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Preliminaries: Measuring Distances Between Distributions

• Divergences/distances we will use:
▶ KL divergence:

D(P∥Q) = EP

[
log

P(X )

Q(X )

]
▶ TV distance:

dTV(P,Q) = sup
A

|P(A)− Q(A)|

where sup(·) is over all events. If discrete, dTV(P,Q) = 1
2
∑

x |P(x)− Q(x)|; if
continuous dTV(P,Q) = 1

2

∫
|P(x)− Q(x)|dx .

▶ χ2-divergence:

χ2(P,Q) = EQ

[(P(X )

Q(X )
− 1

)2]
or expanding the square gives χ2(P,Q) = EP

[ P(X )
Q(X )

]
− 1.

• Other useful ones (that we won’t use here):
▶ Hellinger distance
▶ Wasserstein distances
▶ Generalizations of the above (e.g., f -divergences, Rényi divergences)
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Properties (I)

Example uses/results:
▶ As mentioned earlier, e−nD(P∥Q) is roughly the probability of symbol proportions

P when we draw n i.i.d. samples from Q

▶ TV norm naturally leads to additive change of measure:

PP [A] ≤ PQ [A] + dTV(P,Q),

e.g., where A is some “success” event that has low probability under Q

Example properties:
▶ Non-negativity: All are ≥ 0 with equality if and only if P = Q.
▶ Tensorization: D(

∏
i Pi∥

∏
i Qi ) =

∑
i D(Pi∥Qi ) (more generally chain rule). For

dTV only ≤ instead of =. For χ2 we get an equality with
∏

i (1 + χ2(Pi .Qi ))− 1.
▶ Triangle inequality: dTV satisfies triangle inequality, KL and χ2 don’t

▶ Data processing inequality: D(PY ∥QY ) ≤ D(PX ∥QX ) if PX

PY |X→ PY and

QX

PY |X→ QY . This also holds for TV, χ2, and others.
▶ Variational forms: e.g., D(P∥Q) = supf EP [f (X )]− logEQ [e

f (X )]

See Yihong Wu’s lecture notes for a lot more on the above concepts.

Lower Bounds for Estimation and Learning | Jonathan Scarlett Slide 3/ 18



Properties (I)

Example uses/results:
▶ As mentioned earlier, e−nD(P∥Q) is roughly the probability of symbol proportions

P when we draw n i.i.d. samples from Q

▶ TV norm naturally leads to additive change of measure:

PP [A] ≤ PQ [A] + dTV(P,Q),

e.g., where A is some “success” event that has low probability under Q

Example properties:
▶ Non-negativity: All are ≥ 0 with equality if and only if P = Q.
▶ Tensorization: D(

∏
i Pi∥

∏
i Qi ) =

∑
i D(Pi∥Qi ) (more generally chain rule). For

dTV only ≤ instead of =. For χ2 we get an equality with
∏

i (1 + χ2(Pi .Qi ))− 1.
▶ Triangle inequality: dTV satisfies triangle inequality, KL and χ2 don’t

▶ Data processing inequality: D(PY ∥QY ) ≤ D(PX ∥QX ) if PX

PY |X→ PY and

QX

PY |X→ QY . This also holds for TV, χ2, and others.
▶ Variational forms: e.g., D(P∥Q) = supf EP [f (X )]− logEQ [e

f (X )]

See Yihong Wu’s lecture notes for a lot more on the above concepts.

Lower Bounds for Estimation and Learning | Jonathan Scarlett Slide 3/ 18



Properties (II)

Example relations:
▶ Pinsker’s inequality:

dTV(P,Q) ≤
√

1
2
D(P∥Q)

▶ If the PMF (or PDF) is uniformly lower bounded, a similar lower bound holds

▶ Bretagnolle-Huber inequality:

dTV(P,Q) ≤
√

1 − e−D(P∥Q).

▶ χ2 divergence upper bound:

D(P∥Q) ≤ log(1 + χ2(P,Q)) ≤ χ2(P,Q).
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Le Cam & Assouad Methods



Le Cam’s Method
• Let P0(y) and P1(y) be two distributions on the observations

• A very basic inequality (essentially by definition):

|P0[A]− P1[A]| ≤ dTV(P0,P1)

for any event A

▶ This is a simple form of Le Cam’s method (more general form later based on sets
of distributions)

▶ We can use this inequality to lower bound hypothesis testing error probability in
terms of TV norm

• Weakened version (via Pinsker’s inequality):

|P0[A]− P1[A]| ≤
√

1
2
D(P1∥P0)

(could also swap P0 and P1 on the right-hand side)

• Applications:
▶ Statistical estimation [Le Cam, 1973]
▶ Multi-armed bandits [Auer et al., 1995]
▶ Black-box optimization [Scarlett et al., 2017]
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Example 1: Finding a Biased Coin

• A simple search problem: Find the (only) biased coin using few flips

| {z } | {z }
P[heads] = 1

2 P[heads] = 1
2

P[heads] = 1
2 + ✏

▶ Heavy coin V ∈ {1, . . . ,M} uniformly at random
▶ Selected coin at time i = 1, . . . , n is Xi , observation is Yi ∈ {0, 1} (1 for heads)

• Note: This is a simple example of the multi-armed bandit problem, for which similar
analysis techniques have also given tight lower bounds
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Example 1: Finding a Biased Coin
• A simple search problem: Find the (only) biased coin using few flips
▶ Heavy coin V ∈ {1, . . . ,M} uniformly at random
▶ Selected coin at time i = 1, . . . , n is Xi , observation is Yi ∈ {0, 1} (1 for heads)

• Analysis:
▶ Apply weakened bound above to get

Pv [V̂ = v ] ≤ P0[V̂ = v ] +

√
1
2
D(P0∥Pv )

where Pv (y) corresponds to V = v , and P0(y) corresponds to all fair coins

▶ By chain rule for KL divergence and the fact that only coin v differs:

D(P0∥Pv ) ≲ E0[Nv ]ϵ
2

where Nv is the number of flips of coin v (Note: KL( 1
2∥

1
2 + ϵ) ≃ ϵ2)

▶ Apply 1
M

∑M
v=1 on both sides of first step, then Jensen’s inequality:

P[V̂ = V ] ≲
1
M

+

√
nϵ2

M

since
∑M

v=1 P0[V̂ = v ] = 1 and
∑M

v=1 E[Nv ] = n

▶ Hence, achieving P[V̂ = V ] ≥ 1
2 requires n ≳ M

ϵ2
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Example 2: Gaussian Mean Estimation

• Simple example: Suppose that we have i.i.d. samples Y = (Y1, . . . ,Yn) drawn from
either P+ : N(ϵ, σ2) or P− : N(−ϵ, σ2). When can we distinguish these two cases?

• Let Av be the event that Pv is chosen (v ∈ {+,−}). By the weakened bound above,

|P+[Av ]− P−[Av ]| ≤
√

1
2
D(Pn

+∥Pn
−) =

√
n

2
D(P+∥P−) =

√
nϵ2

σ2 .

For instance, this is less than 1
2 if n ≤ σ2

4ϵ2 , and in this case, if we have
P+[A+] ≥ 1 − δ (a good event), then we must have P−[A−] ≤ 1

2 + δ (a bad event)

• Implication. The minimax risk for 1D Gaussian mean estimation satisfies

inf
µ̂

sup
µ

E[(µ− µ̂(Y))2] ≥ ϵ2P[(µ− µ̂(Y))2 ≥ ϵ2] ≥
σ2

16n
.

by setting ϵ2 = σ2

4n and considering v ∈ {+,−} as occurring with probability 1
2 each.

(The above analysis leads to P[(µ− µ̂(Y))2 ≥ ϵ2] ≥ 1
2 δ +

1
2

( 1
2 + δ

)
≥ 1

4 via similar
steps to those we used via Fano’s inequality.)
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Generalization 1: Using a Mixture Distribution

• A useful generalization:
▶ Suppose that we are required to “distinguish” P0 from not only P1, but from all

of P1, . . . ,PK (or more generally a continuum of distributions)
▶ Obviously, if any dTV(P0,Pi ) is small, this is a hard problem. Can we say more?
▶ Le Cam’s method using a mixture of distributions: For any non-negative

µ = (µ1, . . . , µK ) with
∑

k µk = 1, if we define Pµ(·) =
∑

k µkPk , then

|P0[A]− Pµ[A]| ≤ dTV(P0,Pµ).

Using, we can get a hardness result not just from individual dTV(P0,Pi ) being
small, but from dTV(P0,Pµ) being small for any µ = (µ1, . . . , µk )
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Example: Detecting a Hidden Clique
• Example:
▶ Goal: Reliably distinguish between the following two scenarios:

(i) G is an ER
( 1

2
)

random graph (i.e., every edge included w.p. 1
2 independently)

(ii) An unknown set of k nodes is fully-connected (a clique) and the rest follow the
ER

( 1
2
)

model.

▶ Let Q be the distribution in (i), and let PS be the distribution in (ii) when S is
the size-k subset of fully connected nodes.

▶ It is not hard to show that dTV(PS ,Q) = 1 − 2
(
k
2

)
, which isn’t useful (for a

hardness result we want to show that dTV is small). The problem is that
dTV(PS ,Q) doesn’t capture the fact that S is unknown.

▶ However, P := 1(
n
k

)PS and Q are much closer!

▶ The χ2-divergence turns out to be more convenient to work with, because it
satisfies the following nice property:

χ2(EK [PS ],Q) = ES,S′

[
EPS

[PS′ (X )

Q(X )

]]
− 1

with S ,S ′ being independent draws from the
(n
k

)
possible k-cliques

▶ Skipping details, χ2(P,Q) is small unless kn ≳ 2 log2 n− 2 log2 log2 n+ constant
▶ Small χ2 implies small TV distance, which implies the problem can’t be solved
▶ The above bound is tight – if kn is any larger, then w.h.p. the ER

( 1
2
)

graph has no
kn-cliques, so the two distributions can be distinguished.
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Generalization 2: Assouad’s Method

• Note: Le Cam’s method only concerns the difficulty of distinguishing two
parameters/distributions (or mixtures thereof).

• Widely-used generalization. Assouad’s method concerns the difficulty of
distinguishing 2d parameters/distributions, interpreted as vertices of an d-dimensional
hypercube (i.e., representable as {±1}d )
▶ Intuition: Each dimension acts as a sub-problem, and we characterize the

difficulty of that sub-problem via Le Cam’s method

• Useful comparison of three methods: “Assouad, Fano, and Le Cam” [Yu, 1997]
▶ See also Chapter 15 of [Wainwright, 2019], lecture notes by John Duchi, or

lecture notes by Yihong Wu
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Example: Multivariate Gaussian Mean Estimation
• General statement: Consider a set of distributions Pθv with v ∈ {−1, 1}d . If there
exists some δ > 0 such that the loss function satisfies

ℓ(θv , θv′ ) ≥ 2δdH(v , v ′)

with dH denoting Hamming distance, then minimax risk is lower bound as follows:

inf
θ̂

sup
θ

ℓ(θ, θ̂) ≥ δ
d∑

i=1

[
1 − dTV(P+

j ,P−
j )

]
where P+

j = 1
2d−1

∑
v : vj=1 Pθv and P−

j = 1
2d−1

∑
v : vj=−1 Pθv

• Example: Consider Gaussian mean estimation with θv = ϵv and ℓ(θ, θ′) = ∥θ− θ′∥2

▶ This gives ∥θv − θv′∥2 = ϵ2dH(v , v ′), so δ = ϵ2/2
▶ If Pθ consists of n independent observations with N(0, σ2I) noise, we can use

Pinsker’s inequality (dTV ≤
√

DKL/2) to get dTV(P+
j ,P−

j ) ≤
√

2nϵ2/σ2

▶ Substituting into the above lower bound gives

inf
θ̂

sup
θ

ℓ(θ, θ̂) ≥ dϵ2
[
1 −

√
2nϵ2/σ2

]
.

Setting ϵ2 = σ2

8n gives a lower bound with dependence σ2d
n

, which is tight
(matched by the sample mean estimator)
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Change-of-Measure Techniques



Multiplicative Change of Measure

• Le Cam’s method can be viewed as an additive change of measure (e.g.,
PP [A] ≤ PQ [A] + dTV(P,Q))

• Multiplicative change of measure: Relate the probability of a success event A
under two different distributions P(y),Q(y) as follows

PP [A] ≤ PP

[
P(Y)

Q(Y)
> γ

]
+ γPQ [A],

where γ is an arbitrary threshold

• Applications:
▶ Channel coding [Wolfowitz, 1957]

[Verdú and Han, 1994]
▶ Multi-armed bandits [Lai and Robbins, 1985]

[Kaufmann et al., 2016]
▶ Statistical estimation [Tsybakov, 2009]

[Venkataramanan and Johnson, 2018]
▶ Sparse recovery & group testing [Scarlett and Cevher, 2017]
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Example: Binary Hypothesis Testing

• Example: Binary hypothesis testing
▶ Goal: Given samples X = (X1, . . . ,Xn) i.i.d. from either P or Q, output 1 for P

and 0 for Q. Let T denote the output.
▶ Example question: If PP [T = 1] ≥ 0.99, how does PQ [T = 1] behave w.r.t n?

▶ Analysis:
▶ Let A be the event that T = 1. The previous slide gives

PP

[
Pn(X)
Qn(X) > γ

]
+ γPQ [T = 1] ≥ 0.99

▶ Write the condition Pn(X)
Qn(X) > γ as

∑n
i=1 log

P(Xi )

Q(Xi )
> log γ, and notice that

PP

[ Pn(X)
Qn(X) > γ

]
→ 0 if log γ is slightly above nD(P∥Q) (law of large numbers)

▶ This implies for n large enough that γPQ [T = 1] ≥ 0.98.
▶ Since γ is roughly enD(P∥Q), we conclude that PQ [T = 1] ≳ e−nD(P∥Q)

▶ This lower bound is tight; there exist testing strategies that get
PQ [T = 1] ≥ 0.99 and PQ [T = 1] ≲ e−nD(P∥Q).
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User-Friendly Simplifications
• Note: For all of the above methods, they are not necessarily applied “from scratch“;
instead, “user-friendly” simplifications are often applied

• Example 1: Tsyabkov’s textbook on non-parametric estimation gives “Fano-like”
tools for minimax lower bounds that can be applied directly given:

(i) θ1, . . . , θM separated by distance 2δ

(ii) Bounds on quantities like 1
M

∑M
j=1 D(Pj∥P0) or 1

M

∑M
j=1 Pj

[P0(Y)
Pj (Y)

≥ τ
]

for some
“null distribution” P0.

• Example 2: In sequential decision-making involving K distributions (e.g., arms)
ν1, . . . , νK , Kaufmann et al.’s “information complexity” paper gives a result of the form

K∑
a=1

Eν [Na]D(νa∥ν′a) ≥ log
1

2.4δ
,

where:
▶ ν, ν′ are any two instances for which the algorithm must output different results;
▶ δ is the maximum allowed error probability;
▶ Na is the number of times a sample from νa is taken.

This result comes from a type of data processing inequality, and the proof also uses
ideas from multiplicative change of measure
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Lower Bounds Based on
Communication Complexity



Very Brief Introduction to Communication Complexity

• Communication complexity is a major topic in theoretical computer science, and is
not only of independent interest, but also has extensive uses in proving lower bounds

• Setup: (2-agent 2-way case)
▶ Two agents Alice and Bob are given strings x and y respectively, and their goal is

to compute some function f (x, y)
▶ The communication complexity is the number of noiseless bits that need to be

exchanged (summed over both directions) to achieve this
▶ Allowing zero error probability can be too stringent, so it is common to allow

randomization and to succeed with probability 1 − δ

▶ The randomness may be private to one agent, or common to both (public)

• Example 1: (EQUALS) If f (x, y) = 1{x = y} with length-n strings, then:
▶ With deterministic protocols, Ω(n) bits must be communicated
▶ With common randomness, this drops to O(log n) or even O(1), e.g., by sharing

hash values and declaring ’YES’ if they all match

• Example 2: (DISJOINT) If f (x, y) = 1{{i : xi = 1} is disjoint from {i : yi = 1}},
then Ω(n) bits must be communicated even if randomization is allowed.
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Example: Storage Requirements for Streaming Algorithms

• Streaming distinct elements problem: An algorithm processes a stream a1, . . . , an
of integers in {1, . . . , n} and seeks to output the number of distinct elements. The
memory is limited and not all numbers can be stored.

• Claim: Any deterministic algorithm for this task requires Ω(n) memory.

• Proof outline: Show that solving this problem implies solving EQUALS(x , y)
▶ Let Lx = {i : xi = 1} and Ly = {i : yi = 1}, so that “xi = 1” means “integer i

appears in the Alice’s list” (similarly for y and Bob)
▶ Bob computes the number Ly

▶ Alice runs the streaming algorithm on Lx and passes the memory contents to
Bob, who continues running it on Ly . Alice also sends Bob the number of distinct
elements in Lx (using O(log n) bits).

▶ Now Bob also knows the number of distinct elements in Lx ∪ Ly

▶ If the number of distinct elements in Lx , Ly , and Lx ∪ Ly are all the same, then
he declares EQUALS(x , y)=1, otherwise 0.

Since EQUALS requires Ω(n) communication, it follows that distinct elements requires
Ω(n) storage.

• Similar kinds of reductions are possible for randomized algorithms, but the reduction
uses DISJOINT(x , y) instead of EQUALS(x , y).
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Other Uses

Lower bounds based on communication complexity have appeared in many areas:
▶ Query complexity in property testing
▶ Number of measurements in compressive sensing problems
▶ Boolean circuit complexity
▶ Game theory (truthfulness vs. accuracy)
▶ . . .
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Summary
• Summary: Many useful lower bounding techniques from statistics, information
theory, and theoretical computer science:
▶ Fano’s inequality
▶ Le Cam’s method
▶ Assouad’s method
▶ Multiplicative change of measure
▶ Communication complexity based

• Many techniques/ideas not covered today:
▶ Direct analysis of the optimal estimator
▶ Other tools from statistics (e.g., Cramér-Rao bound)
▶ From high-dimensional probability (e.g., Sudakov’s inequality)
▶ Bounds for restricted algorithms (e.g., statistical query lower bounds)
▶ Computational hardness (e.g., NP-hard, SETH-hard)

• Further reading:
▶ Google theinformaticists lower bounds lecture X where X ∈ {1, . . . , 9}
▶ Tsybakov’s book Introduction to Nonparametric Estimation
▶ John Duchi’s lecture notes / Yihong Wu’s lecture notes
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