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This study is concerned with the dynamics of the magnetic field around a MHD equilibrium

∇ × 𝑩 × 𝑩 = 𝜇0∇𝑃, ∇ ⋅ 𝑩 = 0 in Ω. 1

Here, 𝑩 (𝒙) is a three-dimensional vector field with Cartesian components 𝐵𝑖, 𝑖 = 1,2,3, defined in a smooth 
toroidal domain Ω ⊂ ℝ3, 𝜇0 the vacuum permeability, and 𝑃(𝒙) the equilibrium pressure field.

Ω

∇𝑃

𝑩

𝛁 × 𝑩

The dynamics around (1) is governed by the ideal MHD equations in Ω, 

𝜌
𝜕𝒖

𝜕𝑡
= −𝜌𝒖 ⋅ ∇𝒖 +

1

𝜇0
∇ × 𝑩 × 𝑩 − ∇𝑃,

𝜕𝑩

𝜕𝑡
= −∇ × 𝑬,

𝜕𝜌

𝜕𝑡
= −∇ ⋅ 𝜌𝒖 ,

∇ ⋅ 𝑩 = 0.

2

Here, 𝒖 𝒙, 𝑡 , 𝑩 𝒙, 𝑡 , 𝜌 𝒙, 𝑡 , 𝑃 𝒙, 𝑡 , and 𝑬 𝒙, 𝑡 are velocity field, magnetic 
field, mass density, pressure, and electric field. Eq. (2) can be closed with the 
aid of an equation of state and the electron momentum equation.



Motivation
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① Magnetic Turbulence in 
proximity of MHD Equilibria

② 3D MHD equilibria  
existence & stability

3D = not invariant under 
some Euclidean isometry 

⚫ Formulate dissipative and iterative schemes to 
construct nontrivial 3D MHD equilibria in toroidal 
domains

⚫ Elucidate stability properties of such equilibria

⚫ Obtain reduced equations preserving the 
Hamiltonian structure of ideal MHD (2) and 
describing the nonlinear evolution of the magnetic 
field in proximity of MHD equilibria (1) and in a 
physical regime relevant for stellarator plasmas 

Toy Model of 
Magnetic 
Turbulence

New Schemes 
for MHD 
Equilibria   
Existence & 
Stability

Objectives



Generalized Ohm’s Law
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Electron fluid momentum equation:

𝑚𝑒𝑛𝑒
𝜕𝒖𝑒
𝜕𝑡

+ 𝒖𝑒 ⋅ ∇𝒖𝑒 = −𝑒𝑛𝑒 𝑬 + 𝒖𝑒 × 𝑩 − 𝛻𝑃𝑒. 3

𝒖 =
𝒖𝑖 + 𝛿𝒖𝑒
1 + 𝛿

, 𝜌 = 𝑚𝑖𝑛 1 + 𝛿 , 𝒖𝑒 = 𝒖 −
∇ × 𝑩

𝑒𝜇0 1 + 𝛿 𝑛
, 𝑛𝑖 = 𝑛𝑒 = 𝑛, 𝛿 =

𝑚𝑒

𝑚𝑖
. 4

𝑬 = 𝑩 × 𝒖 +
𝑚𝑖

𝑒𝜇0𝜌
∇ × 𝑩 × 𝑩+

𝑚𝑖 1 + 𝛿

𝑒𝜌
∇𝑃𝑒 −

𝑚𝑒

𝑒

𝜕𝒖𝑒
𝜕𝑡

+ 𝒖𝑒 ⋅ ∇𝒖𝑒 . 5

∇ × 𝑬 = ∇ × 𝑩 × 𝒖 −
𝜅

𝜌
∇ × 𝑩 , 𝜅 =

𝑚𝑖

𝑒𝜇0
. 6

Using quasi-neutrality, the ideal MHD variables can be related to the ion-electron two-fluid variables as

From (3) and (4), the electric field can be expressed as

Neglecting electron inertia and assuming a barotropic electron pressure 𝑃𝑒 = 𝑃𝑒 𝜌 ,  

• The first term on the right-hand of (6) side gives the ideal Ohm’s law, the second term is the Hall effect. 
• Eq. (6) can be used to eliminate 𝑬 from the ideal MHD system (2).



Boundary Conditions
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We consider the following boundary conditions

𝒖 ⋅ 𝒏 = 0, 𝑩 ⋅ 𝒏 = 0, ∇ × 𝑩 ⋅ 𝒏 = 0, 𝑃 = constant on 𝜕Ω. 7

Remarks:

• Eq. (7) implies that there is no net electric current 

𝑱 =
1

𝜇0
∇ × 𝑩 = 𝑒𝑛 𝒖𝑖 − 𝒖𝑒

across 𝜕Ω. This is expected to hold true as long as 𝒖𝑒 and 𝒖𝑖 are tangent to 𝜕Ω. 

• The boundary conditions (7) describe what we expect from a physical standpoint. 

• The set of boundary conditions required for existence of solutions will be described for each set of governing 
equations when necessary.

Here 𝒏 denotes the unit outward normal to the bounding surface 𝜕Ω.



Ordering I
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Let 𝜖 > 0 be a small ordering parameter, 𝐿 ∼ Ω1/3 the typical size of the system (e.g. the linear size of a 
stellarator), and 𝑇 a reference time scale (for example, a small fraction of the confinement time scale). 
Assuming 𝜌 > 0, we order 

𝑇

𝐿

𝑩

𝜇0𝜌
∼ 1,

𝑇

𝐿
𝒖 ∼ 𝑇∇ × 𝒖 ∼ 𝜖,

𝑇

𝜇0𝜌
∇ × 𝑩 ∼

𝑇2

𝜌𝐿2
𝑃 ∼

𝑇

𝒖

𝜕𝒖

𝜕𝑡
∼
𝑇

𝜌

𝜕𝜌

𝜕𝑡
∼

𝑇

𝑩

𝜕𝑩

𝜕𝑡
∼

𝑇

𝑩
∇ × 𝑬 ∼ 𝜖2.

8

𝑇3

𝐿3
𝒖 ⋅

1

𝜌
∇𝑃 +

1

2
∇𝒖2 ∼ 𝜖4. 9

We close the ideal MHD system (2) via the equation of state (generalized Bernoulli principle)

• When 𝜌 = 𝜌𝑐 ∈ ℝ is constant, eq. (9) can be satisfied through the Bernoulli principle ∇ 𝑃 + 𝜌𝑐𝒖
2 + ℎ = 𝟎

where ℎ is any function such that 𝒖 ⋅ ∇ℎ = 0. 
• Eq. (9) arises from the plasma momentum equation when the system is steady and ∇ × 𝒖 and ∇ × 𝑩 are small 

(stellarator regime).

𝑣𝐴 =
𝐵

𝜇0𝜌



Reduction at Leading Order – Ideal MHD
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Using generalized Ohm’s law (6), ordering (8), generalized Bernoulli principle (9), ideal MHD (2) reduces to  

𝜌 ∇ × 𝒖 × 𝒖 =
1

𝜇0
∇ × 𝑩 × 𝑩 − ∇𝑃 −

1

2
𝜌∇𝒖2,

𝒖 ⋅ ∇𝑃 +
1

2
𝜌∇𝒖2 = 0,

𝜕𝑩

𝜕𝑡
= ∇ × 𝒖 −

𝜅

𝜌
∇ × 𝑩 × 𝑩 ,

∇ ⋅ 𝜌𝒖 = 0,
∇ ⋅ 𝑩 = 0.

10

Momentum

Eq. of state (Gen. Bernoulli)

Induction

Continuity

Solenoidal

Remarks:

• When 𝒖 = 𝟎, eq. (10) reduces to MHD equilibria (1) with barotropic pressure 𝑃 = 𝑃 𝜌 . 

• Dotting the momentum eq. with 𝒖, and using the eq. of state, one finds that

𝒖 = 𝛼∇ × 𝑩 × +𝛽𝑩, 𝛼 = 𝛼 𝒙, 𝑡 , 𝛽 = 𝛽 𝒙, 𝑡 . 11



Approximate Flux Surfaces
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Using generalized Ohm’s law (6), ordering (8), and induction equation Τ𝜕𝑩 𝜕𝑡 = −∇ × 𝑬,   

𝑇2

𝐿2 𝜇0𝜌0
𝛼 −

𝜅

𝜌
∇ × 𝑩 × 𝑩 −

𝜖

𝑇
∇Ψ ∼ 𝜖2. 12

Since ∇ ⋅ 𝑩 = 0, eq. (12) implies that there is a single valued Θ in a small neighborhood 𝑈 ⊂ Ω such that

𝑩 = ∇Ψ × ∇Θ +
𝐿

𝑇
𝜇0𝜌0 𝑜 𝜖 in 𝑈. 13

Allowing Θ to be multivalued, at leading order we may therefore set

𝑩 = ∇Ψ × ∇Θ in Ω. 14

Remarks:

• 𝑩 and the reference density 𝜌0 ∈ ℝ can be large in the ordering (8). Only the ratio 𝑇𝑩/𝐿 𝜇0𝜌0 is constrained.



Reduction at Leading Order – Induction Equation
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Introducing the vector field

𝝃 = 𝒖 −
𝜅

𝜌
∇ × 𝑩 = 𝛼 −

𝜅

𝜌
∇ × 𝑩 + 𝛽𝑩 = 𝐴∇ × 𝑩 + 𝛽𝑩, 15

and substituting the Clebsch form (14) into the induction equation, one finds

∇
𝜕Ψ

𝜕𝑡
+ 𝝃 ⋅ ∇Ψ × ∇Θ = ∇

𝜕Θ

𝜕𝑡
+ 𝝃 ⋅ ∇Θ × ∇Ψ. 16

When 𝑩 ≠ 𝟎, the vector fields ∇Ψ and ∇Θ are linearly independent. Dotting (16) by ∇Ψ and ∇Θ thus gives 

𝜕Ψ

𝜕𝑡
+ 𝝃 ⋅ ∇Ψ = 𝑓 Ψ, Θ ,

𝜕Θ

𝜕𝑡
+ 𝝃 ⋅ ∇Θ = 𝑔 Ψ, Θ ,

𝜕𝑓

𝜕Ψ
= −

𝜕𝑔

𝜕Θ
. 17

𝐴0
𝜕𝑃0
𝜕Ψ

∇Ψ + 𝐴0
𝜕𝑃0
𝜕Θ

∇Θ =
𝐴0
𝜇0

∇ × 𝑩 ⋅ ∇Θ ∇Ψ − ∇ × 𝑩 ⋅ ∇Ψ ∇Θ = ∇Φ. 18

The functions 𝑓 and 𝑔 can be chosen as follows. Equilibria with 𝒖 = 𝟎 of the reduced system (10) satisfy 



Reduction at Leading Order – Induction Equation
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Comparing (18) with steady states of (17), one finds the solution 

𝑓0 = 0, 𝑔0 = 𝜇0𝐴0 𝑃0
𝑑𝑃0
𝑑Ψ

, 𝑃0 = 𝑃0 Ψ . 19

The induction equation for the magnetic field can thus be written as

𝜕Ψ

𝜕𝑡
+ 𝐴∇ ⋅ ∇Ψ × ∇Θ × ∇Ψ = 0,

𝜕Θ

𝜕𝑡
− 𝐴∇ ⋅ ∇Θ × ∇Ψ × ∇Θ = 𝜇0𝐴0

𝑑𝑃0
𝑑Ψ

. 20

Remarks:

• Solutions of system (20) produce exact time-dependent solutions of system (10) such that steady states 
without flow have pressure 𝑃0 Ψ and 𝐴0 𝑃0 .

• The two equations appearing in (20) can be regarded as a dynamical system describing the nonlinear 
evolution of 𝑩. Here, the function 𝐴 is evaluated through 𝛼, 𝜌, and 𝑃, which are determined from the solution 
of the reduced ideal MHD system (10) for the variables 𝑩, 𝒖, 𝜌, 𝑃.



Closure of the Induction Equation
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• Consider an MHD equilibrium (1) at 𝑡 = 𝑡0. From (18) we have 𝐴0 = 𝐴0 𝑃0 . 
• We may identify  𝑃0 = 𝜆Ψ with 𝜆 ∈ ℝ without loss of generality.
• We perturb the system at some 𝑡 = 𝑡1, and suppose that the fields 𝒖, 𝜌, and 𝑃 react passively to changes in 

𝑩 so that the functional form of 𝛼, 𝜌, and 𝑃 is preserved for 𝑡 ≥ 𝑡1. This amounts to assuming 

𝐴 = 𝐴0 𝑃0 = 𝐴0 Ψ ∀ 𝑡 ≥ 𝑡0. 21

Then, system (20) reduces to an independent nonlinear system of two coupled PDEs for the variables Ψ and Θ,

𝜕Ψ

𝜕𝑡
+ 𝐴0 Ψ ∇ ⋅ ∇Ψ × ∇Θ × ∇Ψ = 0,

𝜕Θ

𝜕𝑡
− 𝐴0 Ψ ∇ ⋅ ∇Θ × ∇Ψ × ∇Θ = 𝜇0𝜆𝐴0 Ψ .

22

A possible set of boundary conditions is 

Ψ = constant, ∇Θ ⋅ 𝒏 = 0 on 𝜕Ω. 23

Θ = 𝑀𝜇 + 𝑁𝜈 + 𝜒 𝒙, 𝑡



Ordering II
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Let 𝜖 > 0 be a small ordering parameter, 𝐿 ∼ Ω1/3 the typical size of the system (e.g. the linear size of a 
stellarator), and 𝑇 a reference time scale (for example, a small fraction of the confinement time scale). 
Assuming 𝜌 > 0, we order 

𝑇

𝐿

𝑩

𝜇0𝜌
∼
𝑇

𝐿
𝒖 ∼ 𝑇∇ × 𝒖 ∼

𝑇

𝜇0𝜌
∇ × 𝑩 ∼

𝑇2

𝜌𝐿2
𝑃 ∼ 1,

𝑇

𝒖

𝜕𝒖

𝜕𝑡
∼
𝑇

𝜌

𝜕𝜌

𝜕𝑡
∼

𝑇

𝑩

𝜕𝑩

𝜕𝑡
∼

𝑇

𝑩
∇ × 𝑬 ∼ 𝜖.

24

𝑇3

𝐿3
𝒖 ⋅

1

𝜌
∇𝑃 +

1

2
∇𝒖2 ∼ 𝜖. 25

We close the ideal MHD system (2) via the equation of state (generalized Bernoulli principle)

• When 𝜌 = 𝜌𝑐 ∈ ℝ is constant, eq. (9) can be satisfied through the Bernoulli principle ∇ 𝑃 + 𝜌𝑐𝒖
2 + ℎ = 𝟎

where ℎ is any function such that 𝒖 ⋅ ∇ℎ = 0. 
• Eq. (25) arises from the plasma momentum equation when the system is steady and ∇ × 𝒖 and ∇ × 𝑩 are 

small (stellarator regime).

𝑣𝐴 =
𝐵

𝜇0𝜌



Conservation Laws
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Tab 1. Invariants of system (10). Field conditions for the conservation of magnetic helicity 𝐾Ω specify the gauge 
𝜕𝒒/𝜕𝑡 of the vector potential 𝑨. 

Invariant Expression Field Conditions Boundary Conditions

Magnetic energy 𝑀Ω
1

2𝜇0
න
Ω

𝑩2 𝑑𝑉 𝑩 = ∇Ψ × ∇Θ Ψ = constant

Magnetic helicity 𝐾Ω
1

2
න
Ω

𝑨 ⋅ 𝑩 𝑑𝑉
𝑩 = ∇Ψ × ∇Θ,
𝑨 = 𝒒0 𝒙 + Ψ∇Θ

Ψ = constant,
𝜕Ω not connected

Magnetic flux 𝐹Ω න
Ω

𝑓 Ψ 𝑑𝑉 𝑩 = ∇Ψ × ∇Θ Ψ = constant

Tab 2. Invariants of system (22). The magnetic helicity 𝐾Ω degenerates to a trivial invariant 𝐾Ω = 0 when 𝜕Ω is a 
connected surface. Here, 𝒒0 𝒙 ∈ ker(curl).

Invariant Expression Field Conditions Boundary Conditions

Magnetic energy 𝑀Ω
1

2𝜇0
න
Ω

𝑩2 𝑑𝑉 𝑩 ⋅ 𝒏 = ∇ × 𝑩 ⋅ 𝒏 = 0

Magnetic helicity 𝐾Ω
1

2
න
Ω

𝑨 ⋅ 𝑩 𝑑𝑉
𝜕𝒒

𝜕𝑡
=
𝜕𝑨

𝜕𝑡
− 𝐴 ∇ × 𝑩 × 𝑩 = 𝟎 𝑩 ⋅ 𝒏 = ∇ × 𝑩 ⋅ 𝒏 = 0



Hamiltonian Structure
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Proposition 1. System (22) is a Hamiltonian system with Poisson bracket

𝐹, 𝐺 = 𝜇0න
Ω

𝐴0 Ψ
𝛿𝐹

𝛿Ψ

𝛿𝐺

𝛿Θ
−
𝛿𝐹

𝛿Θ

𝛿𝐺

𝛿Ψ
𝑑𝑉, 26

and Hamiltonian

𝐻Ω = න
Ω

1

2𝜇0
∇Ψ × ∇Θ 2 − 𝜆Ψ 𝑑𝑉 . 27

𝜕Ψ

𝜕𝑡
= Ψ,𝐻Ω = 𝜇0𝐴0 Ψ

𝛿𝐻Ω
𝛿Θ

,

𝜕Θ

𝜕𝑡
= Θ,𝐻Ω = −𝜇0𝜆𝐴0 Ψ

𝛿𝐻Ω
𝛿Ψ

.

28

The noncanonical Hamiltonian form of system (22) is



Nonlinear Stability
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Critical points 𝜒0 = Ψ0, Θ0 ∈ 𝖃 of the Hamiltonian such that 𝛿𝐻 𝜒0 = 0 correspond to steady states of (22). 
𝜒0 is nonlinearly stable if norms ⋅ 1: 𝖃 → ℝ and ⋅ 2: 𝖃 → ℝ and constants 𝐶, 𝐶′ > 0 can be found such that 

𝐶 𝜒 𝑡 − 𝜒0 1
2 ≤ 𝐻Ω 𝜒 𝑡 − 𝐻Ω 𝜒0 = 𝐻Ω 𝜒 0 − 𝐻Ω 𝜒0 ≤ 𝐶′ 𝜒 0 − 𝜒0 2

2 ∀𝑡 ≥ 0. 29

Ψ 𝑡 − Ψ0 Θ0
2 =

1

2𝜇0
න
Ω

∇ Ψ 𝑡 − Ψ0 × ∇Θ0
2𝑑𝑉 = 𝐻Ω Ψ 𝑡 , Θ0 − 𝐻Ω Ψ0, Θ0 =

𝐻Ω Ψ 0 , Θ0 − 𝐻Ω Ψ0, Θ0 =
1

2𝜇0
න
Ω

∇ Ψ 0 −Ψ0 × ∇Θ0
2𝑑𝑉 = Ψ 0 − Ψ0 Θ0

2 .

30

Proposition 2. Critical points 𝜒0 = 𝛹0, 𝛩0 ∈ 𝔛 of system (22) are nonlinearly stable against perturbation of 𝛹0 in 

the distance (seminorm) Ψ Θ
2 =

1

2
Ω ∇Ψ × ∇Θ 2dV. In particular, for all 𝑡 ≥ 0

Proposition 2. Critical points 𝜒0 = 𝛹0, 𝛩0 ∈ 𝔛 of system (22) are nonlinearly stable against perturbation of 𝛩0 in 

the distance (seminorm) Θ Ψ
2 =

1

2
Ω ∇Ψ × ∇Θ 2dV. In particular, for all 𝑡 ≥ 0

Θ 𝑡 − Θ0 Ψ0

2 =
1

2𝜇0
න
Ω

∇Ψ0 × ∇ Θ 𝑡 − Θ0
2𝑑𝑉 = ⋯ = Θ 0 − Θ0 Ψ0

2 . 31



Construction of MHD Equilibria by Double Bracket Dissipation
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Given an 𝑛-dimensional Hamiltonian system ሶ𝑧𝑖 = ℐ𝑖𝑗𝐻𝑗, double bracket dissipation is obtained as follows: 

ሶ𝑧𝑖 = ℐ𝑖𝑗𝑔𝑗𝑘ℐ
𝑘𝑚𝐻𝑚 ⇒ ሶ𝐻 = −ℐ𝑗𝑖𝐻𝑖𝑔𝑗𝑘ℐ

𝑘𝑚𝐻𝑚 ≤ 0. 32

System (22) can be written in the form

Ψ𝑡

Θ𝑡
= 𝜇0𝐴0 Ψ ℐ𝑠

𝛿Ψ𝐻Ω
𝛿Θ𝐻Ω

= 𝜇0𝐴0 Ψ
0 1
−1 0

𝛿Ψ𝐻Ω
𝛿Θ𝐻Ω

. 33

The corresponding double bracket dissipation system is

Ψ𝑡

Θ𝑡
= 𝜇0𝐴0 Ψ ℐ𝑠Πℐ𝑠

𝛿Ψ𝐻Ω
𝛿Θ𝐻Ω

= 𝜇0𝐴0 Ψ
0 1
−1 0

𝜎 0
0 𝛾

0 1
−1 0

𝛿Ψ𝐻Ω
𝛿Θ𝐻Ω

, 34

where the constant diagonal covariant 2-tensor Π serves the purpose of keeping the consistency of physical 
units. 



Construction of MHD Equilibria by Double Bracket Dissipation
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System (34) can be explicitly written as coupled diffusion equations

𝜕Ψ

𝜕𝑡
= 𝛾𝐴0 Ψ ∇ ⋅ ∇Θ × ∇Ψ × ∇Θ + 𝛾𝜇0𝜆𝐴0 Ψ ,

𝜕Θ

𝜕𝑡
= 𝜎𝐴0 Ψ ∇ ⋅ ∇Ψ × ∇Θ × ∇Ψ .

35

Proposition 4. Steady states of system (35) correspond to MHD equilibria

∇ × 𝑩 × 𝑩 = 𝜇0𝜆∇Ψ, ∇ ⋅ 𝑩 = 0,

with 𝑩 = ∇Ψ × ∇Θ. Furthermore, the energy 𝐻Ω is progressively dissipated, 

𝑑𝐻Ω
𝑑𝑡

≤ 0 ∀𝑡 ≥ 0.

Remarks:

• If solutions of (35) exist in the limit 𝑡 → ∞ they are nontrivial critical points of 𝐻Ω.



Construction of MHD Equilibria by Iteration
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Nontrivial steady solutions of system (22) are given by the system of coupled PDEs for Ψ and Θ:

∇ ⋅ ∇Ψ × ∇Θ × ∇Ψ = 0, ∇ ⋅ ∇Θ × ∇Ψ × ∇Θ = 𝜇0𝜆. 36

Take Ψ0 𝒙 as initial condition. Construct the sequence Θ0, Ψ1, Θ1, Ψ2, Θ2, … by iteratively solving (36), i.e. 

∇ ⋅ ∇Ψ0 × ∇Θ0 × ∇Ψ0 = 0

∇ ⋅ ∇Θ0 × ∇Ψ1 × ∇Θ0 = 𝜇0𝜆

∇ ⋅ ∇Ψ1 × ∇Θ1 × ∇Ψ1 = 0

∇ ⋅ ∇Θ1 × ∇Ψ2 × ∇Θ1 = 𝜇0𝜆
⋮

∇ ⋅ ∇Θ𝑖−1 × ∇Ψi × ∇Θ𝑖−1 = 𝜇0𝜆

∇ ⋅ ∇Ψi × ∇Θi × ∇Ψi = 0
⋮

37

Hopefully, the limit lim
𝑖→∞

Θ𝑖−1, Ψ𝑖 = Θ∞, Ψ∞ converges to a regular solution of system (36). 
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Theorem 1. Assume 𝜇0𝜆 ≠ 0 and consider an iterative scheme in which the 2 equations is system (36) are solved 
alternately in Ω, 

∇ ⋅ ∇Θ𝑖−1 × ∇Ψi × ∇Θ𝑖−1 = 𝜇0𝜆,
∇ ⋅ ∇Ψi × ∇Θi × ∇Ψi = 0, 𝑖 = 1,2,3, … ,

starting from a given pair Θ0 𝒙 ,Ψ0 𝒙 ∈ 𝖃 such that

∇ ⋅ ∇Ψ0 × ∇Θ0 × ∇Ψ0 = 0,

with ∇Ψ0 × ∇Θ0 ≠ 𝟎. Suppose that during the iteration solutions exist and are nontrivial, i.e. ∇Ψ𝑖 × ∇Θ𝑖 ≠ 𝟎 for 
𝑖 ≥ 1. Further assume that the limit

Θ∞, Ψ∞ = lim
𝑖→+∞

Θ𝑖−1, Ψ𝑖

exists. Then, the pair Θ∞, Ψ∞ solves system (36). Furthermore, the vector field 𝑩 = ∇Ψ∞ × ∇Θ∞ defines a 
nontrivial MHD equilibrium.

Proof: see arXiv:2311.03095
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• If 𝛺 is a hollow toroidal volume with boundary 𝜕𝛺 corresponding to 2 distinct level sets of a smooth function Ψ0 ∈
𝐶∞(Ω), with ∇Ψ0 ≠ 𝟎 in Ω, and if level sets of Ψ0 foliate Ω with nested toroidal surfaces, theorem 1 of [JMP 64
081505 (2023)] ensures that equation ∇ ⋅ ∇Ψ0 × ∇Θ0 × ∇Ψ0 = 0 always has a nontrivial solution Θ0 such that 
∇Ψ0 × ∇Θ0 ≠ 𝟎. Furthermore, the angle variable Θ0 is not unique, but solutions exist in the form Θ0 = 𝑀𝜇 +
𝑁𝜈 + 𝜒0, where 𝜇, 𝜈 are toroidal and poloidal angle variables, the functions 𝑀 Ψ , 𝑁 Ψ determine the 
rotational transform of the vector field ∇Ψ0 × ∇Θ0, and the function 𝜒0(𝒙) is single-valued. The same result 
applies when solving for Θ𝑖 at any step of the iteration provided that Ψ𝑖 satisfies the same properties listed above 
for Ψ0 in Ω.

• An argument analogous to that used in the proof of theorem 1 in [JMP 64 081505 (2023)] shows that for a given 
angle variable Θ𝑖−1 in ∇ ⋅ ∇Θ𝑖−1 × ∇Ψi × ∇Θ𝑖−1 = 𝜇0𝜆, a solution Ψ𝑖 can be obtained by reducing the 
equation to a 2-dimensional elliptic equation on each level set of Θ𝑖−1 and by joining solutions corresponding to 
adjacent level sets.

• In light of the 2 remarks above, if one could show that at each step of the iteration the solutions Θ𝑖−1 and Ψ𝑖, 𝑖 ≥
1 preserve their properties (in particular, Θ𝑖 remains an angle variable and Ψ𝑖 foliates Ω with nested toroidal 
surfaces) then, combining this result with theorem 1 proved in this section, one would have obtained a proof of 
the existence of MHD equilibria in hollow toroidal volumes of arbitrary shape. In such construction, although no 
control is available on the form of the flux surfaces Ψ∞ within Ω, one can conjecture that, if they exist, solutions 
𝑩 = ∇Ψ∞ × ∇Θ∞ with different rotational transforms can be obtained by appropriate choice of 𝑀 and 𝑁. 



Concluding Remarks

• Reduced iMHD induction eq. (22) for nonlinear evolution of 𝑩 by Clebsch potentials. 

• System (22) is a toy model of turbulence that can be useful to assess dynamical accessibility 
and stability of MHD equilibria in physically relevant regimes.

• Ordering I relevant for stellarator plasmas (small flow, small electric current, and approximate 
flux surfaces). Ordering II is more general. 

• System (22) preserves magnetic energy, magnetic helicity, and total magnetic flux.

• System (22) has a noncanonical Hamiltonian structure

• Steady solutions are nonlinearly stable against perturbations involving a single Clensch
potential. 

• Double bracket dissipation gives a diffusive dynamical system (35) that can be used to 
compute nontrivial MHD equilibria by minimizing the Hamiltonian.

• Iterative scheme to compute nontrivial MHD equilibria. May serve as basis for proof of 
existence of MHD equilibria with a non-vanishing pressure gradient in general hollow tori.
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Thank you for your attention!
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