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Preliminaries: Measuring Distances Between Distributions

e Divergences/distances we will use:

» KL divergence:

D(PI|Q) = Eplog 283]
> TV distance:

drv(P, Q) = sup IP(A) = Q(A)]

where sup(-) is over all events. If discrete, dpv (P, Q) = %ZX [P(x) — Q(x)|; if
continuous drv (P, Q) = %f [P(x) — Q(x)|dx.
> y2-divergence:
2 _ P(X) 2
(P @) =Eo[ (5~ 1) ]

or expanding the square gives x?(P, Q) = EP[%] —1.
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Preliminaries: Measuring Distances Between Distributions

e Divergences/distances we will use:

» KL divergence:

D(PI|Q) = Eplog ggﬁ;]

> TV distance:
drv(P, Q) = sup [P(A) — Q(A)]

where sup(-) is over all events. If discrete, dpv (P, Q) = %ZX [P(x) — Q(x)|; if
continuous drv (P, Q) = %f [P(x) — Q(x)|dx.
> y2-divergence:
2 _ P(X) 2
(P @) =Eo[ (5~ 1) ]

or expanding the square gives x?(P, Q) = EP[%] —1.

e Other useful ones (that we won’t use here):
» Hellinger distance
» Wasserstein distances

> Generalizations of the above (e.g., f-divergences, Rényi divergences)
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Properties (1)

Example uses/results:

> As mentioned earlier, e="™P(PIIQ) js roughly the probability of symbol proportions
P when we draw n i.i.d. samples from Q

» TV norm naturally leads to additive change of measure:
Pp[A] < Pg[A] + drv (P, Q),

e.g., where A is some “success” event that has low probability under Q
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Properties (1)

Example uses/results:

> As mentioned earlier, e="™P(PIIQ) js roughly the probability of symbol proportions
P when we draw n i.i.d. samples from Q

» TV norm naturally leads to additive change of measure:
Pp[A] < PglA] + drv(P, Q),
e.g., where A is some “success” event that has low probability under Q

Example properties:
> Non-negativity: All are > 0 with equality if and only if P = Q.

» Tensorization: D([]; Pi||T]; Qi) = >_; D(Pi||Q;) (more generally chain rule). For
drv only < instead of =. For x2 we get an equality with I+ x2(P;.Q;)) — 1.

» Triangle inequality: drv satisfies triangle inequality, KL and x? don't
P
> Data processing inequality: D(Py||Qy) < D(Px||Qx) if Px i Py and
P
Qx I Qy. This also holds for TV, x2, and others.
> Variational forms: e.g., D(P||Q) = sup; Ep[f(X)] — log Eq[ef™)]

See Yihong Wu's lecture notes for a lot more on the above concepts.
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Properties (I1)

Example relations:
> Pinsker's inequality:

drv(P,Q@) < /3D(PI|Q)

» If the PMF (or PDF) is uniformly lower bounded, a similar lower bound holds
» Bretagnolle-Huber inequality:

drv(P, Q) < V1 — e D(PIQ),

> 2 divergence upper bound:

D(P||Q) < log(1+ x*(P, Q)) < x*(P, Q).
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Le Cam & Assouad Methods



Le Cam's Method

e Let Py(y) and Pi(y) be two distributions on the observations
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Le Cam’s Method
e Let Py(y) and Pi(y) be two distributions on the observations
e A very basic inequality (essentially by definition):
[Po[A] — P1[A]| < dv(Po, P1)

for any event A

> This is a simple form of Le Cam’s method (more general form later based on sets
of distributions)

» We can use this inequality to lower bound hypothesis testing error probability in
terms of TV norm
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Le Cam’s Method
e Let Py(y) and Pi(y) be two distributions on the observations
e A very basic inequality (essentially by definition):
[Po[A] — P1[A]| < dv(Po, P1)

for any event A

> This is a simple form of Le Cam’s method (more general form later based on sets
of distributions)

» We can use this inequality to lower bound hypothesis testing error probability in
terms of TV norm

o Weakened version (via Pinsker's inequality):

[FolAl — PalAl| < 15 D(P|Po)

(could also swap P and Py on the right-hand side)
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Le Cam’s Method
e Let Py(y) and Pi(y) be two distributions on the observations
e A very basic inequality (essentially by definition):
[Po[A] — P1[A]| < dv(Po, P1)

for any event A

> This is a simple form of Le Cam’s method (more general form later based on sets
of distributions)

» We can use this inequality to lower bound hypothesis testing error probability in
terms of TV norm

o Weakened version (via Pinsker's inequality):

[FolAl — PalAl| < 15 D(P|Po)

(could also swap P and Py on the right-hand side)

e Applications:

> Statistical estimation [Le Cam, 1973]
> Multi-armed bandits [Auer et al., 1995]
> Black-box optimization [Scarlett et al., 2017]
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Example 1: Finding a Biased Coin

e A simple search problem: Find the (only) biased coin using few flips

he’lds +

OOOOOOOOOO

Plheads] = 4 Plheads] = 4

» Heavy coin V € {1,..., M} uniformly at random
> Selected coin at time i = 1,...,nis X;, observation is Y; € {0,1} (1 for heads)

o Note: This is a simple example of the multi-armed bandit problem, for which similar
analysis techniques have also given tight lower bounds
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Example 1: Finding a Biased Coin

e A simple search problem: Find the (only) biased coin using few flips
» Heavy coin V € {1,..., M} uniformly at random
» Selected coin at time i = 1,...,nis X;, observation is Y; € {0,1} (1 for heads)

e Analysis:
» Apply weakened bound above to get

Py [V = v] <Po[V = v] + %D(PoHPv)

where P, (y) corresponds to V = v, and Po(y) corresponds to all fair coins
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Example 1: Finding a Biased Coin

e A simple search problem: Find the (only) biased coin using few flips
» Heavy coin V € {1,..., M} uniformly at random
» Selected coin at time i = 1,...,nis X;, observation is Y; € {0,1} (1 for heads)

e Analysis:
» Apply weakened bound above to get

Py [V = v] <Po[V = v] + %D(PoHPv)

where P, (y) corresponds to V = v, and Po(y) corresponds to all fair coins

» By chain rule for KL divergence and the fact that only coin v differs:
D(Pol|Py) < Eo[Ny]€?

where N, is the number of flips of coin v (Note: KL(%H% +€) ~€?)
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Example 1: Finding a Biased Coin

e A simple search problem: Find the (only) biased coin using few flips
» Heavy coin V € {1,..., M} uniformly at random
» Selected coin at time i = 1,...,nis X;, observation is Y; € {0,1} (1 for heads)

e Analysis:
» Apply weakened bound above to get

Py [V = v] <Po[V = v] + %D(PoHPv)

where P, (y) corresponds to V = v, and Po(y) corresponds to all fair coins

» By chain rule for KL divergence and the fact that only coin v differs:
D(Po||Py) < Eo[Ny]e?
where N, is the number of flips of coin v (Note: KL(%H% +€) ~€?)

> Apply ﬁ ZVM:1 on both sides of first step, then Jensen’s inequality:

ne2

N 1
P[V=V]< —
[ ]NM+ M

since ZC/’:1 Po[V = v] =1 and ZC/’:1 E[Nv] = n
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Example 1: Finding a Biased Coin

e A simple search problem: Find the (only) biased coin using few flips
» Heavy coin V € {1,..., M} uniformly at random
» Selected coin at time i = 1,...,nis X;, observation is Y; € {0,1} (1 for heads)

e Analysis:
» Apply weakened bound above to get

Py [V = v] <Po[V = v] + %D(PoHPv)

where P, (y) corresponds to V = v, and Po(y) corresponds to all fair coins

» By chain rule for KL divergence and the fact that only coin v differs:
D(Po||Py) < Eo[Ny]e?
where N, is the number of flips of coin v (Note: KL(%H% +€) ~€?)

> Apply ﬁ ZVM:1 on both sides of first step, then Jensen’s inequality:

ne2

N 1
P[V=V]< —
[ ]NM+ M

since ZC/’:1 Po[V = v] =1 and ZC/’:1 E[Nv] = n

> Hence, achieving P[V = V] > % requires n 2 €M2
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Example 2: Gaussian Mean Estimation

e Simple example: Suppose that we have i.i.d. samples Y = (Y1,...,Y},) drawn from
either P+ : N(e,02) or P— : N(—¢,c?). When can we distinguish these two cases?
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Example 2: Gaussian Mean Estimation

e Simple example: Suppose that we have i.i.d. samples Y = (Y1,...,Y},) drawn from
either P+ : N(e,02) or P— : N(—¢,c?). When can we distinguish these two cases?

e Let A, be the event that P, is chosen (v € {4+, —}). By the weakened bound above,

Pr[A] = P-[A] < \/W: SD(P4P-) = \/f

. . . . 2 . . .
For instance, this is less than % if n < 4"?, and in this case, if we have

P.[A4] > 1 — 6 (a good event), then we must have P_[A_] < % + 6 (a bad event)
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Example 2: Gaussian Mean Estimation
e Simple example: Suppose that we have i.i.d. samples Y = (Y1,...,Y},) drawn from

either P+ : N(e,02) or P— : N(—¢,c?). When can we distinguish these two cases?

e Let A, be the event that P, is chosen (v € {4+, —}). By the weakened bound above,

Pr[A] = P-[A] < \/W: SD(P4P-) = \/f

. 2 . . .
% if n < Z5, and in this case, if we have
— 4e

P.[A4] > 1 — 6 (a good event), then we must have P_[A_] < % + 6 (a bad event)

For instance, this is less than

e Implication. The minimax risk for 1D Gaussian mean estimation satisfies
inf sup E[(1n — A(Y))?] > P[(u — A(Y))? > €3] > ——.
"

by setting €2 = % and considering v € {4, —} as occurring with probability % each.
(The above analysis leads to P[(1 — fi(Y))2 > €3] > 26 + 2 (% +6) > % via similar
steps to those we used via Fano's inequality.)
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Generalization 1: Using a Mixture Distribution

e A useful generalization:

» Suppose that we are required to “distinguish” Py from not only P1, but from all
of P1,..., Pk (or more generally a continuum of distributions)

» Obviously, if any drv(Po, P;) is small, this is a hard problem. Can we say more?

> Le Cam’s method using a mixture of distributions: For any non-negative
p=(p1,...,pux) with 37, pe =1, if we define Pp(-) = >, pi P, then
[Po[A] — Ppu[A]l < drv(Po, Pu)-

Using, we can get a hardness result not just from individual drv(Po, P;) being
small, but from dpv (Po, Py ) being small for any po = (p1,. .., pk)
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Example: Detecting a Hidden Clique
o Example:
> Goal: Reliably distinguish between the following two scenarios:

(i) Gisan ER(%) random graph (i.e., every edge included w.p. % independently)

(ii) An unknown set of k nodes is fully-connected (a clique) and the rest follow the
ER(%) model.
> Let Q be the distribution in (i), and let Ps be the distribution in (ii) when S is
the size-k subset of fully connected nodes.

k
> |t is not hard to show that dpv(Ps, Q) =1 — 2(2), which isn't useful (for a
hardness result we want to show that drv is small). The problem is that
drv(Ps, Q) doesn’t capture the fact that S is unknown.
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Example: Detecting a Hidden Clique
o Example:
> Goal: Reliably distinguish between the following two scenarios:

(i) Gisan ER(%) random graph (i.e., every edge included w.p. % independently)

(ii) An unknown set of k nodes is fully-connected (a clique) and the rest follow the
ER(%) model.
> Let Q be the distribution in (i), and let Ps be the distribution in (ii) when S is
the size-k subset of fully connected nodes.

k
> |t is not hard to show that dpv(Ps, Q) =1 — 2(2), which isn't useful (for a
hardness result we want to show that drv is small). The problem is that
drv(Ps, Q) doesn’t capture the fact that S is unknown.
1
()
» The x2-divergence turns out to be more convenient to work with, because it
satisfies the following nice property:

» However, P := Ps and Q are much closer!

Ps/(X)
C(Ex[Ps]. Q) = Bs.sr[Ere [550 ] -1
with S, S’ being independent draws from the (Z) possible k-cliques
> Skipping details, x2(P, Q) is small unless k, > 2log, n — 2log, log, n + constant

» Small x* implies small TV distance, which implies the problem can’t be solved
» The above bound is tight — if k, is any larger, then w.h.p. the ER(%) graph has no
kp-cliques, so the two distributions can be distinguished.
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Generalization 2: Assouad’s Method

e Note: Le Cam’s method only concerns the difficulty of distinguishing two
parameters/distributions (or mixtures thereof).

e Widely-used generalization. Assouad’s method concerns the difficulty of
distinguishing 29 parameters/distributions, interpreted as vertices of an d-dimensional
hypercube (i.e., representable as {£1}9)

» Intuition: Each dimension acts as a sub-problem, and we characterize the
difficulty of that sub-problem via Le Cam’s method

e Useful comparison of three methods: "Assouad, Fano, and Le Cam” [Yu, 1997]

> See also Chapter 15 of [Wainwright, 2019], lecture notes by John Duchi, or
lecture notes by Yihong Wu
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Example: Multivariate Gaussian Mean Estimation

o General statement: Consider a set of distributions Py, with v € {—1,1}9. If there
exists some § > 0 such that the loss function satisfies

£(0y,0,) > 25du(v,v')
with dy denoting Hamming distance, then minimax risk is lower bound as follows:
d
mfsupZ(O ) Z [1- dTV(P P

0

+_ 1 - _ _1
where P; _2d7—12v:vj:1P9v and P; —FZV;\Q:AP

@NUS Lower Bounds for Estimation and Learning | Jonathan Scarlett slide 11/ 18



Example: Multivariate Gaussian Mean Estimation

o General statement: Consider a set of distributions Py, with v € {—1,1}9. If there
exists some § > 0 such that the loss function satisfies

£(0y,0,) > 25du(v,v')
with dy denoting Hamming distance, then minimax risk is lower bound as follows:

d
mfsupZ(O ) Z 1—drv(P,P)]
0 =

+_ 1 - _ _1
where P; —2d7—12v:vj:1P9v and P; —FZV;W:AP

e Example: Consider Gaussian mean estimation with 6, = ev and £(6,6") = ||0 — ¢'||?
> This gives ||0, — 0,/]|%> = €2du(v, V'), so § = €2/2
> If Py consists of n independent observations with N(0, 21) noise, we can use
Pinsker's inequality (drv < +/Dkr./2) to get dTV(PJ.*, P) < \/2ne?/a?

> Substituting into the above lower bound gives
infsup £(0,0) > de? |1 — 1/2ne? /o2|.
nfsup (0,0) > e [1 — y/ane2 /o]

2 2
Setting €2 = Z- gives a lower bound with dependence "Td, which is tight
matched by the sample mean estimator
y
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Change-of-Measure Techniques



Multiplicative Change of Measure

e Le Cam’s method can be viewed as an additive change of measure (e.g.,
Pp[A] < Po[A] + drv (P, Q))

e Multiplicative change of measure: Relate the probability of a success event A
under two different distributions P(y), Q(y) as follows

P(Y)
Q(Y)

PplA] < PP[ > v] Pl Al

where « is an arbitrary threshold
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Multiplicative Change of Measure

e Le Cam’s method can be viewed as an additive change of measure (e.g.,
Pp[A] < Po[A] + drv (P, Q))

e Multiplicative change of measure: Relate the probability of a success event A
under two different distributions P(y), Q(y) as follows

P(Y)
Pp[A] <P > Po[A
A < B[ o > 7] +Foll
where « is an arbitrary threshold
e Applications:

» Channel coding [Wolfowitz, 1957]
[Verdd and Han, 1994]
> Multi-armed bandits [Lai and Robbins, 1985]
[Kaufmann et al., 2016]
> Statistical estimation [Tsybakov, 2009]
[Venkataramanan and Johnson, 2018]
> Sparse recovery & group testing [Scarlett and Cevher, 2017]
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Example: Binary Hypothesis Testing

e Example: Binary hypothesis testing

> Goal: Given samples X = (X, ..., X,) i.i.d. from either P or Q, output 1 for P
and 0 for Q. Let T denote the output.

> Example question: If Pp[T = 1] > 0.99, how does Pg[T = 1] behave w.r.t n?
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Example: Binary Hypothesis Testing

e Example: Binary hypothesis testing

> Goal: Given samples X = (X, ..., X,) i.i.d. from either P or Q, output 1 for P
and 0 for Q. Let T denote the output.

> Example question: If Pp[T = 1] > 0.99, how does Pg[T = 1] behave w.r.t n?

> Analysis:
P Let A be the event that T = 1. The previous slide gives
Pp [% > 7] + 4Po[T = 1] > 0.99

X)
P Write the condition 5288 >yas ), log %;’;_; > logy, and notice that

Pp [% > v] — 0 if log v is slightly above nD(P||Q) (law of large numbers)
P This implies for n large enough that vPo[T = 1] > 0.98.
> Since v is roughly e™("II® we conclude that Po[T = 1] > e~ "P(PIQ)

> This lower bound is tight; there exist testing strategies that get
Po[T =1] > 0.99 and Pg[T = 1] < e "P(PIQ),
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User-Friendly Simplifications

e Note: For all of the above methods, they are not necessarily applied “from scratch®;
instead, "user-friendly” simplifications are often applied

e Example 1: Tsyabkov's textbook on non-parametric estimation gives “Fano-like"
tools for minimax lower bounds that can be applied directly given:

(i) 61,...,0n separated by distance 26

Y)) > 7'] for some

(ii) Bounds on quantities like & >=, D(Pj||Po) or 4 >, Pj[,’;?((Y

“null distribution” Pg.
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User-Friendly Simplifications

e Note: For all of the above methods, they are not necessarily applied “from scratch®;
instead, "user-friendly” simplifications are often applied

e Example 1: Tsyabkov's textbook on non-parametric estimation gives “Fano-like"
tools for minimax lower bounds that can be applied directly given:

(i) 61,...,0n separated by distance 26
(i) Bounds on quantities like 7; Z ~1 D(Pj||Po) or +; EM P; [
“null distribution” Pg.

> 7] for some

e Example 2: In sequential decision-making involving K distributions (e.g., arms)
v1,...,Vk, Kaufmann et al.'s “information complexity’” paper gives a result of the form

1
ZIEV[NZ l/a||u)>|og246
where:
» v, v are any two instances for which the algorithm must output different results;
> § is the maximum allowed error probability;
» N, is the number of times a sample from v, is taken.

This result comes from a type of data processing inequality, and the proof also uses
ideas from multiplicative change of measure
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Lower Bounds Based on
Communication Complexity



Very Brief Introduction to Communication Complexity

o Communication complexity is a major topic in theoretical computer science, and is
not only of independent interest, but also has extensive uses in proving lower bounds

e Setup: (2-agent 2-way case)

» Two agents Alice and Bob are given strings x and y respectively, and their goal is
to compute some function f(x,y)

» The communication complexity is the number of noiseless bits that need to be
exchanged (summed over both directions) to achieve this

> Allowing zero error probability can be too stringent, so it is common to allow
randomization and to succeed with probability 1 — ¢

» The randomness may be private to one agent, or common to both (public)
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Very Brief Introduction to Communication Complexity

o Communication complexity is a major topic in theoretical computer science, and is
not only of independent interest, but also has extensive uses in proving lower bounds

e Setup: (2-agent 2-way case)

» Two agents Alice and Bob are given strings x and y respectively, and their goal is
to compute some function f(x,y)

» The communication complexity is the number of noiseless bits that need to be
exchanged (summed over both directions) to achieve this

> Allowing zero error probability can be too stringent, so it is common to allow
randomization and to succeed with probability 1 — ¢

» The randomness may be private to one agent, or common to both (public)

e Example 1: (EQUALS) If f(x,y) = 1{x =y} with length-n strings, then:
> With deterministic protocols, £2(n) bits must be communicated

> With common randomness, this drops to O(log n) or even O(1), e.g., by sharing
hash values and declaring '"YES' if they all match

e Example 2: (DISJOINT) If f(x,y) = 1{{i : x; = 1} is disjoint from {i : y; = 1}},
then Q(n) bits must be communicated even if randomization is allowed.
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Example: Storage Requirements for Streaming Algorithms

e Streaming distinct elements problem: An algorithm processes a stream az,...,an
of integers in {1,...,n} and seeks to output the number of distinct elements. The
memory is limited and not all numbers can be stored.

e Claim: Any deterministic algorithm for this task requires (n) memory.
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Example: Storage Requirements for Streaming Algorithms

e Streaming distinct elements problem: An algorithm processes a stream az,...,an
of integers in {1,...,n} and seeks to output the number of distinct elements. The
memory is limited and not all numbers can be stored.

e Claim: Any deterministic algorithm for this task requires (n) memory.

e Proof outline: Show that solving this problem implies solving EQUALS(x, y)

> Let Ly ={i : x; =1} and L, = {i : y; = 1}, so that “x; = 1" means “integer /
appears in the Alice's list” (similarly for y and Bob)

» Bob computes the number L,

» Alice runs the streaming algorithm on Ly and passes the memory contents to
Bob, who continues running it on L. Alice also sends Bob the number of distinct
elements in Ly (using O(log n) bits).

»> Now Bob also knows the number of distinct elements in L, UL,

» If the number of distinct elements in Ly, Ly, and Ly U L, are all the same, then
he declares EQUALS(x, y)=1, otherwise 0.

Since EQUALS requires Q(n) communication, it follows that distinct elements requires
Q(n) storage.

e Similar kinds of reductions are possible for randomized algorithms, but the reduction
uses DISJOINT(x, y) instead of EQUALS(x, y).
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Other Uses

Lower bounds based on communication complexity have appeared in many areas:
> Query complexity in property testing
Number of measurements in compressive sensing problems
Boolean circuit complexity

| 4
>
» Game theory (truthfulness vs. accuracy)
>
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Summary
e Summary: Many useful lower bounding techniques from statistics, information
theory, and theoretical computer science:
» Fano's inequality
Le Cam’s method
Assouad'’s method

Multiplicative change of measure

vVvyVvyy

Communication complexity based
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Summary
e Summary: Many useful lower bounding techniques from statistics, information
theory, and theoretical computer science:
» Fano's inequality
Le Cam’s method
Assouad'’s method

Multiplicative change of measure

vVvyVvyy

Communication complexity based

Many techniques/ideas not covered today:

> Direct analysis of the optimal estimator

Other tools from statistics (e.g., Cramér-Rao bound)

From high-dimensional probability (e.g., Sudakov's inequality)
Bounds for restricted algorithms (e.g., statistical query lower bounds)

| 4
| 4
| 4
» Computational hardness (e.g., NP-hard, SETH-hard)
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Summary

RENUS

Summary: Many useful lower bounding techniques from statistics, information

theory, and theoretical computer science:

» Fano's inequality
Le Cam’s method
Assouad'’s method

Multiplicative change of measure

vVvyVvyy

Communication complexity based

Many techniques/ideas not covered today:
» Direct analysis of the optimal estimator

» Other tools from statistics (e.g., Cramér-Rao bound)

»> From high-dimensional probability (e.g., Sudakov's inequality)

> Bounds for restricted algorithms (e.g., statistical query lower bounds)
» Computational hardness (e.g., NP-hard, SETH-hard)

Further reading:

> Google theinformaticists lower bounds lecture X where X € {1,...,9}
» Tsybakov's book Introduction to Nonparametric Estimation

» John Duchi's lecture notes / Yihong Wu's lecture notes
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