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Where can one read about the topic?
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Classification with margin
We work with {−1, 1} labels.

We say that a set of labeled vectors SN (in Rp) is linearly
separable with a margin γ if there is a vector v ∈ Rp \ {0} such
that for any (x, y) ∈ SN , where x ∈ Rp and y ∈ {1,−1}:

y⟨v, x⟩
∥v∥

≥ γ.

The distance between x and the hyperplane induced by v is

|⟨v, x⟩|
∥v∥

.

We consider the classifier of the form x 7→ sign(⟨x,w⟩).
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The point (x, y) is classified correctly if

y sign(⟨x,w⟩+ b) > 0,

and is misclassified if

y sign(⟨x,w⟩+ b) ≤ 0.

We focus on b = 0 for simplicity.
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Perceptron algorithm

Two classical papers:

The Perceptron – A Perceiving and Recognizing Automaton
(1957) by F. Rosenblatt.

On convergence proofs on perceptrons (1962) by A.B. Novikoff.

In 1958 The New York Times reported the perceptron to be “the
embryo of an electronic computer that [the Navy] expects will be
able to walk, talk, see, write, reproduce itself and be conscious of its
existence.”
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Perceptron algorithm

Perceptron Algorithm.
Input: SN = {(x1, y1), . . . , (xN , yN)} (a linearly separable
dataset with margin γ > 0)

Set w1 = 0. (Initialization)
For i = 1, . . . ,N do

1 If yi⟨wi, xi⟩ ≤ 0
2 wi+1 = wi + yixi ,
3 Else
4 wi+1 = wi ,

Return: wN+1.

Whenever wi misclassifies xi , we update it by using the rule
wi+1 = wi + yixi . This implies that

yi⟨wi+1, xi⟩ = yi⟨wi, xi⟩+ ∥xi∥2 ≥ yi⟨wi, xi⟩.
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Theorem of Novikoff

Theorem: A. Novikoff 1963

Assume that we are given a set of labeled vectors

SN = {(x1, y1), . . . , (xN , yN)}

in Rd that is linearly separable with a margin γ. The number of
updates (misclassifications) made by the Perceptron algorithm
when processing SN is bounded by

M =

max
i=1,...,N

∥xi∥22

γ2
.

Running through the data multiple times we make a pass with no
errors and thus create a perfect separator.
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Multiplicative updates

The update rule for Perceptron is wi+1 = wi + yixi .

Assume that w ∈ ∆d — a probability simplex in Rd .

For this w , the linear separation for all (x, y) with margin γ is

y⟨w, x⟩ ≥ γ.

Idea: do the multiplicative updates of coordinates

wt+1,i = wt,i · αt,i.
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Additive to multiplicative updates: Winnow Algorithm

Winnow Algorithm (Littlestone, 1988)
Input: η > 0 (learning rate), N (number of iterations)

Initialize: w1 =
( 1
d , . . . ,

1
d

)
.

For t = 1, . . . ,N do
Receive xt
Compute ŷt = sign⟨wt , xt⟩
Receive yt
If ŷt ̸= yt then

Compute Zt =
∑d

i=1 wt,i exp(ηytxt,i)
For i = 1, . . . , d do
Update wt+1,i =

wt,i exp(ηyt xt,i)
Zt

Else set wt+1 = wt

Return: wN+1
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Theorem: Littlestone, 1988

Assume that we are given a set of labeled vectors

SN = {(x1, y1), . . . , (xN , yN)}

inRd that is linearly separable with amargin γ by a vector in∆d .
The number of updates (misclassifications) made by theWinnow
algorithm with η = γ

max
i=1,...,N

∥xi∥2∞
when processing SN is bounded

by

M =

2 max
i=1,...,N

∥xi∥2∞ log d

γ2
.

Winnow is the special case of the exponential weights/multiplicative
weights/hedge algorithm we cover in this mini-course.
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Preliminaries: Kullback-Leibler Divergence

Let ρ, π be probability densities supported on Θ ⊆ Rd .

The Kullback-Leibler divergence (KL divergence, also known as
relative entropy), is

KL(ρ ∥ π) =

∫
Θ
log

(
ρ(θ)

π(θ)

)
ρ(θ)dθ = Eθ∼ρ

[
log

(
ρ(θ)

π(θ)

)]
.

Fact:

1 KL(ρ ∥ π) ≥ 0

2 KL(ρ ∥ π) = 0 if and only if ρ(θ) = π(θ) almost everywhere.
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Preliminaries

Lemma: Donsker-Varadhan variational formula

Let π be a probability density supported on Θ ⊆ Rd , and let
h : Θ → R be a function with Eθ∼πeh(θ) < ∞. Then

logEθ∼πe
h(θ) = sup

ρ
{Eθ∼ρh(θ)−KL(ρ ∥ π)} ,

where the supremum is taken over all probability densities ρ such
that KL(ρ ∥ π) < ∞.
Moreover, the supremum in r.h.s. is achieved by

ρ′(θ) =
eh(θ)π(θ)

Eθ′∼π eh(θ
′)

Works equally well for discrete distributions.

Zhivotovskiy Exponential Weighting 15 / 50



Going back to prediction
Consider a loss function ℓθ(x, y) parametrized by θ ∈ Θ.

Example: Linear classification

ℓθ(x, y) = 1[sign(⟨x, θ⟩) ̸= y].

Example: Empirical loss so far by t-th round of prediction

t−1∑
i=1

1[sign(⟨xi, θ⟩) ̸= yi].

At round t we want to construct a distribution over Θ based on the
data we have seen so far. Naive idea:

ρ̂t = argmin
ρ

Eθ∼ρ

[
t−1∑
i=1

ℓθ(xi, yi)

]
.
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Entropic regularization
Fix η > 0 and the prior π over Θ,

ρ̂t = argmin
ρ

[
Eθ∼ρ

t−1∑
i=1

ℓθ(xi, yi) +
1
η
KL(ρ ∥ π)

]
.

We can solve this explicitly using the Donsker-Varadhan formula.
Taking

h(θ) = −η

t−1∑
i=1

ℓθ(xi, yi),

we have

ρ̂t ∝ exp

(
−η

t−1∑
i=1

ℓθ(xi, yi)

)
π(θ).

We also have that the minimized value of the regularized loss is

− 1
η
log

(
Eθ∼π exp

(
−η

t−1∑
i=1

ℓθ(xi, yi)

))
.
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From measures to prediction

Once we built ρ̂t , we can construct the predictor.

Importantly, this depends on a particular loss function we are using.

Example: Absolute loss with y ∈ R, x ∈ Rd ,

|y − fθ(x)|.

Standard approach: build some θ̂ and suffer the loss

|yt − f
θ̂
(xt)|.

If we construct the measure ρ̂t , our prediction is Eθ∼ρ̂t fθ and the
loss ∣∣∣∣yt − E

θ∼ρ̂t
fθ(xt)

∣∣∣∣ .
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Mix-loss and its properties
Recall the following formula:

ρ̂t(θ) ∝ exp

(
−η

t−1∑
i=1

ℓθ(xi, yi)

)
π(θ).

Definition: Mix-loss

Fix η > 0. Given a sequence ρ̂1, . . . , ρ̂T of distributions, define
the mix-loss at round t as

− 1
η
log

(
E

θ∼ρ̂t
exp (−ηℓθ(xt , yt))

)
.

From the Donsker-Varadhan identity we have that the mix-loss is
equal to

min
ρ

{
E
θ∼ρ

ℓθ(xi, yi) +
1
η
KL(ρ ∥ ρ̂t)

}
.
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Tensorization of mix-losses

Lemma: Sum of mix-losses

The following holds for the distributions ρ̂1, . . . , ρ̂T output by
the exponential weights algorithm:

T∑
t=1

− 1
η
log
(
Eθ∼ρ̂t exp (−ηℓθ(xt , yt))

)
= − 1

η
log

(
Eθ∼π exp

(
−η

T∑
t=1

ℓθ(xt , yt)

))
.

Proof.
A direct computation based on the definition of ρ̂t .
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A general recipe for analyzing exponential weights

1 Use the specific properties of the loss function to make a prediction
such that

Loss of the prediction at round t ≤ − 1
η
log
(
Eθ∼ρ̂t exp (−ηℓθ(xt , yt))

)
︸ ︷︷ ︸

mix-losst

.

2 Use the tensorization property to prove

T∑
t=1

mix-losst = − 1
η
log

(
Eθ∼π exp

(
−η

T∑
t=1

ℓθ(xt , yt)

))
.

3 Upper bound using direct computation or via the Donsker-Varadhan
duality formula

− 1
η
log

(
Eθ∼π exp

(
−η

T∑
t=1

ℓθ(xt , yt)

))
.
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The logarithmic loss

1 Let f be a density. Then

EX∼f [− log(f (X))] = EX∼f log

(
1

f (X)

)
is the entropy.

2 Consider a classification task, where y ∈ {0, 1} and we predict the
probability of a ’success’ p̂ ∈ (0, 1). Note that
−(y log(p̂) + (1− y) log(1− p̂)) is equivalent to the cross-entropy
loss.

3 Consider data points Z1, . . . ,Zn and density fθ . The maximum
likelihood procedure log(

∏n
i=1 fθ(Zi)) =

∑n
i=1 log(fθ(Zi)).

Maximizing this quantity over θ ∈ Θ is equivalent to minimizing

−
n∑

i=1

log(fθ(Zi)).
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The logarithmic loss

For a pair of densities f , g, it holds that

EX∼f [− log(g(X))− (− log(f (X)))] = KL(f ∥ g).

The excess risk with respect to the logarithmic loss corresponds to
the KL divergence if the data is generated by the risk minimizer.

The logarithmic loss is the easiest to work with when considering
the exponential weights algorithm.

Assume we have a family of densities F = {fθ : θ ∈ Θ}. We observe
z1, . . . , zT . Consider the mix-loss at round t ,

− 1
η
log

(
E

θ∼ρ̂t
exp (−η(− log(fθ(zt)))

)
.
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Density estimation and the logarithmic loss

Recall our general strategy:

Loss at round t ≤ − 1
η
log

(
E

θ∼ρ̂t
exp (−η(− log(fθ(zt)))

)
.

Observe that for η = 1 we immediately have

− log

(
E

θ∼ρ̂t
fθ(zt)

)
= − log

(
E

θ∼ρ̂t
exp (−(− log(fθ(zt)))

)
.

The predicted density Eθ∼ρ̂t fθ is exactly the Bayesian mixture.
Moreover,

ρ̂t(θ) ∝
t−1∏
i=1

fθ(zi)π(θ).
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Example: Regret for a finite family of densities

Consider the finite family of densities parametrized by Θ of size M.
That is,

F = {fθ1 , . . . , fθM}.

No assumptions are made except for fθ(x) ≥ 0 and
∫
fθ(x)dx = 1.

Theorem

Let π be the uniform prior over Θ. The exponential weights al-
gorithm with η = 1 satisfies

T∑
t=1

− log( E
θ∼ρ̂t

fθ(zt))−min
θ∈Θ

T∑
t=1

− log(fθ(zt)) ≤ log(M).
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Progressive mixture estimator
The same set of finite densities, but for θ⋆ ∈ Θ we observe the full
sample i.i.d.

Z1, . . . ,ZT

sampled according to fθ⋆ . Our aim is to estimate θ⋆.

Theorem: A. Barron (1987)

Consider the density predictor

f̂ =
1
T

T∑
t=1

E
θ∼ρ̂t

fθ.

The following bounds holds

E
Z1,...,ZT

KL(fθ⋆ ∥ f̂ ) ≤ log(M)

T
.
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Infinite Classes: Covering Numbers
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Infinite Classes: Barron-Yang Construction

Let F be a collection of densities parametrized by Θ.

N (F ,KL, ε) = min{N ∈ N : ∃q1, . . . , qN s. t. for all θ ∈ Θ, ∃i ∈ [N ]

s.t. KL(fθ, qi) ≤ ε2}.

Idea: Fix ε > 0 and let Nε be the net corresponding to N (F ,KL, ε).
Let f̂ be a progressive mixture on q1, . . . , qNε with the uniform prior
on this set.

Theorem: Barron-Yang, 1999

Assume Z1, . . . ,ZT ∼ fθ⋆ , with fθ⋆ ∈ F . Then there exists a f̂
which satisfies

EZ1,...,ZTKL(fθ⋆ ∥ f̂ ) ≤ inf
ε>0

{
ε2 +

logN (F ,KL, ε)
T

}
.
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Example: Gaussian densities via Barron and Yang
Let F = {N (θ, Id) : θ ∈ Θ}, where Θ = Bd

2 .

We observe Z1, . . . ,ZT
iid∼ N (θ∗, Id), with θ∗ ∈ Θ.

Note that

KL (N (θ1, Id) ∥ N (θ2, Id)) =
1
2
∥θ1 − θ2∥22.

By the volumetric argument:

N (F ,KL, ε) ≤
( c
ε

)d
.

Progressive mixture f̂ gives us the following bound:

EZ1,...,ZTKL(N (θ∗, Id) ∥ f̂ ) ≲ inf
ε>0

{
ε2 +

d log(c/ε)
T

}
≲

d log T
T

.
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How to choose the optimal prior for exponential weights?

Clarke, Barron (1994), and Rissanen (1996) studied optimal prior
distributions for exponential weights in the context of log-loss with
asymptotic results, typically for well-specified i.i.d. data.

Heuristic derivation for the total loss (θ⋆ is minimizer,
ℓt,θ := ℓθ(xt , yt)):

Eθ∼π exp
(
−
∑T

t=1
ηℓt,θ

)
≈
∫
Rd

π(θ⋆) exp

(
−
∑T

t=1
ηℓt,θ⋆ −

1
2
(θ − θ⋆)⊤Hesst(θ

⋆)(θ − θ⋆)

)
dθ

= π(θ⋆) exp
(
−
∑T

t=1
ηℓt,θ⋆

) (2π)d/2√
det
(∑T

t=1Hesst(θ
⋆)
) .
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Jeffreys prior for exponential weights

Applying − 1
η log (. . .) to the last expression, we get for

(approximate) total error

∑T

t=1
ℓt,θ⋆ +

d
2η

log

(
T
2π

)
+

1
η
log


√
det( 1T

∑T
t=1Hesst(θ

⋆))

π(θ⋆)

 .

A natural idea to pick the Jeffreys prior:

π(θ) ∝

√
det

(
1
T

∑T

t=1
Hesst(θ)

)
.

Idea: Find a prior using the above heuristic and then provide a finite
sample regret bound with this prior.
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Discrete probability assignments

We observe a sequence of bits z1, . . . , zT (that is, zt ∈ {0, 1}). Our
aim is to assign probabilities sequentially such that the regret

T∑
t=1

− log(p̂(zt))− inf
p∈[0,1]

T∑
t=1

(− log(p)1[zt = 1]− log(1− p)1[zt = 0])

Such a bound can immediately converted into a statistical
bound

E
Z1,...,ZT

KL(p ∥ p̃) ≤ Regret
T

,

where we assume that Zt ∼ Be(p).
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Discrete probability assignments
Let n0 be the number of zeros and n1 be the number of ones and
define p⋆ = n1

n0+n1
. We have

inf
p∈[0,1]

T∑
t=1

(− log(p)1[zt = 1]− log(1− p)1[zt = 0])

= T (−p⋆ log(p⋆)− (1− p⋆) log(1− p⋆)).

Compute the second derivative for Jeffreys prior:∣∣∣∣∣ ∂2

∂2p

T∑
t=1

(− log(p)1[zt = 1]− log(1− p)1[zt = 0])
∣∣∣∣
p=p⋆

∣∣∣∣∣ ∝ 1
p⋆(1− p⋆)

Thus, the Jeffreys prior (∝
√
det(Hess(θ))) is the Beta(1/2, 1/2)

distribution
π(θ) =

1

π
√
p(1− p)

.
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Krichevsky-Trofimov estimator
Assume that before round t we observe nt0 zeros and nt1 ones, so that
nt0 + nt1 = t − 1. Given the Beta(1/2, 1/2) prior we note that

ρ̂t ∝
pn

t
1(1− p)n

t
0

π
√

p(1− p)
.

And therefore,

p̂t(1) =

1∫
0

pn
t
1+1(1−p)n

t
0

π
√

p(1−p)
dp

1∫
0

pn
t
1 (1−p)n

t
0

π
√

p(1−p)
dp

Furthermore, direct computations show that

T∑
t=1

− log(p̂(zt))− inf
p∈[0,1]

T∑
t=1

(− log(p)1[zt = 1]− log(1− p)1[zt = 0])

≤ 1
2
log(T ) + log(2).
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Square loss
Consider the square loss

(y − fθ(x))
2,

where fθ is a class of functions parametrized by Θ.

Lemma: Mixability of the square loss (Vovk, 1990, 2001)

Assume that |y| ≤ m (no assumptions on fθ). Consider the pre-
dictor

f̂t(x) =
m
2
log

(
Eθ∼ρ̂t exp

(
− 1

2m2 (m− fθ(x))2
)

Eθ∼ρ̂t exp
(
− 1

2m2 (−m− fθ(x))2
)) .

Then

(y − f̂t(x))2 ≤ −2m2 log

(
Eθ∼ρ̂t exp

(
− 1
2m2 (y − fθ(x))

2
))

︸ ︷︷ ︸
Mix-loss with η=1/2m2

.
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Vovk’s predictor
We are planning to interpret the following predictor:

f̂t(x) =
m
2
log

(
Eθ∼ρ̂t exp

(
− 1

2m2 (m− fθ(x))2
)

Eθ∼ρ̂t exp
(
− 1

2m2 (−m− fθ(x))2
)) .

Fix λ > 0. Let us choose the Gaussian prior

π(θ) ∝ exp
(
−λη∥θ∥22

)
.

Direct integration (only Gaussian integrals are involved) shows that

f̂t(xt) = ⟨θ̂t,xt , xt⟩,

where

θ̂t,xt = arg min
θ∈Rd

(
t−1∑
i=1

(yi − ⟨xi, θ⟩)2 + (⟨xt , θ⟩)2 + λ∥θ∥2
)
.
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Online linear regression
Due to Vovk’s result relating predictions and mix-losses, we only
have to bound the sum of mix-losses

− 2m2 log

(
Eθ∼π exp

(
− 1
2m2

T∑
t=1

(yt − ⟨xt , θ⟩)2
))

.

Computations reduce to Gaussian integration. This leads to

Theorem: Vovk, 1998

Assume that maxt ∥xt∥2 ≤ r and maxt |yt | ≤ m. The following
holds for any θ⋆ ∈ Rd :

T∑
t=1

(yt − ⟨xt , θ̂t,xt ⟩)2 ≤
T∑

t=1

(yt − ⟨xt , θ⋆⟩)2

+ λ∥θ⋆∥22 + dm2 log

(
1+

Tr2

dλ

)
.
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Simplification of predictors: Exp-concavity

When both y and fθ(x) are absolutely bounded by m we may use a
different idea.

Let η = 1
8m2 . Then for any distribution ρ,(

y − E
θ∼ρ

fθ

)2

≤ − 1
η
log

(
E
θ∼ρ

exp(−η(y − fθ(x))
2)

)
︸ ︷︷ ︸

mix-loss

.
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Simple bound for finite families

Assume that |yt | ≤ m and |fθ(xt)| ≤ m for all θ ∈ Θ with |Θ| = M.

Theorem

Under the boundedness assumptions introduced above, for any
sequence (xt , yt)Tt=1,

T∑
t=1

(yt − E
θ∼ρ̂t

fθ(xt))
2 − inf

θ∈Θ

T∑
t=1

(yt − fθ(xt))
2 ≤ 8m2 logM.
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Progressive mixture for the square loss
Given a random pair (X ,Y), define R(f ) = E(f (X)− Y)2.

Theorem: Yang (2000), Catoni (1997)

Let (Xt ,Yt)
T
t=1 be an i.i.d. sample of copies of (X ,Y). Assume

that a.s. |Y | ≤ m and |fθ(X)| ≤ m. Set

f̂ pm =
1
T

∑T

t=1
E

θ∼ρ̂t
fθ.

The following bound holds for Θ of size M,

ER(f̂ pm)−min
θ∈Θ

R(fθ) ≤
8m2 log(M)

T
.

Using Vovk’s mixability result we can remove the assumption
|fθ(X)| ≤ m.

One can even replace |Y | ≤ m by E[Y 2|X ] ≤ m2 a.s.
Zhivotovskiy Exponential Weighting 40 / 50



Large variance of online-to-batch conversions

Progressive mixture rules do not give sharp high probability bounds
in the random design setting

ER(f̂ pm) instead of R(f̂ pm).
Theorem: Audibert (2007)

With probability at least 1−δ, over the realization of the training
sample

R(f̂ pm)−min
θ∈Θ

R(fθ) ≲
log(M)

T
+

√
log(1/δ)

T
.

Most importantly, the term 1√
T
cannot be improved in general!
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Variance reduction solution (Square loss)

Define the modified loss function at round t as follows:

ℓ̃t(fθ) =
( 1
2 fθ(Xt) +

1
2 f̂t(Xt)− Yt

)2
,

We say that f̂1, . . . , f̂T satisfy the bounded shifted regret condition if

T∑
t=1

ℓ̃t
(
f̂t
)
−min

θ∈Θ

T∑
t=1

ℓ̃t(fθ) ≤ RT .

The regret bounds for the shifted regret are the same as for the
original regret.
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Variance reduction by shifted losses

Theorem: Cesa-Bianchi, Van der Hoeven, Zh. 2023

Assume that both fθ(X) and Y are absolutely bounded by m. Let
RT be a bound on the shifted regret for f̂1, . . . , f̂T built sequen-
tially using a random sample (X1,Y1), . . . , (XT ,YT ). Define

f̄T =
1
T

T∑
i=1

f̂i.

Then, with probability at least 1− δ,

R(f̄T )−min
θ∈Θ

R(fθ) ≤
2RT

T
+

64m2 log(1/δ)
T

.

The key aspect of this extension is its applicability to other loss
functions, including logarithmic/cross entropy + we can
accommodate an infinite Θ.
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The proof is simple. High level ideas for the square loss:(
1
2 fθ(Xt) +

1
2 f̂t(Xt)− Yt

)2
= 1

2 (fθ(Xt)− Yt)
2 + 1

2

(
f̂t(Xt)− Yt

)2
− 1

4

(
fθ(Xt)− f̂t(Xt)

)2
.

Freedman’s inequality (martingale counterpart to Bernstein’s
inequality) gives a variance term that may lead to an additional
1√
T
-factor.

The negative term − 1
4

(
fθ(Xt)− f̂t(Xt)

)2
compensates for this

variance.

Extension to general loss functions (e.g., log-loss) is more involved
but uses the same idea of variance compensation.
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Bounded losses
The classical algorithm of Littlestone and Warmuth (1994) works
with general bounded losses.

Theorem

Assume that ℓθ(zt) ∈ [0,m]. Then for any η > 0, the exponential
weights algorithm satisfies

T∑
t=1

E
θ∼ρ̂t

ℓθ(zt) ≤ inf
γ

{
T∑

t=1

E
θ∼γ

ℓθ(zt) +
KL(γ ∥ π)

η

}
+

Tm2η

8
.

Example: |Θ| = M; π is a uniform measure, m = 1 imply after
optimizing η,

T∑
t=1

E
θ∼ρ̂t

ℓθ(zt)−min
θ∈Θ

T∑
t=1

ℓθ(zt) ≤
√

T log(M)

2
.
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Additional applications: Matrix multiplicative weights

We begin with the standard matrix concentration inequality.

Theorem: Matrix Bernstein inequality, Tropp (2011)

Assume that X1, . . . ,XT are independent zero mean symmetric
matrices such that ∥Xi∥ ≤ L almost surely. The following holds

Eλmax

(
T∑
i=1

Xi

)
≤

√√√√2

∥∥∥∥∥
T∑
i=1

EX 2
i

∥∥∥∥∥ log(d) + 1
3
L log(d).

As an exercise, we will try to think of this result as a corollary of the
exponential weights regret bound.
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From distributions to matrices
When working with Winnow, we played with the distribution
simplex ∆d .

Now we work with matrices. Let Dd×d be the set of density matrices
— the p.s.d. matrices with trace equal to 1.

An analog of inner products: ⟨A,B⟩ = Tr(AB).

An analog of the KL divergence (A,B are p.s.d. but not always
trace one):

KL(A,B) = ⟨A, logA− log B⟩+ ⟨I,B− A⟩.

It is easy to prove that for any A ∈ Dd×d ,

KL
(
A,

1
d
I
)

≤ log d.

Zhivotovskiy Exponential Weighting 47 / 50



Multiplicative weights on matrices

We are going to run the matrix multiplicative weights on the
sequence

(
−Xt + ηX 2

t

)T
t=1. Following our logic:

Fix η ≥ 0 and consider the update rule (with identity prior)

ρ̃t+1 = argmin
ρ⪰0

{
⟨ρ,−Xt + ηX 2

t ⟩+
1
η
KL(ρ, ρ̂t)

}
.

We need to normalize these weights to make it a density matrix.

ρ̂t+1 = argmin
ρ∈Dd×d

KL(ρ, ρ̃t+1).
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Following similar lines, we can show that for any ρ ∈ Dd×d ,

T∑
t=1

⟨ρ− ρ̂t ,Xt⟩ ≤ 2

√√√√log(d)
T∑

t=1

⟨ρ,X 2
t ⟩+ 4L log(d).

One can easily show that

T∑
t=1

〈
ρ,X 2

t

〉
≤

∥∥∥∥∥
T∑

t=1

X 2
t

∥∥∥∥∥ .
Moreover,

E
Xt
⟨ρ̂t ,Xt⟩ = 0.

With some additional effort, this can be reduced to

E

∥∥∥∥∥
T∑

t=1

Xt

∥∥∥∥∥ ≤ 2

√√√√log(d)

∥∥∥∥∥
T∑

t=1

EX 2
t

∥∥∥∥∥+ 4L log(d).
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Thank you!
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