ix Index
| Parameter 6y
Samples

@QNUS Lower Bounds for Estimation and Learning — Jonathan Scarlett

Slide 31/ 50



General Lower Bound via Fano's Inequality

e To get a meaningful result, need a sufficiently “well-behaved” loss function.
Subsequently, focus on loss functions of the form

£(0,8) = o(p(6,9))

where p(0,0’) is some metric, and ®(-) is some non-negative and increasing function
(e.g. £(6,0) = [0 —0]*)

o
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General Lower Bound via Fano's Inequality

e To get a meaningful result, need a sufficiently “well-behaved” loss function.
Subsequently, focus on loss functions of the form

€(6,8) = &(p(8,0))

where p(0,0’) is some metric, and ®(-) is some non-negative and increasing function
(e.g. £(6,0) = [0 —0]*)

e Claim. Fix € > 0, and let {61,...,0pm} be a finite subset of © such that
p(0,,0,)) >¢€ Vv,V €{l,..., M} v#£V.
Then, we have

where V is uniform on {1,..., M}, and I(V;Y) is with respect to V — 6y — Y.
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Proof of General Lower Bound

e

NUS

e Using Markov's inequality:

sup Eq [£(9,0)] > sup ®(co)B4[4(9,0) > (<o)]
0€0 IS

= ®(eg) sup Py[p(0, é) > €]
6ce
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Proof of General Lower Bound

e

NUS

e Using Markov's inequality:

sup Eq [£(9,0)] > sup ®(co)B4[4(9,0) > (<o)]
0€0 IS

= ®(eg) sup Py[p(0, é) > €]
6ce

e Suppose that V= argminj—1 . nm p(6;, é) Then by the triangle inequality and

o(0y,0,/) > €, if p(6,,0) < 5 then we must have V = v:

Po, [p(8,,6) > S| > Po, [V # 1]

€
2
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Proof of General Lower Bound
e Using Markov's inequality:

sup Eq [£(9,0)] > sup ®(co)B4[4(9,0) > (<o)]
0€0 IS

= ®(eg) sup Py[p(0, é) > €]
6ce

e Suppose that V= argminj—1 . nm p(6;, é) Then by the triangle inequality and

o(0y,0,/) > €, if p(6,,0) < 5 then we must have V = v:

€ ~
Bo, [0(6v,0) > 5] > P, [V # v].
e Hence,
sup ]P’9|: (0,0) > E] > max IP‘g {p(&v,é) > E}
0cO 2 =1,. 2
>
> :maxMIP’g [V #v]
> 2 > Pl
= v
= M & 9\/
o1 I(V;Y)+|og2
- log M

where the final step uses Fano's inequality.
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Local Approach

e

NUS

e General bound: If p(0,,0,/) > € for all v, v’ then

M(©,0)> o %) (1_ I

Lower Bounds for Estimation and Learning — Jonathan Scarlett
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Local Approach

e General bound: If p(0,,0,/) > € for all v, v’ then

e Local approach: Carefully-chosen “local” hard subset:

@ KL Divergence Ball PY

Py

v
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Local Approach

e General bound: If p(0,,0,/) > € for all v, v’ then

e Local approach: Carefully-chosen “local” hard subset:

@ KL Divergence Ball PY

Py

v

Resulting bound:

€ minv:lu
(0, 0)>d(-)(1— !
Ma(6,6) <2>( log M

INUS L ower Bounds for Estimation and Learning — Jonathan Scarlett
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Global Approach

o

NUS

e General bound: If p(6,,0,,) > € for all v,

Ma(©,0) > ¢(§) (1

Lower Bounds for Estimation and Learning — Jonathan Scarlett
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Global Approach
e General bound: If p(0,,60,/) > € for all v, v’ then

_(viY) + Iog2>

Ma(©,0) > ¢(§) (1 oz 1

e Global approach: Pack as many e-separated points as possible:

Py

» Typically suited to infinite-dimensional problems (e.g., non-parametric regression)
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Global Approach
e General bound: If p(0,,60,/) > € for all v, v’ then

_(viY) + Iog2>

Ma(©,0) > ¢(§) (1 oz 1

e Global approach: Pack as many e-separated points as possible:

Py

» Typically suited to infinite-dimensional problems (e.g., non-parametric regression)

e Resulting bound:

log NI’gL,n(@, €c,n) + €c,n + log 2)

Mn(©,£) > ¢(%J) (1 B log M;(97 €p)

> M3(©,¢p): No. e-separated 6 we can pack into © (packing number)
> Nii (©,€c,n): No. ec n-size KL divergence balls to cover Py (covering number)

gENUS
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Continuous Example 1

Sparse Linear Regression



Sparse Linear Regression

e Linear regression model Y = X0 + Z:

Samples Feature Matrix Coefficients  Noise
u
n — X +
o n
p

> Feature matrix X is given, noise is i.i.d. N(0, o2)

» Coefficients are sparse — at most k non-zeros
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Converse via Fano's Inequality
o Reduction to hyp. testing: Fix ¢ > 0 and restrict to sparse vectors of the form
0 = (0,0,0, 4,0, %¢,0,0,0,0,0, %, 0)
» Total number of such sequences = 2k (R) = exp (klog £) (if k < p)

» Choose a “well separated” subset of size exp (% log f) (Gilbert-Varshamov)

» Well-separated: Non-zero entries differ in at least é indices
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Converse via Fano's Inequality
o Reduction to hyp. testing: Fix ¢ > 0 and restrict to sparse vectors of the form

0 = (0,0,0, +e,0, +¢,0,0,0,0,0, %€, 0)

» Total number of such sequences = 2k (R) = exp (klog £) (if k < p)
» Choose a “well separated” subset of size exp (% log f) (Gilbert-Varshamov)
» Well-separated: Non-zero entries differ in at least é indices

e Application of Fano's inequality:

> Using the general bound given previously:

2 .
M(©.0) > ki(li I(V,Y|X)+Iog2)
32 Xlog £
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Converse via Fano's Inequality

o Reduction to hyp. testing: Fix ¢ > 0 and restrict to sparse vectors of the form

0 = (0,0,0, +e,0, +¢,0,0,0,0,0, %€, 0)

» Total number of such sequences = 2k (R) = exp (klog £) (if k < p)
» Choose a “well separated” subset of size exp (% log f) (Gilbert-Varshamov)
» Well-separated: Non-zero entries differ in at least é indices

e Application of Fano's inequality:

> Using the general bound given previously:

2 .
M(©.0) > ki(li I(V,Y|X)+Iog2)
32 Xlog £

e Bounding the mutual information:
: ; . 2k 2 : :
> By a direct calculation, /(V;Y|X) < 5= - E”X”F (Gaussian noise) [Actually
extra steps (e.g., matrix Bernstein) needed when using Fano's inequality with
exact recovery. But an “approximate recovery” version avoids it.]
o-zplog f

» Substitute and choose € to optimize the bound: e = BT
£

£
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Converse via Fano's Inequality

o Reduction to hyp. testing: Fix ¢ > 0 and restrict to sparse vectors of the form

0 = (0,0,0, +e,0, +¢,0,0,0,0,0, %€, 0)

» Total number of such sequences = 2k (R) = exp (klog £) (if k < p)
» Choose a “well separated” subset of size exp (% log f) (Gilbert-Varshamov)
» Well-separated: Non-zero entries differ in at least é indices

e Application of Fano's inequality:
> Using the general bound given previously:

2 .
M(©.0) > ki(li I(V,Y|X)+Iog2)
32 Xlog £

e Bounding the mutual information:

: ; . 2k 2 : :
> By a direct calculation, /(V;Y|X) < 5= - E”X”F (Gaussian noise) [Actually
extra steps (e.g., matrix Bernstein) needed when using Fano's inequality with
exact recovery. But an “approximate recovery” version avoids it.]

2 P
» H . log P
Substitute and choose € to optimize the bound: €2 = %
3

e Final result: If ||X||2 < npl, then E[||6 — §]|3] < & requires n > % - klog ?

Slide 37/ 50
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Upper vs. Lower Bounds

e Recap of model: Y = X6 + Z, where 6 is k-sparse

e Lower bound: If [|X||2 < npl", achieving E[[|0 — 9AH§] < 4 requires n < % - klog ?

e Upper bound: If X is a zero-mean random Gaussian matrix with power I per entry,
~ 72

then we can achieve E[||0 — 0]|] < 6 using at most n > 5~ - klog £ samples

> Maximum-likelihood estimation suffices

e Tighter lower bounds could potentially be obtained under additional restrictions on X
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Continuous Example 2

Convex Optimization



Stochastic Convex Optimization

e A basic optimization problem
*

x* = argmin, . p f(x)

For simplicity, we focus on the 1D case D C R (extensions to RY are possible)

£

NUS
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Stochastic Convex Optimization

e A basic optimization problem
x* = argmin,cp f(x)
For simplicity, we focus on the 1D case D C R (extensions to RY are possible)

e Model:

» Noisy samples: When we query x, we get a noisy value and noisy gradient:

Y =f(x)+ Z, Y =f'(x)+Z

where Z ~ N(0,02) an Z’' ~ N(0,5?)
» Adaptive sampling: Chosen X; may depend on Yi,...,Y;_1
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Stochastic Convex Optimization

e A basic optimization problem

x* = argmin,cp f(x)

For simplicity, we focus on the 1D case D C R (extensions to RY are possible)

e Model:

» Noisy samples: When we query x, we get a noisy value and noisy gradient:
Y =f(x)+ Z, Y =f'(x)+Z

where Z ~ N(0,02) an Z’' ~ N(0,5?)
» Adaptive sampling: Chosen X; may depend on Yi,...,Y;_1

e Function classes: Convex, strongly convex, Lipschitz, self-concordant, etc.

» We will focus on the class of strongly convex functions

> Strong convexity: f(x) — $x?

5x° is a convex function for some ¢ > 0 (we set ¢ = 1)
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Performance Measure and Minimax Risk

e After sampling n points, the algorithm returns a final point X
e The loss incurred is £¢(X) = f(X) — minyex f(x), i.e., the gap to the optimum

e For a given class of functions F, the minimax risk is given by

M(F) = inxf fs:l])__Ef[ef()A()]

e

NUS
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Reduction to Multiple Hypothesis Testing

e The picture remains the same:

Index V'
B —

Estimate V/
—

Algorithm —
Selection & 1
Select Infer
. y X
Function v Index
| Function fy
Samples

» Successful optimization = Successful identification of V

F@NUS Lower Bounds for Estimation and Learning — Jonathan Scarlett
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General Minimax Lower Bound

e Claim 1. Fix e > 0, and let {f1, ..., fy} C F be a subset of F such that for each
x € X, we have /¢ (x) < e for at most one value of v € {1,..., M}. Then we have

I(V;X,)Y) + Iog2)

W F)>e (1
Mn(F) > € (1 log M

1)

where V is uniform on {1,..., M}, and I(V;X,Y) isw.rt V — fy — (X,Y).
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General Minimax Lower Bound

e Claim 1. Fix e > 0, and let {f1, ..., fy} C F be a subset of F such that for each

x € X, we have /¢ (x) < e for at most one value of v € {1,..., M}. Then we have
I(V; X, Y) + log 2
Mo(F) > e (1 [ViX.Y) Flog2) (1)
log M

where V is uniform on {1,..., M}, and I(V;X,Y) isw.rt V — fy — (X,Y).

e Claim 2. In the special case M = 2, we have
Ma(F) > e Hy ' (log2 — I(V; X, Y)), (2)

where Hy () € [0,0.5] is the inverse binary entropy function.
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General Minimax Lower Bound

e Claim 1. Fix e > 0, and let {f1, ..., fy} C F be a subset of F such that for each

x € X, we have /¢ (x) < e for at most one value of v € {1,..., M}. Then we have
I(V; X, Y) + log 2
Mo(F) > e (1 [ViX.Y) Flog2) (1)
log M

where V is uniform on {1,..., M}, and I(V;X,Y) isw.rt V — fy — (X,Y).

e Claim 2. In the special case M = 2, we have
Ma(F) > e Hy ' (log2 — I(V; X, Y)), (2)

where Hy () € [0,0.5] is the inverse binary entropy function.

e Proof is like with estimation, starting with Markov's inequality:

sup E[¢r(X)] > sup e Pe[¢r(X) > €].
feF feF

e Proof for M = 2 uses a (somewhat less well-known) form of Fano's inequality for
binary hypothesis testing
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Strongly Convex Class: Choice of Hard Subset

e Reduction to hyp. testing. In 1D, it suffices to choose just two similar functions!

> (Becomes 2°°vstantxd in g dimensions)

0.15
] 0.1
= 0.05
0
0 0.2 0.4 0.6 0.8 1
Input
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Strongly Convex Class: Choice of Hard Subset

e Reduction to hyp. testing. In 1D, it suffices to choose just two similar functions!
> (Becomes 2°°vstantxd in g dimensions)

0.15

o o1
=005
0

0 02 0.4 0.6 0.8 1

Input

o The precise functions:

e
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Analysis

e Application of Fano’s Inequality. As above,
Ma(F) > e HyY(log2 — I(V; X, Y))

> Approach: H !(a) > 5 if o > ©E2

» How few samples ensure I(V;X,Y) < '°§2?
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Analysis

e Application of Fano’s Inequality. As above,
Ma(F) > e HyY(log2 — I(V; X, Y))

> Approach: H !(a) > 5 if o > ©E2

» How few samples ensure I(V;X,Y) < '°§2?

e Bounding the Mutual Information. Let Py, Py, be the observation distributions
(function and gradient), and Qy, Qy- similar but with fo(x) = %xz. Then:

_ (A = h(x))? | (F() = fo (x))?

D(Py x Py/[|Qy X Qyr) = =

> Simplifications: (fi(x) — f5(x))? < (e + \/5)2 < 2e and (f{/(x) — fj(x))? = 2¢

2
> With some manipulation, /(V;X,Y) < % when € = %
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Analysis

e Application of Fano’s Inequality. As above,
Ma(F) > e HyY(log2 — I(V; X, Y))

> Approach: H !(a) > 5 if o > ©E2

» How few samples ensure I(V;X,Y) < '°§2?

e Bounding the Mutual Information. Let Py, Py, be the observation distributions
(function and gradient), and Qy, Qy- similar but with fo(x) = %xz. Then:

_ (A = h(x))? | (F() = fo (x))?

D(Py X Py/”Qy X Qy/) 552 552

> Simplifications: (fi(x) — f5(x))? < (e + \/5)2 < 2e and (f{/(x) — fj(x))? = 2¢

2
> With some manipulation, /(V;X,Y) < % when € = %

2
o Final result: M,(F) > %

F";NUS Lower Bounds for Estimation and Learning — Jonathan Scarlett Slide 44/ 50



e

NUS

Upper vs. Lower Bounds

&2
n

e Lower bound for 1D strongly convex functions: M,(F) > ¢

o2

n

e Upper bound for 1D strongly convex functions: M,(F) < ¢’
> Achieved by stochastic gradient descent

e Analogous results (and proof techniques) known for d-dimensional functions,
additional Lipschitz assumptions, etc. [Raginsky and Rakhlin, 2011]
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Continuous Example 3

Density Estimation



Density Estimation Example
e An example density estimation problem:
» Goal: Estimate the density f given n i.i.d. samples

> Here we consider random variables defined on [0, 1], and consider the class F, r
of density functions satisfying the following:

f(y) > n:Vy € [07 1]5 ”f”TV <T,

L
where [|[f[|Tv = sup; supg< <. <x <1 /=2 (F(a) — F(x1-1))-

P> We measure performance via the Z%—Ioss:

1
W f) = I — FI3 = /0 (F(x) — F(x))dx

» Minimax risk: R
Mp(n,T) = ir}ff sup E;[Hf - fH%],

n,r
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Density Estimation Example
e An example density estimation problem:
» Goal: Estimate the density f given n i.i.d. samples

> Here we consider random variables defined on [0, 1], and consider the class F, r
of density functions satisfying the following:

f(y) > n:Vy € [07 1]5 ”f”TV <T,

L
where [|[f[|Tv = sup; supg< <. <x <1 /=2 (F(a) — F(x1-1))-

P> We measure performance via the Z%—Ioss:

1
W f) = I — FI3 = /0 (F(x) — F(x))dx

» Minimax risk: R
Mp(n,T) = ir}ff sup E;[Hf - fH%],

]:n,l'

e Claim: For constant 1 and I, attaining M,(n,T) < § requires n > c(%)3/2.
» This scaling is tight; a matching upper bound is known
> The proof uses the global packing/covering approach

> See our survey introductory guide to Fano's inequality for this specific example,
or Yang/Barron's original paper for many more classes
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Limitations and Generalizations

e Limitations of Fano’s Inequality.
» Non-asymptotic weakness

» Often hard to tightly bound mutual information in adaptive settings
» Restriction to KL divergence
» Other useful measures: Total variation, Hellinger distance, x2-divergence, etc.

o Generalizations of Fano’s Inequality.

» Non-uniform V [Han/Verdd, 1994]
» More general f-divergences [Guntuboyina, 2011]
» Continuous V [Duchi/Wainwright, 2013]

(This list is certainly incomplete!)
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Example: Difficulties in Adaptive Settings

e A simple search problem: Find the (only) biased coin using few flips

Plheads] = 1 + ¢

0000000000

P[heads] = % Plheads] = %

» Heavy coin V € {1,..., M} uniformly at random
> Selected coin at time i =1,...,nis X;, observation is Y; € {0,1} (1 for heads)
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Example: Difficulties in Adaptive Settings

e A simple search problem: Find the (only) biased coin using few flips

Plheads] = 1 + ¢

0000000000

P[heads] = % Plheads] = %

» Heavy coin V € {1,..., M} uniformly at random
> Selected coin at time i =1,...,nis X;, observation is Y; € {0,1} (1 for heads)

o Non-adaptive setting:
2
> Since X; and V are independent, can show /(V; Y| X;) <
» Substituting into Fano's inequality gives the requirement n > MI:ng
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Example: Difficulties in Adaptive Settings

e A simple search problem: Find the (only) biased coin using few flips

Plheads] = 1 + ¢

0000000000

P[heads] = % Plheads] = %

» Heavy coin V € {1,..., M} uniformly at random
> Selected coin at time i =1,...,nis X;, observation is Y; € {0,1} (1 for heads)

o Non-adaptive setting:
2
> Since X; and V are independent, can show /(V; Y| X;) <
» Substituting into Fano's inequality gives the requirement n > MI:ng

e Adaptive setting:
> Nuisance to characterize I(V; Y;|X;), as X; depends on V due to adaptivity!
> Worst-case bounding only gives n > IOE—ZM

> Next lecture: An alternative tool that gives n > eMQ
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Conclusion

e Information theory as a theory of data:

S S —

1
'

Data. Storage & InferenFe & Optimization | *
Generation Transmission Learning '
1

1

'

Information Theory

VemmmmEmEEsEEEsEEEE s s s e e e ...

—mmmm-—
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Conclusion

e Information theory as a theory of data:

I
'

1

. Data Storage & InferenFe & Optimization
+| Generation Transmission Learning

'

'

'

Information Theory .

e Approach highlighted in this talk:
» Reduction to multiple hypothesis testing

> Application of Fano's inequality

» Bounding the mutual information
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Conclusion
e Information theory as a theory of data:

I
'

1

. Data Storage & InferenFe & Optimization
+| Generation Transmission Learning

'

'

'

Information Theory .

e Approach highlighted in this talk:
» Reduction to multiple hypothesis testing
> Application of Fano's inequality

» Bounding the mutual information

e Examples:
» Group testing
» Graphical model selection
> Sparse regression
» Convex optimization

» ...and many more!
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Tutorial Chapter

e Tutorial Chapter: “An Introductory Guide to Fano's Inequality
with Applications in Statistical Estimation” [S. and Cevher, 2019]

https://arxiv.org/abs/1901.00555

(Chapter in 2021 book Information-Theoretic Methods in Data
Science, Cambridge University Press)
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