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Introduction

Objective
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Stellarator physics is inherently geometric and chaotic.

We can produce more simulations of plasma configurations under
different configurations than we can analyse by hand.

Recent work (past 25 years) in computational topology (Robins,
Edelsbrunner, Kaczynski, et. al [1–3]) has produced a series of tools
for the analysis of the shape of datasets and demonstrated its use
in the study of non-linear dynamical systems (Ghrist, Kaczynski,
Tempelton, Kramar et. al [4–6]).

Aim to develop applications of these tools for the automated
extraction of topological features from plasma physics simulations.



Introduction

Field line classification as a first proof of concept
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Figure 3: Diagram of many field line orbits of a toy field.

In Poincare sections of fields we
usually see chains of islands of
order and KAM toruses
embedded in a stochastic
(chaotic) see.

Problem Statement:

Can we automatically determine
the class of a field line only from
its orbit under a Poincare map?

Aim to capture the intuitive
segmentation a person would
construct on such a field.



Topological Data Analysis

The Shape of Data
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Intuitively some data has
“shape” or “topology”.

Such as the hole in −→

TDA seeks to make this
notion mathematically
rigorous.

Convert data into a sequence of simplicial complexes. (Study how the
data changes with scale)

Study how the topology (really homology) changes over the sequence.

Long-lived topological features represent geometric features in data.

Figure 4: Two example point clouds.



Topological Data Analysis

Vietoris-Rips (VR) Complex
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Definition

Let ϵ ∈ [0,∞) and X = {x0, . . . xn} be a point cloud then VRϵ(X ) is
a simplicial complex defined by

⟨xk1 . . . xkm⟩ ∈ VRϵ(X ) ⇔ d(xi , xj) ≤ ϵ for all i , j ∈ k1, . . . km. . (1)

As ϵ varies from 0 to ∞ this defines a sequence of nested simplicial
complexes K0 ↪−→ K1 ↪−→ . . . ↪−→ KN = VR∞(X ).

Figure 6: A subset of VR complexes from a filtration



Topological Data Analysis

Homology

N. Bohlsen (ANU) TDA and Plasma Physics October 2022 7 / 27

Homology is a topological invariant counting the n-d holes in a space.

A hole (class) is a loop which is “closed but not a boundary”.

Assigns a family of abelian groups Hn to the space with generator
which represent topological features

Figure 7: Diagrammatic introduction to Homology



Topological Data Analysis

Simplicial Homology Review

Suppose K is a simplicial complex we can construct abelian groups
Cn(K ,Z2) as formal linear combinations of n−simplexes in K . We can
these chain groups and there elements are

c ∈ Cn(K ,Z2) =⇒ c =
∑

σn
i ∈Kn

aiσ
n
i . (2)

Homology theory tells us that we can construct a chain complex

· · · → Cn(K ,Z2)
∂n−→ Cn−1(K ,Z2)

∂n−1−→ · · · , (3)

where the boundary maps are defined by summing the co-dimension 1
faces of a n−simplex σn [7, 8].
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Topological Data Analysis

Some examples
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Figure 8: Diagrammatic representation of the action of the boundary operator on simplicial complexes.

Observe core fact that “boundaries are always closed”

∂n−1∂n = 0 . (4)



Topological Data Analysis

Fundamental Idea of Homology

Holes in spaces are related to chains which are “closed” but not
“boundaries”. Sometimes referred to as “cycles” which are not boundaries.

We formulate this in terms of the quotient group

Hn(K ,Z2) =
ker ∂n
Im ∂n+1

, (5)

which we refer to as the n-th homology groups.

2 cycles c , c ′ ∈ Cn(K ,Z2) belong to the same equivalence class (are
homologous) in Hn if they differ by a boundary, that is if

c ′ = c + ∂b , (6)

where b ∈ Cn+1(K ,Z2), then [c] = [c ′] and they are associated the same
hole.
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Topological Data Analysis

Persistent Homology
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Throughout our filtration the homology of the complex will change as
we are analysing the dataset on different scales. Persistent homology
is the process of tracking this change and recording topological
features (homology classes) which are persistent, that is, exist for
many different radii.

We convert our sequence of complexes to a sequence of simplicial
homology groups by appealing to functoriality

Hn(K0) → Hn(K1) → . . . → Hn(KN) . (7)

A class in Hn(Ki ) is defined to persist if its image in Hn(Ki+1) is
non-zero, die if its image is zero, and be born if it is not in the image
of Hn(Ki−1).

The formal mathematics of this is left for another time.



Topological Data Analysis

Example barcode

Figure: Barcode for an example point cloud. Reproduced from [9].

For the following section we will mostly work with the persistence diagram
(scatter plot of birth and death times) instead of the barcodes.
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Topological Data Analysis

Persistent Homology
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The homology of the VR complex will change ϵ varies [3].

Classes will be born at some diameter b and may die at a diameter d .

The set of (b, d) pairs is the Persistent Homology PH.

Figure 8a: VR0.1 for a point cloud.
Figure 8b: Relative persistence of point cloud.



Orbit classification in a toy tokamak

Concept for automated orbit classification
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The finite time T ∈ N orbit of a point x ∈ Σ under the Poincare map
is a point cloud XT (x) ⊂ Σ.

The persistent homology of this point cloud encodes information
about the geometry (and topology) of the orbit.

Aim to develop a list of criteria using PH(XT (x)) which can specify
to which class (island chain, KAM torus, stochastic layer) of
Hamiltonian orbit x belongs.

Note that this is currently very non-rigorous



Orbit classification in a toy tokamak

Toy model for a tokamak device
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To develop a computational procedure we need an example of the
field line geometry.

We make a toy model for a perturbed tokamak device from an infinite
line current and a circular loop.

Now, lets analyse some data.

Poincare map orbits of field
lines specifically.

Figure 9: Toy tokamak currents



Orbit classification in a toy tokamak

Orbit on a KAM torus
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Rips persistence diagram and H1 class relative persistence is as you
would expect for a KAM torus.

Figure 10: Poincare map orbit of KAM torus



Orbit classification in a toy tokamak

Island chain
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For an island chain, geometrically largest hole has low relative
persistence.

Figure 11: Poincare map orbit of an island chain.



Orbit classification in a toy tokamak

Stochastic layer
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Persistence diagram contains many short lived classes. Relative
persistence of last H1 class is high again.

Figure 12: Poincare map orbit of a stochastic layer.



Orbit classification in a toy tokamak

Separating island chains from other orbits

We can distinguish the island chains from other types of orbits by looking
at the d/b for the last H1 class.

Define cl mapping point clouds X ⊂ Σ to the class in PH1(X ) with the
largest death time. That is we define

cl(X ) = argmax
c∈PH1(X )

ϵdeath(c) . (8)

The relative persistence of this class defines a statistic we refer to as the
enclosure, e, of the point cloud.

e(X ) =
ϵdeath(cl(X ))

ϵbirth(cl(X ))
. (9)
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Orbit classification in a toy tokamak

Enclosure well discriminates the islands
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Colouring point clouds of single orbit with e < ethesh gives the map of
field lines below.

Map of islands with ethresh = 20



Orbit classification in a toy tokamak

Checking the island locations
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Recall that surfaces should appear only on surfaces of rational q.

The number of islands in a chain is encoded in the PH0 information
(count number of persistent connected components).

Can pull the number of islands
n for a detected island chain
and infer m from q = n/m.

Can then check if the detected
islands occur at radius with
low order rational q.

Figure 14: Placeholder



Orbit classification in a toy tokamak

Towards separating KAM toruses
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Exact KAM toruses should contain only 1 large H1 class.

Let ihc be the number of H1 classes
with death time above a threshold
ϵdeath.

Then a non-island orbit is classed as
a KAM torus if ihc = 1.

Figure 14: Map of islands with

ethresh = 20,ϵdeath < 10−3



Conclusion

Some problems

There are problems with this procedure.

Currently we need to fit the different thresholds largely by hand.

Have to run a lot of field lines (between 1000-4000 iterations for my
tests, but the actual requirement is unknown).

Computing the persistent homology with RIPSER is slow but can be
improved using recent work by Koyama.
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Conclusion

Conclusion

With this work, we have shown that using TDA we can automatically
detect the class of magnetic field line orbits in a chaotic perturbed
tokamak field.

Requires only the orbit of the field line on a Poincare section.

No information on order of points are required.

Currently only tested for “dense” point clouds. Minimum number of
points required for accurate classification is unknown.

Has not yet been tested for the case of a real tokamak field or a
stellarator equilibrium.

This is a first practical application of TDA in a plasma physics context,
more may follow.
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Conclusion

Future work

Implement the automated detection scheme using the field of a real
MHD solution.

Incorporate information about the nearest neighbor distances obtained
from the PH0 data. May allow to detailed identification of the scales
of structure.

Attempt to reproduce results similar to the above with a more
geometric filtration (alpha complexes for example)

Investigate the VR persistent homology of particle trajectories (this is
a high dimensional problem).

Extract explicit representatives for the persistent cycles for phase
space segmentation.
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Conclusion

Other Applications

The distribution of the size of islands in the phase space can be
estimated using the sub-level set persistent homology on images.

The renormalisation group transforms preserving phase space
topology (which allow us to make exact predictions about dynamics
and statistics) can be observed in the data and new symmetries may
be found with the same methods.

Location of maxima along field lines can be extracted using the
sub-level set persistent homology.

Adapt tools built to study topological states in condensed matter to
plasma waves in spaces with non-trivial topology (plasma waves have
topological phases too).
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