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Non-critical string theory

▶ Formally, the action of non-critical string theory is a direct
sum of three theories

S = SCFT + SL + Sghosts, cCFT + cL + cghosts = 0.

▶ Physical observables correspond to BRST cohomologies

U∆(x) = Φ∆(x)V1−∆(x).

▶ The goal is to calculate the amplitudes, or correlation numbers

Vg ,n(∆1, . . . ,∆n) =

ˆ
Mg,n

Zgh⟨U∆(x1) . . .U∆(xn)⟩g ,

where ⟨. . . ⟩g is the correlation function on a Riemann surface
of the genus g and Zgh is a contribution from the ghost sector.
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Non-critical string theory

▶ The most well-known example is the minimal string theory,
also known as minimal Liouville gravity. In this theory, the
matter content consists of a single minimal model Mp,p′ .

▶ This theory is believed to be dual to a double-scaling limit of
a certain matrix model and most of analytic results have been
obtained within this duality on the matrix model side.

▶ Another model of 2D quantum gravity has been proposed
recently (Collier, Eberhardt, Mühlmann and Rodriguez, The
Virasoro minimal string 2024). In this case the spectrum of
the underlying matter CFT, the so-called timelike Liouville
CFT, is continuous.

▶ A remarkably simple polynomial formula for Vg ,n has been
conjectured. In particular,

V0,4(∆1,∆2,∆3,∆4) =
c − 13

24
+

4∑
k=1

P2
k , ∆k =

Q2

4
+ P2

k .
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Liouville CFT

LFT is a CFT with central charge

c = 1 + 6Q2, Q = b +
1

b
, b ∈ C.

[Ln, Lm] = (n −m)Ln+m +
c

12
(n3 − n)δn+m,0,

[L̄n, L̄m] = (n −m)L̄n+m +
c

12
(n3 − n)δn+m,0,

n,m ∈ Z.

The primary field satisfies

L0VP(z) = ∆(P)VP(z), LnVP(z) = 0, for n > 0,

∆(P) = ∆̄(P) =
Q2

4
+ P2, P ∈ R.

Clearly, ∆(P) = ∆(−P). We demand that VP(z) ∼ V−P(z)

VP(z) = RPV−P(z), where RPR−P = 1.
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Liouville CFT

For conformal bootstrap we need to know

⟨VP1(z1)VP2(z2)⟩ ∼ N(P1)(δ(P1 + P2) + RP1δ(P1 − P2)),

⟨VP1(z1)VP2(z2)VP3(z3)⟩ ∼ C (P1,P2,P3).

Higher order correlation functions are computed using OPE

VP1
(z)VP2

(w)=

=
´
R dP CP

P1,P2
|z−w |2(∆(P)−∆(P1)−∆(P2))

∑
λ,λ̄

(z−w)|λ|(z̄−w̄)|λ̄|βλ(P)βλ̄(P)Vλ,λ̄
P (w)

Here V λ,λ̄
P ≡ L−λL̄−λ̄VP ≡ (L−λ1L−λ2 . . .)(L̄−λ̄1

L̄−λ̄2
. . .)VP are

descendant fields and all βλ(P) are fixed unambiguously by
conformal symmetry. They are rational functions of P with poles at

P = ±Pm,n ≡ ± i

2

(
mb + nb−1

)
, m, n ∈ Z>0.
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Liouville CFT

We postulate the existence of degenerate fields with

∆m,n = ∆(Pm,n), Pm,n =
i

2

(
mb + nb−1

)
, m, n ∈ Z>0.

As one can see, for all b ∈ C \ iR the momenta Pm,n do not lie in
the spectrum of LFT, they a priori form a different operator
algebra. The vanishing descendant of Vm,n has the form
Dm,nD̄m,nVm,n, where

D
(b)
m,n = Lmn

−1 + c1(b)L
mn−2
−1 L−2 + . . .

Because of these vanishing descendants, correlation functions with
degenerate fields satisfy BPZ differential equations. In particular
OPE of Vm,n with a field VP in the spectrum has the form

Vm,n(z)VP(w)=
∑

k,l C
k,l
m,n(P)|z−w |2(∆(P+Pk,l )−∆(P)−∆m,n)[VP+Pk,l

(w)+...]
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Liouville CFT

Consider 4-point functions with degenerate fields V1,2 and V2,1:

⟨V2,1(z)VP2(0)VP3(1)VP4(∞)⟩, ⟨V1,2(z)VP2(0)VP3(1)VP4(∞)⟩.

In this case, there are only 2 conformal blocks in each channel.
This allows us to reduce the crossing symmetry constraint to

C
1,0
2,1

(P2+ib)C(P2+ib,P3,P4)

C
−1,0
2,1

(P2)C(P2,P3,P4)
=

∏
±1,±2

γ(12 − b2

2 + ib(P2 ±1 P3 ±2 P4))

γ(−b2 + 2ibP2)γ(1− b2 + 2ibP2)
,

C
0,1
1,2

(P2+ib−1)C(P2+ib−1,P3,P4)

C
0,−1
1,2

(P2)C(P2,P3,P4)
=

∏
±1,±2

γ(12 − b−2

2 + ib−1(P2 ±1 P3 ±2 P4))

γ(−b−2 + 2ib−1P2)γ(1− b−2 + 2ib−1P2)
.

Here γ(z) = Γ(z)/Γ(1− z). Note that for b ∈ R and b ∈ iR these
equations have unique solutions!

7 / 24



Spacelike Liouville CFT

The solution is

C (P1,P2,P3) =
Υ′

b(0)
∏3

k=1Υb(−2iPk)∏
±1,±2

Υb(Q/2 + iP1 ±1 iP2 ±2 iP3)
.

In this normalization, we have

RP =
Υb(−2iP)

Υb(2iP)
, CP

P1,P2
= C (−P,P1,P2).

The 3-point function has the following zeroes and poles in P1:

Poles : P1 ±2 P2 ±3 P3 = ±P2m−1,2n−1.

Zeroes : P1 = ±Pm,n, P1 = 0, P1 = − imb

2
, P1 = − inb−1

2
.
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Spacelike Liouville CFT

We now consider analytic continuation of OPE

VP1
(z)VP2

(w)=

=
´
R dP CP

P1,P2
|z−w |2(∆(P)−∆(P1)−∆(P2))

∑
λ,λ̄

(z−w)|λ|(z̄−w̄)|λ̄|βλ(P)βλ̄(P)Vλ,λ̄
P (w)

in the momentum P1 away from the spectrum R. The integrand is
a meromorphic function of P1 and P. Poles in P can originate
from CP

P1,P2
= C (−P,P1,P2) and from βλ(P), βλ̄(P). Careful

analysis shows that
VPr,s = Vr ,s

This analysis is rather straightforward, but requires the so called
HEM (Al. Zamolodchikov 2003)
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Spacelike Liouville CFT

We identified degenerate fields Vm,n with primary fields VPm,n . By
definition of degenerate fields, they satisfy

D
(b)
m,nD̄

(b)
m,nVm,n(z) = 0, m, n ∈ Z>0.

Al. Zamolodchikov discovered the following “higher equations of
motion” (HEM):

D
(b)
m,nD̄

(b)
m,nV

′
m,n(z) = B

(b)
m,nVm,−n(z), whereV

′
m,n(z) ≡

∂

∂P
VP(z)

∣∣∣∣
P=Pm,n

with (here Here by Vm,−n(z) = VPm,−n(z))

B
(b)
m,n =

∏
k,l

(P1+P2+Pk,l)
2(P1−P2+Pk,l)

2·
∂C (P,P1,P2)/∂P|P=Pm,n

C (Pm,−n,P1,P2)

10 / 24



Spacelike Liouville CFT

Consider the correlation function of N primary fields:

⟨VP1(z1)VP2(z2) . . .VPN
(zN)⟩.

It can be proved that the only poles of this correlation function in
P1 are simple poles, which are known as “screening poles”:

P1+
N∑
i=2

±iPi = ±i

(
(N − 2)Q

2
+ (r − 1)b + (s − 1)b−1

)
, r , s ∈ Z>0.

The proof goes by induction in N

⟨VP1
(z1)VP2

(z2)...VPN
(zN)⟩=

=
´
C dP |z1−z2|2(∆(P)−∆(P1)−∆(P2))C(−P,P1,P2)[⟨VP(z2)VP3

(z3)...VPN
(zN)⟩+...].
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Spacelike Liouville CFT

Last ingredient that we need is the triality transformation for
4−point correlation function

⟨VP1(z)VP2(0)VP3(1)VP4(∞)⟩.

It can be proven that it is covariant under the transformation

P1 → P̃1 =
P1 + P2 + P3 + P4

2
, P2 → P̃2 =

P1 + P2 − P3 − P4

2
,

P3 → P̃3 =
P1 − P2 + P3 − P4

2
, P4 → P̃4 =

P1 − P2 − P3 + P4

2
.

⟨VP̃1
(z)VP̃2

(0)VP̃3
(1)VP̃4

(∞)⟩=|z|−(P1−P2−P3−P4)(P1−P2+P3+P4)|1−z|−(P1−P2−P3−P4)(P1+P2−P3+P4)×

×
∏4

k=1
Υb(−2i P̃k )

Υb(−2iPk )
⟨VP1

(z)VP2
(0)VP3

(1)VP4
(∞)⟩
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Timelike Liouville CFT

For b = i b̂ ∈ iR

ĉ = 1 + 6Q̂2, Q̂ = b + b−1 = i b̂ − i b̂−1

functional equations have another solution

Ĉ(i b̂)(P̂1, P̂2, P̂3) =

∏
±1,±2

Υb̂((b̂ + b̂−1)/2 + P̂1 ±1 P̂2 ±2 P̂3)

Υ′
b̂
(0)

∏3
k=1Υb̂(b̂ + b̂−1 + 2P̂k)

.

with

Poles : P̂1 = ±P̂m,−n, P̂1 = 0, P̂1 =
mb̂

2
, P̂1 =

nb̂−1

2
,

Zeroes : P̂1 ±2 P̂2 ±3 P̂3 = ±P̂2m−1,−2n+1,

where P̂m,n = i
(
mb
2 + nb−1

2

)
= −mb̂

2 + nb̂−1

2 .
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Timelike Liouville CFT

OPE in timelike LFT is slightly ill-defined. Since we have b ∈ iR,
the momenta that correspond to degenerate fields now lie in the
spectrum: P̂m,n ∈ R. This leads to a problem in using OPE,
because the double poles of the structure constant and the poles of
βλ, βλ̄ now lie on the real axis. Moreover, the set of all poles of
the latter {P̂m,n|m, n ∈ Z>0} is dense in the real line.
This problem is solved by changing the contour of integration to
R+ iε and taking the limit ε → 0 after computing the correlation
function.
The analytic properties of ⟨ΦP̂1

(z1)ΦP̂2
(z2) . . .ΦP̂n

(zn)⟩ as a
function of P̂1 is much simpler than in spacelike LFT. Namely, the
only poles are

P̂1 = ±P̂m,−n, P̂1 = 0, P̂1 =
mb̂

2
, P̂1 =

nb̂−1

2
, m, n ∈ Z>0.
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Timelike Liouville CFT

Note that in timelike LFT the degenerate field

Φm,n(z) = ΦP̂m,n
(z)

has a non-vanishing null-vector. Instead, one has HEM

D
(ib)
m,nD̄

(ib)
m,nΦm,n(z) = B

(i b̂)
m,nΦm,−n(z),

with

B
(i b̂)
m,n = 2

Υ′
b̂
(−2P̂m,−n)

Υb̂(−2P̂m,n)
.

Note that if b̂ = b, we have

B
(ib)
m,n = iB

(b)
m,n.
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Virasoro minimal string

Formally

VMS = Spacelike LFT ⊗ Timelike LFT ⊗ Fadeev –Popov ghosts.

In order for the conformal anomaly to vanish, the total central
charge of the three CFTs should be equal to 0

ĉ = 26− c = 1− 6
(
b − b−1

)2
=⇒ b̂ = b.

VP(z)ΦP̂(z), ∆(P) + ∆̂(P̂) = 1, =⇒ P̂ = iP.

Vg ,n(P1, . . . ,Pn) =

=

ˆ
Mg,n

Zgh · ⟨VP1(z1) . . .VPn(zn)⟩⟨ΦiP1(z1) . . .ΦiPn(zn)⟩.
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Virasoro minimal string

The first nontrivial volume on a sphere is the one with 4 field
insertions: V0,4(P1,P2,P3,P4). The moduli space of the sphere
with 4 marked points M0,4 is parametrized by the position z1 of
one of the points: z1 ∈ C \ {z2, z3, z4}

V0,4(P1,P2,P3,P4)=

=
´
C d2z ⟨VP1

(z)VP2
(0)VP3

(1)VP4
(∞)⟩⟨ΦiP1

(z)ΦiP2
(0)ΦiP3

(1)ΦiP4
(∞)⟩.

Note that because of the relation ∆(P) + ∆̂(P̂) = 1 fields in at
least one of the LFT correlation functions do not lie in the
spectrum. Therefore this equation should be understood as an
analytic continuation.
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Virasoro minimal string

Note that the integrand in

V0,4(P1,P2,P3,P4)=

=
´
C d2z ⟨VP1

(z)VP2
(0)VP3

(1)VP4
(∞)⟩⟨ΦiP1

(z)ΦiP2
(0)ΦiP3

(1)ΦiP4
(∞)⟩.

is a complicated meromorphic function of the momenta.
Nevertheless, the proposed answer

V0,4(∆1,∆2,∆3,∆4) =
c − 13

24
+

4∑
k=1

P2
k

is a polynomial. Thus all residue terms must be exact forms!
Thee two types of poles: at P1 = Pm,n and the screening poles.
But they are related by triality transformation.
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Virasoro minimal string

At P1 → Pm,n

VP1ΦiP1(z) → Vm,nΦm,−n(z)
HEM∼ Vm,nD

(ib)
m,nD̄

(ib)
m,nΦm,n(z)

The key observation is the ”integration by parts” formula

⟨Vm,nD
(ib)
m,nD̄

(ib)
m,nΦm,n(z) . . .⟩ = ∂∂̄Hm,nH̄m,n⟨Vm,nΦm,n(z) . . .⟩,

where Hm,n and H̄m,n are combinations of differential operators.
Thus the pole gets integrated to 0 and we consider the next order:

V0,4(Pm,n,P2,P3,P4) = i

ˆ
d2z⟨V ′

m,n(z)Φm,−n(z) . . .⟩+

+

ˆ
d2z⟨Vm,n(z)Φ

′
m,−n(z) . . .⟩,

where

VP = Vm,n+(P−Pm,n)V
′
m,n+. . . , ΦP̂ =

Φm,−n

P̂ − P̂m,−n

+Φ′
m,−n+. . .
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Virasoro minimal string

In the first term in

V0,4(Pm,n,P2,P3,P4) = i

ˆ
d2z⟨V ′

m,n(z)Φm,−n(z) . . .⟩+

+

ˆ
d2z⟨Vm,n(z)Φ

′
m,−n(z) . . .⟩,

we use timelike HEM, the “integration by parts” and then
spacelike HEM and get the following (up to exact terms):

vm,n
0,4 (P2,P3,P4) ≡ V0,4(Pm,n,P2,P3,P4)−V0,4(Pm,−n,P2,P3,P4) =

=

ˆ
d2z

〈
Vm,nΦ

′
m,−n(z)VP2ΦiP2(0)VP3ΦiP3(1)VP4ΦiP4(∞)

〉
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Virasoro minimal string

Using modified version of ”integration” by parts formula, one can
prove that

vm,n
0,4 (Pr ,s ,P3,P4) = vm,n

0,4 (Pr ,−s ,P3,P4).

Assuming that V0,4 depends on {Pk} polynomially, this constraint
implies that

∂

∂P2
vm,n
0,4 (P2,P3,P4) = 0

Thus

∂

∂P2
V0,4(Pm,n,P2,P3,P4) =

∂

∂P2
V0,4(Pm,−n,P2,P3,P4)

and hence
∂2

∂P1∂P2
V0,4(P1,P2,P3,P4) = 0.
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Virasoro minimal string

Thus V0,4(P1,P2,P3,P4) is a symmetric polynomial of the form

V0,4(P1,P2,P3,P4) = f (P1) + f (P2) + f (P3) + f (P4).

On the other hand, from the triality symmetry of the volume we
get

f (P1) + f (P2) + f (P3) + f (P4) =

= f

(
P1 + P2 + P3 + P4

2

)
+ f

(
P1 + P2 − P3 − P4

2

)
+

+ f

(
P1 − P2 + P3 − P4

2

)
+ f

(
P1 − P2 − P3 + P4

2

)
The only polynomial that satisfies this equation is a quadratic one:

V0,4(P1,P2,P3,P4) = c1(b) + c2(b)(P
2
1 + P2

2 + P2
3 + P2

4 ).
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Virasoro minimal string

We can recover two coefficients c1(b) and c2(b) from two exactly
solvable cases (Onofri, Fateev ... 2009)

V0,4

(
ib−1

2
+

ib

4
,
ib

4
,
ib

4
,
ib

4

)
= −1

4
,

V0,4

(
ib−1

2
− ib

4
,
ib

4
,
ib

4
,
ib

4

)
=

1

4
.

The result is

V0,4(∆1,∆2,∆3,∆4) =
c − 13

24
+

4∑
k=1

P2
k .
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Conclusion

▶ Easy to generalize for V1,1

▶ No proof of polynomial growth

▶ Triality symmetry is special for V0,4 (for V1,1)

▶ Generalization for Vg ,n

▶ Analog of Mirzakhani recursion formula

▶ Relation to intersection theory
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