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In the short period available to me I plan to discuss 7

topological concepts, 6 number theory concepts, and

one measure theory concept.

First the topological concepts:

(1) homeomorphism;

(2) dense set;

(3) Gδ-space;

(4) analytic space;

(5) Hausdorff dimension;

(6) Cantor space, G;

(7) space of irrational numbers P.
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Now the Number Theory concepts

(1) transcendental number;

(2) algebraically independence;

(3) transcendence basis;

(4) irrationality exponent;

(5) Liouville numbers L;

(6) Mahler sets A, S, T , U .

and the measure theory concept of

Lebesgue measure.
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2c subsets of R

2c Lebesgue measurable subsets of R

c analytic sets

c Borel sets

c Gδ-sets c Fσ-sets

c open sets & c closed sets
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• Gδ-set : countable intersection of open sets

• Fσ-set: countable union of closed sets

• Borel-set: can be constructed from open sets

using countable intersections, countable unions,

and relative complements (B \ A is relative

complement of A in B)

• analytic set: continuous image of P or equivalently

continuous of a Borel set
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Definition 1. Let X be a subset of R. The set

X is said to have the Erdős property if for each

r ∈ R there exist x1, x2 ∈ X such that r = x1 + x2.

The set X is said to have the multiplicative Erdős

property if for every s ∈ R, s > 0 there exist

x3, x4 ∈ X such that s = x3 · x4.

In 1962 Paul Erdős proved the surprising result that
though the set L of all Liouville numbers is a small
set in that its Lebesgue measure is zero, and its s-
dimensional Hausdorff measure, for s > 0, is zero, it
has the the Erdős and multiplicative Erdős properties.
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Theorem 1. If X is any dense Gδ-subset of R then

it has the Erdős property and the multiplicative

Erdős property. In particular this is the case for L.

It follows from the Baire Category Theorem that the
intersection of any two (or even a countable number
of) dense Gδ-subsets of R is a Gδ-subset of R.

Theorem 2. [CM] Every dense Gδ-subset of R
contains an uncountable subset of L.

A purely topological property of a set =⇒ it contains
an uncountable number of transcendental numbers.
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Theorem 3. Every dense Gδ-subset of R is

homeomorphic to P. In particular, this is the case

for the set T of all transcendental numbers and L.

Observe that set P contains the set L and the

cardinality of P \ L is c. This immediately gives us:

Theorem 4. [CM] Every dense Gδ-subset X of R
contains a dense Gδ-subset Y of R such that the

set X \ Y has cardinality c.

This answers a question of Erdős.
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Erdős searched for a proper subset of L which has
the Erdős property. From Theorem 4 we know that
L contains a chain L1, L2, . . . , Ln, . . . such that

L ⊃ L1 ⊃ L2 ⊃ · · · ⊃ Ln ⊃ . . .
with each Ln being a dense Gδ-subset of R and so
having the Erdős property. So there is no smallest
set with the Erdős property. Indeed as L \ L1 has
cardinality c, if Y is any of the 2c subsets of L \ L1,
then L1 ∪ Y has the Erdős property.

Theorem 5. [CM] There exist 2c-subsets of L
with the Erdős property.
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The Gelfond-Schneider Theorem says: if a and b are
(complex) algebraic numbers with a 6= 0,1 and b not a
rational number, then ab is a transcendental number.
In 2023 Diego Marques and Marcelo Oliveira extended
this to when b is a Liouville number. By contrast:

Theorem 6. [CM ] If s is any postive real number

with s 6= 1, then there exist a, b ∈ L, with a, b > 0,

such that s = ab.

Indeed, if X is any dense Gδ-subset of R, then

s = x1
x2, for some x1, x2 ∈ X.
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In his influential book“Transcendental Number

Theory” Alan Baker introduces the chapter on

Mahler’s Classification as follows: “A classification of

the set of transcendental numbers into three distinct

aggregates, termed S-, T -, and U-numbers, was

introduced by Mahler in 1932, and it has proved to

be of considerable value in the general development

of the subject.”
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Given a polynomial P (X) ∈ C[X], recall that the
height of P , denoted by H(P ), is the maximum of
the absolute values of the coefficients of P .
Given a complex number ξ, a positive integer n, and
a real number H ≥ 1, we define the quantity

wn(ξ,H) = min{|P (ξ) |: P (X) ∈ Z[X], H(P ) ≤ H,
deg(P ) ≤ n, P (ξ) 6= 0}.

Furthermore, we set

wn(ξ) = lim sup
H→∞

− logwn(ξ,H)

logH
and

w(ξ) = lim sup
n→∞

wn(ξ)

n
.

12



With the above notation in mind, Kurt Mahler

partitions the set R as follows:

Definition 2. Let ξ be a real number. The

number ξ is

(i) an A-number if w(ξ) = 0,

(ii) an S-number if 0 < w(ξ) <∞,

(iii) a T -number if w(ξ) = ∞ and wn(ξ) < ∞ for

any n ≥ 1,

(iv) a U-number if w(ξ) = ∞ and wn(ξ) = ∞ for

all n ≥ n0, for some positive integer n0.
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The A-numbers are the algebraic numbers and there

exist an infinity of A-numbers, S-numbers, U-numbers

and T -numbers.

The set L of Liouville numbers is a proper subset of

the set of U-numbers.

It was an open question for 36 years on whether the

set of T -numbers is non-empty. It was answered in

1970 in the positive by Wolfgang M. Schmidt who

won the Frank Nelson Cole Prize in Number Theory

for work on Diophantine Approximation.
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The following theorem of Mahler records a

fundamental property of the Mahler classes.

Theorem 7. If ξ, η ∈ R are algebraically dependent

then they belong to the same Mahler class.

Theorem 8. [H.Ki (2022)] Each of the Mahler

sets is a Borel set.
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The next beautiful theorem is very easily proved using

Mahler classes and Theorem 7.

Theorem 9. [CM] For any (complex) U-number

α, in particular for α any Liouville number, all of the

following are transcendental numbers: eα, logeα,

sinα, cosα, tanα, sinhα, coshα, tanhα and the

inverse functions evaluated at α of the listed

trigonometric and hyperbolic functions, noting that

wherever multiple values are involved, every such

value is transcendental.
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The following powerful theorem combines the main
result in 2002 of the paper “Hausdorff dimension,
analytic sets and transcendence” by Gerald A Edgar
and a standard result from topology.

Theorem 10. If X is an uncountable analytic

subset of R, then it has a subspace homeomorphic

to G. In particular, X has cardinality c.

If Y is an analytic subset of R with finite positive

Hausdorff dimension, then it has cardinality c

and contains a maximal algebraically independent

subset of R (that is a transcendence basis for R).
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Theorem 11. [CM] Let X be an analytic subset of

R having finite positive Hausdorff dimension. Then

the intersection of X with each Mahler set S, T ,

and U is infinite.
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The following theorem of Vojtĕch Jarńık dates back

almost 100 years to 1929.

Theorem 12. The set of real numbers of

irrationality exponent equal to 2 has full Lebesgue

measure. The set of real numbers of exponent

m ∈ (2,∞) has Lebesgue measure 0 and Hausdorff

dimension equal to 2
m.

It is routine exercise to prove that each set of real

numbers of exponent m ∈ (2,∞) is analytic.
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Our next result shows that the mysterious Mahler set

T , as well as the sets S and U contain a homeomorphic

copy of G (and of P) and so have c elements, This also

extends a result in 2000 of Yann Bugeaud.
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Theorem 13. [CM] If for each m ∈ (2,∞), Em
is the set of real numbers of irrationality exponent

equal to m, then Em has infinite intersection with

each Mahler set S, T , and U .

Further, each of the Mahler sets S, T , and U

contains an element of irrationality exponent m for

each m ∈ (2,∞) and so S, T , and U each have

a subspace homeomorphic to G (and a subspace

homeomorphic to P) and so have cardinality c.
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Finally we state two results about the middle-third

Cantor set G.

Theorem 14. [CM] For each m ∈ [2,∞), let Em
be the set of real numbers of irrationality exponent

equal to m. Then G ∩ Em has cardinality c and a

subspace homeomorphic to G.

For the Mahler sets S, T , and U , each of the sets

G ∩ S, G ∩ T , and G ∩ U is (infinite and) a dense

subset of G.
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