Inverse problems for power sums

September 4, 2023

What is a power sum?

- Let z_{1}, \ldots, z_{n} and b_{1}, \ldots, b_{n} be complex numbers.

What is a power sum?

- Let z_{1}, \ldots, z_{n} and b_{1}, \ldots, b_{n} be complex numbers. Power sums are objects of the form:

$$
\sum_{\ell=1}^{n} b_{\ell} z_{\ell}^{k}, \quad k=1,2,3, \ldots
$$

What is a power sum?

- Let z_{1}, \ldots, z_{n} and b_{1}, \ldots, b_{n} be complex numbers. Power sums are objects of the form:

$$
\sum_{\ell=1}^{n} b_{\ell} z_{\ell}^{k}, \quad k=1,2,3, \ldots
$$

- First introduced by Turán (1947) in connection with the zeros of the Riemann zeta function and the theory and applications have been developed by Turán and many others since.

What is a power sum?

- Let z_{1}, \ldots, z_{n} and b_{1}, \ldots, b_{n} be complex numbers. Power sums are objects of the form:

$$
\sum_{\ell=1}^{n} b_{\ell} z_{\ell}^{k}, \quad k=1,2,3, \ldots
$$

- First introduced by Turán (1947) in connection with the zeros of the Riemann zeta function and the theory and applications have been developed by Turán and many others since. This theory has applications to numerous areas including:

What is a power sum?

- Let z_{1}, \ldots, z_{n} and b_{1}, \ldots, b_{n} be complex numbers. Power sums are objects of the form:

$$
\sum_{\ell=1}^{n} b_{\ell} z_{\ell}^{k}, \quad k=1,2,3, \ldots
$$

- First introduced by Turán (1947) in connection with the zeros of the Riemann zeta function and the theory and applications have been developed by Turán and many others since. This theory has applications to numerous areas including:
(1) Theory of functions

What is a power sum?

- Let z_{1}, \ldots, z_{n} and b_{1}, \ldots, b_{n} be complex numbers. Power sums are objects of the form:

$$
\sum_{\ell=1}^{n} b_{\ell} z_{\ell}^{k}, \quad k=1,2,3, \ldots
$$

- First introduced by Turán (1947) in connection with the zeros of the Riemann zeta function and the theory and applications have been developed by Turán and many others since. This theory has applications to numerous areas including:
(1) Theory of functions
(2) Trascendental number theory

What is a power sum?

- Let z_{1}, \ldots, z_{n} and b_{1}, \ldots, b_{n} be complex numbers. Power sums are objects of the form:

$$
\sum_{\ell=1}^{n} b_{\ell} z_{\ell}^{k}, \quad k=1,2,3, \ldots
$$

- First introduced by Turán (1947) in connection with the zeros of the Riemann zeta function and the theory and applications have been developed by Turán and many others since. This theory has applications to numerous areas including:
(1) Theory of functions
(2) Trascendental number theory
(3) Numerical algebra

What is a power sum?

- Let z_{1}, \ldots, z_{n} and b_{1}, \ldots, b_{n} be complex numbers. Power sums are objects of the form:

$$
\sum_{\ell=1}^{n} b_{\ell} z_{\ell}^{k}, \quad k=1,2,3, \ldots
$$

- First introduced by Turán (1947) in connection with the zeros of the Riemann zeta function and the theory and applications have been developed by Turán and many others since. This theory has applications to numerous areas including:
(1) Theory of functions
(2) Trascendental number theory
(3) Numerical algebra
(4) Differential equations

What is a power sum?

- Let z_{1}, \ldots, z_{n} and b_{1}, \ldots, b_{n} be complex numbers. Power sums are objects of the form:

$$
\sum_{\ell=1}^{n} b_{\ell} z_{\ell}^{k}, \quad k=1,2,3, \ldots
$$

- First introduced by Turán (1947) in connection with the zeros of the Riemann zeta function and the theory and applications have been developed by Turán and many others since. This theory has applications to numerous areas including:
(1) Theory of functions

2 Trascendental number theory
(3) Numerical algebra
(4) Differential equations
(5) Zeros of L-functions and estimates for primes

What is a power sum?

- For such applications one requires lower bounds on power sums.

What is a power sum?

- For such applications one requires lower bounds on power sums.
- This talk will mainly be focused on applications of Turán's bounds to L-functions.

Fundamental estimates for power sums

- Turán's first main theorem states: For any complex numbers $b_{1}, \ldots, b_{n}, z_{1}, \ldots, z_{n}$ with each $\left|z_{i}\right| \geq 1$ and any integer m we have

$$
\max _{m+1 \leq \ell \leq m+n}\left|\sum_{i=1}^{n} b_{i} z_{i}^{\ell}\right| \geq\left(\frac{n}{2 e(m+n)}\right)^{n}\left|\sum_{i=1}^{n} b_{i}\right|
$$

Fundamental estimates for power sums

- Turán's second main theorem states: For any complex numbers $b_{1}, \ldots, b_{n}, z_{1}, \ldots, z_{n}$ with $\max _{i}\left|z_{i}\right|=1$ and any integer m we have

$$
\max _{m+1 \leq \ell \leq m+n}\left|\sum_{i=1}^{n} b_{i} z_{i}^{\ell}\right| \geq\left(\frac{n}{8 e(m+n)}\right)^{n} \min _{k}\left|\sum_{i=1}^{k} b_{i}\right|
$$

How are power sums connected to zeros of L-functions

How are power sums connected to zeros of L-functions

- Recall the Riemann zeta function is defined by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

How are power sums connected to zeros of L-functions

- Recall the Riemann zeta function is defined by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

- The main interest of ζ to number theory is it's connection to primes via the Euler product:

$$
\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

How are power sums connected to zeros of L-functions

- Recall the Riemann zeta function is defined by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

- The main interest of ζ to number theory is it's connection to primes via the Euler product:

$$
\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

- $(s-1) \zeta(s)$ is an entire function of order 1 and hence can be expressed as a Hadamard product over zeros:

$$
(s-1) \zeta(s)=\prod_{\rho}\left(1-\frac{s}{\rho}\right) e^{s / \rho}
$$

Power sums and the zeros of ζ

- The Riemann hypothesis states that all zeros of ζ with real part >0 have real part 1/2.

Power sums and the zeros of ζ

- The Riemann hypothesis states that all zeros of ζ with real part >0 have real part $1 / 2$. This would have implications to the distribution of primes.

Power sums and the zeros of ζ

- The Riemann hypothesis states that all zeros of ζ with real part >0 have real part $1 / 2$. This would have implications to the distribution of primes.
- This conjecture (probably) won't be established any time soon.

Power sums and the zeros of ζ

- The Riemann hypothesis states that all zeros of ζ with real part >0 have real part $1 / 2$. This would have implications to the distribution of primes.
- This conjecture (probably) won't be established any time soon. Power sums allow us to say interesting things about the primes from partial knowledge about the zeros.

Power sums and the zeros of ζ

- Suppose we want to study how the zeros of ζ are distributed in some region D :

Power sums and the zeros of ζ

- Suppose we want to study how the zeros of ζ are distributed in some region D : Choose a point $s_{0} \in D$, differentiate $\log \zeta k$ times then evaluate at s_{0} : By the Hadamard product

Power sums and the zeros of ζ

- Suppose we want to study how the zeros of ζ are distributed in some region D : Choose a point $s_{0} \in D$, differentiate $\log \zeta k$ times then evaluate at s_{0} : By the Hadamard product

$$
(-1)^{k}(k-1)!\sum_{\rho} \frac{1}{\left(s_{0}-\rho\right)^{k}} \approx \frac{d^{k} \log \zeta\left(s_{0}\right)}{d s^{k}}
$$

Power sums and the zeros of ζ

- Suppose we want to study how the zeros of ζ are distributed in some region D : Choose a point $s_{0} \in D$, differentiate $\log \zeta k$ times then evaluate at s_{0} : By the Hadamard product

$$
(-1)^{k}(k-1)!\sum_{\rho} \frac{1}{\left(s_{0}-\rho\right)^{k}} \approx \frac{d^{k} \log \zeta\left(s_{0}\right)}{d s^{k}} .
$$

- If k is chosen large enough, the sum on the LHS of the above is dominated by ρ close to s_{0} :

$$
(-1)^{k}(k-1)!\sum_{\rho \text { close to } s_{0}} \frac{1}{\left(s_{0}-\rho\right)^{k}} \approx \frac{d^{k} \log \zeta\left(s_{0}\right)}{d s^{k}} .
$$

Power sums and the zeros of ζ

- Suppose we want to study how the zeros of ζ are distributed in some region D : Choose a point $s_{0} \in D$, differentiate $\log \zeta k$ times then evaluate at s_{0} : By the Hadamard product

$$
(-1)^{k}(k-1)!\sum_{\rho} \frac{1}{\left(s_{0}-\rho\right)^{k}} \approx \frac{d^{k} \log \zeta\left(s_{0}\right)}{d s^{k}} .
$$

- If k is chosen large enough, the sum on the LHS of the above is dominated by ρ close to s_{0} :

$$
(-1)^{k}(k-1)!\sum_{\rho \text { close to } s_{0}} \frac{1}{\left(s_{0}-\rho\right)^{k}} \approx \frac{d^{k} \log \zeta\left(s_{0}\right)}{d s^{k}} \text {. }
$$

By Jenson's formula, there's not too many ρ close to s_{0}, hence we're in a position to apply Turán's fundamental theorems.

Power sums and the zeros of ζ

- The Guinand-Weil explicit formula states that for any sufficiently nice function f :

$$
\sum_{\rho} \widehat{f}(i(\rho-1 / 2)) \approx \sum_{p} \frac{\log p}{p^{1 / 2}} f(\log p)
$$

Suppose we want to study how the zeros of ζ are distributed in some region D :

Power sums and the zeros of ζ

- The Guinand-Weil explicit formula states that for any sufficiently nice function f :

$$
\sum_{\rho} \widehat{f}(i(\rho-1 / 2)) \approx \sum_{p} \frac{\log p}{p^{1 / 2}} f(\log p)
$$

Suppose we want to study how the zeros of ζ are distributed in some region D : Choose f such that the mass of \widehat{f} concentrates in D and decays rapidly outside of D.

Power sums and the zeros of ζ

- The Guinand-Weil explicit formula states that for any sufficiently nice function f :

$$
\sum_{\rho} \widehat{f}(i(\rho-1 / 2)) \approx \sum_{p} \frac{\log p}{p^{1 / 2}} f(\log p)
$$

Suppose we want to study how the zeros of ζ are distributed in some region D : Choose f such that the mass of \widehat{f} concentrates in D and decays rapidly outside of D.

- Let $f^{(k)}$ denote the k-fold convolution of f and apply the above with $f \rightarrow f^{(k)}$ to get

$$
\sum_{\rho}(\widehat{f}(i(\rho-1 / 2)))^{k} \approx \sum_{p} \frac{\log p}{p^{1 / 2}} f^{(k)}(\log p)
$$

Power sums and the zeros of ζ

- The Guinand-Weil explicit formula states that for any sufficiently nice function f :

$$
\sum_{\rho} \widehat{f}(i(\rho-1 / 2)) \approx \sum_{p} \frac{\log p}{p^{1 / 2}} f(\log p)
$$

Suppose we want to study how the zeros of ζ are distributed in some region D : Choose f such that the mass of \widehat{f} concentrates in D and decays rapidly outside of D.

- Let $f^{(k)}$ denote the k-fold convolution of f and apply the above with $f \rightarrow f^{(k)}$ to get

$$
\sum_{\rho}(\widehat{f}(i(\rho-1 / 2)))^{k} \approx \sum_{p} \frac{\log p}{p^{1 / 2}} f^{(k)}(\log p)
$$

Again this puts us in a situation where Turán's inequalities may be applied.

Side note:

Side note:

- Power sums are also used in one of the proofs of the Riemann hypothesis for curves over finite fields.

Side note:

- Power sums are also used in one of the proofs of the Riemann hypothesis for curves over finite fields. The reduction is as follows: Let $f \in \mathbb{F}_{p}[X, Y]$ be absolutley irreducible

Side note:

- Power sums are also used in one of the proofs of the Riemann hypothesis for curves over finite fields. The reduction is as follows: Let $f \in \mathbb{F}_{p}[X, Y]$ be absolutley irreducible
(1) First establish via Stepanov's method the estimate

$$
\#\left\{(x, y) \in \mathbb{F}_{p^{n}}^{2}: f(x, y)=0\right\}=p^{n}+O\left(p^{n / 2}\right)
$$

Side note:

- Power sums are also used in one of the proofs of the Riemann hypothesis for curves over finite fields. The reduction is as follows:
Let $f \in \mathbb{F}_{p}[X, Y]$ be absolutley irreducible
(1) First establish via Stepanov's method the estimate

$$
\#\left\{(x, y) \in \mathbb{F}_{p^{n}}^{2}: f(x, y)=0\right\}=p^{n}+O\left(p^{n / 2}\right)
$$

2 Connect the point count above to a sum over powers of zeros of the corresponding L-function.

Side note:

- Power sums are also used in one of the proofs of the Riemann hypothesis for curves over finite fields. The reduction is as follows:
Let $f \in \mathbb{F}_{p}[X, Y]$ be absolutley irreducible
(1) First establish via Stepanov's method the estimate

$$
\#\left\{(x, y) \in \mathbb{F}_{p^{n}}^{2}: f(x, y)=0\right\}=p^{n}+O\left(p^{n / 2}\right)
$$

2 Connect the point count above to a sum over powers of zeros of the corresponding L-function.
(3) Combine (1),(2) above (as $n \rightarrow \infty$) with a lower bound inequality for power sums (possibly along a subsequence of $n \rightarrow \infty$.)

Modern applications of power sums

Modern applications of power sums

- Some modern applications of the method of power sums to number theory include:

Modern applications of power sums

- Some modern applications of the method of power sums to number theory include:
(1) Sharpest explicit zero density estimates for zeros of Dirichlet L-functions (Thorner and Zaman) which imply an effective version of Sárközy's theorem for shifted primes (Green, JAMS 2023)

Modern applications of power sums

- Some modern applications of the method of power sums to number theory include:
(1) Sharpest explicit zero density estimates for zeros of Dirichlet L-functions (Thorner and Zaman) which imply an effective version of Sárközy's theorem for shifted primes (Green, JAMS 2023)
(2) Work of Soundararajan and Thorner (Duke, 2019) on weak subconvexity for L-functions

Modern applications of power sums

- Some modern applications of the method of power sums to number theory include:
(1) Sharpest explicit zero density estimates for zeros of Dirichlet L-functions (Thorner and Zaman) which imply an effective version of Sárközy's theorem for shifted primes (Green, JAMS 2023)
(2) Work of Soundararajan and Thorner (Duke, 2019) on weak subconvexity for L-functions
(1) This is realted to Soundararajan's resolution of the Quantum Unique Ergodicity conjecture.

Modern applications of power sums

- Some modern applications of the method of power sums to number theory include:
(1) Sharpest explicit zero density estimates for zeros of Dirichlet L-functions (Thorner and Zaman) which imply an effective version of Sárközy's theorem for shifted primes (Green, JAMS 2023)
(2) Work of Soundararajan and Thorner (Duke, 2019) on weak subconvexity for L-functions
(1) This is realted to Soundararajan's resolution of the Quantum Unique Ergodicity conjecture.
(3) Quantitative versions of the Sato-Tate conjecture (Lemke Oliver, Thorner IMRN 2017)

Modern applications of power sums

- Some modern applications of the method of power sums to number theory include:
(1) Sharpest explicit zero density estimates for zeros of Dirichlet L-functions (Thorner and Zaman) which imply an effective version of Sárközy's theorem for shifted primes (Green, JAMS 2023)
(2) Work of Soundararajan and Thorner (Duke, 2019) on weak subconvexity for L-functions
(1) This is realted to Soundararajan's resolution of the Quantum Unique Ergodicity conjecture.
(3) Quantitative versions of the Sato-Tate conjecture (Lemke Oliver, Thorner IMRN 2017)
(4) Work of Maynard and Pratt (arxiv:2206.11729) who show if the Riemann hypothesis fails in a specific way then we may obtain new estimates for the number of primes in short intervals.

New problem:

- Suppose we have a sequence of complex numbers $b_{1}, \ldots, b_{n}, z_{1}, \ldots, z_{n}$ whose power sums

$$
\max _{m+1 \leq l \leq m+n}\left|\sum_{i=1}^{n} b_{i} z_{i}\right|,
$$

are close to the lower bounds given by Turán's first and second main theorems.

New problem:

- Suppose we have a sequence of complex numbers $b_{1}, \ldots, b_{n}, z_{1}, \ldots, z_{n}$ whose power sums

$$
\max _{m+1 \leq l \leq m+n}\left|\sum_{i=1}^{n} b_{i} z_{i}\right|,
$$

are close to the lower bounds given by Turán's first and second main theorems.
(1) Can we say anything about the structure of the $z_{i}^{\prime} s\left(b_{i}^{\prime} s\right)$???????

New problem:

- Suppose we have a sequence of complex numbers $b_{1}, \ldots, b_{n}, z_{1}, \ldots, z_{n}$ whose power sums

$$
\max _{m+1 \leq l \leq m+n}\left|\sum_{i=1}^{n} b_{i} z_{i}\right|,
$$

are close to the lower bounds given by Turán's first and second main theorems.
(1) Can we say anything about the structure of the $z_{i}^{\prime} s\left(b_{i}^{\prime}\right)$)???????
(2) If so, can we use these results to say something along the lines of: If the Riemann hypothesis fails, then it has to fail in some specific kind of way?????

New problem:

- Suppose we have a sequence of complex numbers $b_{1}, \ldots, b_{n}, z_{1}, \ldots, z_{n}$ whose power sums

$$
\max _{m+1 \leq l \leq m+n}\left|\sum_{i=1}^{n} b_{i} z_{i}\right|,
$$

are close to the lower bounds given by Turán's first and second main theorems.
(1) Can we say anything about the structure of the $z_{i}^{\prime} s\left(b_{i}^{\prime}\right)$)???????
(2) If so, can we use these results to say something along the lines of: If the Riemann hypothesis fails, then it has to fail in some specific kind of way?????
(3) Or, if some consequence of the Riemann hypthoesis is false then the zeros of the zeta function off the critical line have to have a certain kind of structure???

An example:

One of the easiest results about power sums, due to Turán is as follows:

Theorem

Let z_{1}, \ldots, z_{n} be complex numbers on the unit circle. Then

$$
\max _{1 \leq l \leq n}\left|\sum_{j=1}^{n} z_{j}\right| \geq 1 .
$$

There is equality if and only if the z_{j}^{\prime} 's form verticies of a regular $(n+1)$-gon.

An example of an inverse type theorem:

An example of an inverse type theorem:

- Suppose we have a sequence of complex numbers $z_{1}=e^{2 \pi i \theta_{1}}, \ldots, z_{n}=e^{2 \pi i \theta_{n}}$ which are close to optimal in the previous theorem:

An example of an inverse type theorem:

- Suppose we have a sequence of complex numbers $z_{1}=e^{2 \pi i \theta_{1}}, \ldots, z_{n}=e^{2 \pi i \theta_{n}}$ which are close to optimal in the previous theorem: In particular, suppose that (for some parameters L, C)

$$
\max _{1 \leq \ell \leq L}\left|\sum_{j=1}^{n} e^{2 \pi i \ell \theta_{j}}\right| \leq C
$$

An example of an inverse type theorem:

- Suppose we have a sequence of complex numbers $z_{1}=e^{2 \pi i \theta_{1}}, \ldots, z_{n}=e^{2 \pi i \theta_{n}}$ which are close to optimal in the previous theorem: In particular, suppose that (for some parameters L, C)

$$
\max _{1 \leq l \leq L}\left|\sum_{j=1}^{n} e^{2 \pi i e \theta_{j}}\right| \leq C,
$$

Theorem

With notation and conditions as above, for each

$$
\frac{2 C L}{n} \leq U \leq L
$$

there exists $u \leq U$ and at least $n / 4$ values of j and integers a_{j} such that

$$
\left|\theta_{j}-\frac{a_{j}}{u}\right| \leq \frac{1}{u}\left(\frac{U}{L}\right) .
$$

Proof:

- Idea of proof:

Proof:

- Idea of proof: The condition

$$
\max _{1 \leq \ell \leq L}\left|\sum_{j=1}^{n} e^{2 \pi i \ell \theta_{j}}\right| \leq C
$$

tells us that the frequencies θ_{j} are good substitutes for the set of additive characters when using the circle method to detect solutions to equations.

Proof:

- Idea of proof: The condition

$$
\max _{1 \leq \ell \leq L}\left|\sum_{j=1}^{n} e^{2 \pi i \ell \theta_{j}}\right| \leq C
$$

tells us that the frequencies θ_{j} are good substitutes for the set of additive characters when using the circle method to detect solutions to equations.

- Choosing our equations suitably and using duality, we can then extract information about the θ^{\prime} s.

Proof:

Let U, V be parameters satisfying

$$
U V \sim L
$$

and consider

$$
S=\sum_{u=1}^{U} \sum_{j=1}^{n}\left|\sum_{v=1}^{v} e^{2 \pi i u v \theta_{j}}\right|^{2} .
$$

Expanding the square and interchanging summation:

$$
S=\sum_{v_{1}, v_{2}=1}^{V} \sum_{u=1}^{U}\left(\sum_{j=1}^{n} e^{2 \pi i u\left(v_{1}-v_{2}\right) \theta_{j}}\right) .
$$

If $v_{1}=v_{2}$ then the inner sum over j is size n.

Proof:

Let U, V be parameters satisfying

$$
U V \sim L
$$

and consider

$$
S=\sum_{u=1}^{U} \sum_{j=1}^{n}\left|\sum_{v=1}^{v} e^{2 \pi i u v \theta_{j}}\right|^{2} .
$$

Expanding the square and interchanging summation:

$$
S=\sum_{v_{1}, v_{2}=1}^{V} \sum_{u=1}^{U}\left(\sum_{j=1}^{n} e^{2 \pi i u\left(v_{1}-v_{2}\right) \theta_{j}}\right) .
$$

If $v_{1}=v_{2}$ then the inner sum over j is size n. For all other values of $v_{1} \neq v_{2}$, by assumption:

$$
\left|\sum_{j=1}^{n} e^{2 \pi i u\left(v_{1}-v_{2}\right) \theta_{j}}\right| \leq C
$$

Hence

$$
|S-n V U| \leq C V^{2} U .
$$

Hence

$$
|S-n V U| \leq C V^{2} U
$$

In particular, if $V \leq n /(2 C)$ then

$$
S \geq \frac{n U V}{2}
$$

Hence

$$
|S-n V U| \leq C V^{2} U
$$

In particular, if $V \leq n /(2 C)$ then

$$
S \geq \frac{n U V}{2}
$$

We next evalute S via a different method:

Hence

$$
|S-n V U| \leq C V^{2} U
$$

In particular, if $V \leq n /(2 C)$ then

$$
S \geq \frac{n U V}{2}
$$

We next evalute S via a different method: First sum over v in

$$
S=\sum_{u=1}^{U} \sum_{j=1}^{n}\left|\sum_{v=1}^{V} e^{2 \pi i u v \theta_{j}}\right|^{2}
$$

Hence

$$
|S-n V U| \leq C V^{2} U
$$

In particular, if $V \leq n /(2 C)$ then

$$
S \geq \frac{n U V}{2}
$$

We next evalute S via a different method: First sum over v in

$$
S=\sum_{u=1}^{U} \sum_{j=1}^{n}\left|\sum_{v=1}^{V} e^{2 \pi i u v \theta_{j}}\right|^{2}
$$

and use the (heuristic) approximation

$$
\sum_{m \leq M} e^{2 \pi i \theta m} \approx \begin{cases}M & \text { if } \quad\|\theta\| \leq 1 / M \\ 0 & \text { otherwise }\end{cases}
$$

We get

$$
\frac{n U}{2} \leq \sum_{1 \leq u \leq U} \#\left\{1 \leq j \leq n:\left\|\theta_{j} u\right\| \leq 1 / V\right\}
$$

By the pigeonhole principle, there exists some $u \leq U$ such that for a set $\mathcal{J} \subseteq\{1, \ldots, n\}$ of size $\geq n / 4$ we have

$$
\left|\theta_{j}-\frac{a_{j}}{u}\right| \leq \frac{U}{u L},
$$

for each $j \in \mathcal{J}$. This completes the proof.

Thank you for your attention.

