

EPOS Optimization Progress And Perturbation Modelling

• Pedro Gil

ö

• •

																	0	0	0	0
																	0	0	0	0
																	0	0	0	0
																	0	0	0	0
																	0	0	۰	0
																	0	0	0	0
																	0	0	0	0
. 0	R B	0	0	0	0	9	0	•	0.	•	•	•	۰	•	•	.0	0	0	0	0
								0	0	0	0	0	0	0	0	0	0	ö	0	0
								0	0	0	0	0	0	0	0	0	0	0	0	0

- Stellarator with good confinement/quasisymmetry for e- and e+.
- Achieve low debye length compared to the minor radius.
- **Respect HTS strain limits.**
- Achieve a robust configuration to perturbations of the coils.
- Allows injection of positrons through ExB drift.

WHAT HAS BEEN ACHIEVED SO FAR?

• CLASSICAL PROCEDURE:

• Stage I: Generate the plasma equilbrium

• METHODS:

• Stage I: Least Squares Optimization (Non-Linear)

WHAT HAS BEEN ACHIEVED SO FAR?

• CLASSICAL PROCEDURE:

- Stage I: Generate the plasma equilbrium
- Stage II: Generate the coils
- METHODS:
 - Stage I: Least Squares Optimization (Non-Linear)
 - Stage II: Quasi-Newton Non-Linear Optimization

- Stage I + Stage II \rightarrow Single Stage = PLASMA and COILS optimization all at once.
- COST FUNCTION:

$$\min_{x_{\text{coils}}, x_{\text{surface}}} J(x_{\text{coils}}, x_{\text{surface}}) = J_1 + \omega_{\text{coils}} J_2, \qquad (27a)$$

subject to
$$\psi = \psi_0, R_{\text{major}} = R_0,$$
 (27b)

* Work developped in *Single-Stage Stellarator Optimization: Combining Coils with Fixed Boundary Equilibria*, R Jorge et al 2023 Plasma Phys. Control. Fusion **65** 074003

• Stage I + Stage II \rightarrow Single Stage = PLASMA and COILS optimization all at once.

• COST FUNCTION:

$$\min_{x_{\text{coils}}, x_{\text{surface}}} J(x_{\text{coils}}, x_{\text{surface}}) = J_1 + \omega_{\text{coils}} J_2, \quad (27a)$$
subject to $\psi = \psi_0, R_{\text{major}} = R_0, \quad (27b)$

 $J_{1} = f_{QS} + (A - A_{target})^{2} + c(\iota). \quad (13)$

• Stage I + Stage II \rightarrow Single Stage = PLASMA and COILS optimization all at once.

• COST FUNCTION:

$$\begin{array}{l} \min_{x_{\text{coils}}, x_{\text{surface}}} J(x_{\text{coils}}, x_{\text{surface}}) = J_1 + \omega_{\text{coils}} J_2, \quad (27a) \\
\text{subject to } \psi = \psi_0, R_{\text{major}} = R_0, \quad (27b) \\
J_1 = f_{\text{QS}} + (A - A_{\text{target}})^2 + c(\iota). \quad (13)
\end{array}$$

Scientific Visualization of 3dimensional Optimized Stellarator Configurations Donald A. Spong Oak Ridge National Laboratory

• Stage I + Stage II \rightarrow Single Stage = PLASMA and COILS optimization all at once.

Scientific Visualization of 3dimensional Optimized Stellarator Configurations Donald A. Spong Oak Ridge National Laboratory

• Stage I + Stage II \rightarrow Single Stage = PLASMA and COILS optimization all at once.

• Stage I + Stage II \rightarrow Single Stage = PLASMA and COILS optimization all at once.

NEW UPDATES ON OPTIMIZATION

OPTIMIZATION REQUIREMENTS:

- Single Stage (Rogério Jorge)
- Stochastic (
- Flexible to vary major radius (
- Coil dynamic resolution
- Equilibrium dynamic resolution (
- Good Quasisymmetry
- Finite Build (
- HTS Strain (Now merged to SIMSOPT) (
- Weave-Lane Coils (
- Resilient to pertubations

WHY STOCHASTIC OPTIMIZATION ?

For field errors less than $2e-4$ of the magnetic field amplitude.	MANUFACTURING TOLERANCE (MM)	TILT ANGLE TOLERANCE (DEG)
W7X	2	0,1
EPOS	0,1	~ 0,2

• Reach "flatter" minima \rightarrow More <u>robust</u> configurations.

 \rightarrow EPOS appears to have strict building tolerances.

• Avoid sharp minima \rightarrow avoid getting <u>stuck</u> in local mínima.

PERTURBATION MODELLING

• So far manufacturing errors have been modeled on SIMSOPT:

Florian Wechsung et al 2022 Nucl. Fusion 62 076

LATEST WORK:

• MAIN GOAL: GET STOCHASTIC SINGLE STAGE GOING

• First Problem Found: The machine cannot handle parallel calculations for of the squared flux and perform MPIFiniteDifference estimations of the gradient.

Single Stage vs Stochastic Single Stage Optimization

EXAMPLE OF HOW IT CAN GO WRONG

DYNAMIC COIL AND SURFACE RESOLUTION

• Targeted optimization, reiterated with an increasing number of targeted modes:

$$R(\theta,\phi) = \sum_{m=0}^{m_{pol}} \sum_{n=-n_{tor}}^{n_{tor}} r_{c,m,n} \cos(m\theta - n_{fp}n\phi) + r_{s,m,n} \sin(m\theta - n_{fp}n\phi)$$

$$x(\theta) = \sum_{m=0}^{order} x_{c,m} \cos(m\theta) + \sum_{n=0}^{order} x_{s,n} \sin(n\theta)$$

COMPARATIVE RESULTS ON DYNAMIC COIL RESOLUTION

Squared Flux on Non-Dynamic Routine: SF = 7.366290890536663e-05 Squared Flux on Dynamic Routine: SF = 8.759861049042492e-05

• From Singh, L., Kruger, T., Bader, A., Zhu, C., Hudson, S., & Anderson, D. (2020). Optimization of finite-build

(b)

stellarator coils. Journal of Plasma Physics, 86(4), 905860404. doi:10.1017/S0022377820000756

FINITE BUILD

• What is Finite Built?

• Turning single curves into real coils with a multi-filament coil model.

 Here the angle α is optimized to replicate as well as possible the plasma boundaries.

$$\alpha(\phi) = \alpha_{c,0} + \sum_{n=1}^{N_{\alpha}} \left[\alpha_{c,n} \cos(n\phi) + \alpha_{s,n} \sin(n\phi) \right]$$

FINITE BUILD AND COHERENCE WITH PERTURBED COILS

• Next step: Stochastic Finite Build.

OPTIMISATION ROUTINE

EPOS OPTIMIZATION

HALF-FIELD PERIOD SYMMETRIC STELLARATOR

- 28 Coils (independent currents per half field period)
- Max Curvature Strain (Hard Bending):
 1,3e-3 < 2e-3
- Squared Flux: 1,01e-6
- Max Torsional Strain
 9,4e-4 < 2e-3

WEAVE-LANE COIL STELLARATOR

- 22 Coils (independent currents)
- Max Curvature Strain (Hard Bending):
 - **1,1e-3 < 2e-3**
- Squared Flux: 1,29e-6
- Weave-Lane Gap ~ 7cm
- Max Torsional Strain:
 - **7,8e-4 < 2e-3**

EQUILIBRIUM DATA:

- lota on axis: 0,108
- lota on edge: 0,1039
- Mean lota: 0,111
- Equilibrium Volume: **10,21** L
- Aspect Ratio: 3,7
- QS on LCFS / Cumulated : 1,47e-5 / 8,21e-5
- Minor Radius a: 4,07 cm
- Major Radius (Longuest): **19,4 cm**
- Positrons at 1eV to achieve a/lambda=10 : **1,63e10**

A POSTERIORI PERTURBATIONS

MAIN DATA COMPARISON, INITIAL A-POSTERIORI COIL PERTURBATION

- 8 SAMPLES, Gaussian process along the coil.
- Perturbations STD ranging from <u>5e-5 m to 7e-4 m</u>. (Weave-lane coils undergo double the perturbation amplitude)
- Characteristic length kept constant at <u>0,2 m.</u>
- Dimensions:
 - Standard stellarator: minor radius coils: ~ 9 cm \leftrightarrow perimeter of around 56 cm
 - Weave-lane stellarator: minor radius normal coils : ~ 12 cm ↔ perimeter of around 75 cm
 minor radius WL : ~ 19 cm ↔ perimeter of around 119 cm

• Normal

• Weave-Lane

• Normal

• Weave-Lane

PERTURBATION MODELLING

 Motivation: For coils that are 1m in minor radius, a tilt angle +-0,1 degrees (W7X limit) <=> +-1mm in the sampling, PDF is modified.

"The sources of these [magnetic field] errors are differences between the designed and fabricated coil shapes at the **manufacturing** stage or misalignments of the coils at the **assembly** stage."

- T. Andreeva et al. (2004) Analysis of the Magnetic Field Perturbations during the Assembly

of Wendelstein 7-X, Fusion Science and Technology

- Stochastic errors impact the most stellarator symmetry as opposed to systematic fabrication errors.
- Vertical axis rotations had a bigger impact than toroidal axis rotations.
- Distributions to be assymmetrical.

Fig. 9. Relative magnetic field perturbations for an average deviation of 1 mm: (left) average over 10 runs, (right) maximum of 10 runs; in each frame from left to right: (1) shifts of individual coils, (2) manufacturing errors, (3) rotations of individual coils, (4) shifts of whole modules, and (5) rotations of whole modules.

- T. Andreeva et al. (2004) Analysis of the Magnetic Field Perturbations during the As of Wendelstein 7-X, Fusion Science and Tech

ROTATION DISTRIBUTION: INDEPENDENT MULTIVARIATE GAUSSIAN OF ANGLES.

CONCLUSION AND FUTURE WORK

- **PROMISING OPTIMIZATION ROUTINE.**
- GOOD FLUX SURFACES HAVE BEEN FOUND.
- GOOD QUASISYMMETRY IS POSSIBLE.

- ROBUSTNESS OF THE STELLARATOR IS STILL TO BE DETERMINED.
- EXPANSION OF STOCHASTIC OPTIMIZATION TO SIMULATE REAL LIFE PERTURBATIONS.
- UNDERSTANDING LINK BETWEEN QUASISYMMETRY AND STOCHASTIC PERTURBATIONS

"The sources of these [magnetic field] errors are differences between the designed and fabricated coil shapes at the manufacturing stage or misalignments of the coils at the assembly stage." - T. Andreeva et al. (2004) *Analysis of the Magnetic Field Perturbations during the Assembly*

of Wendelstein 7-X, Fusion Science and Technology

- CURRENT TECHNIQUES ONLY SIMULATE MANUFACTURING ERRORS
- INTEGRATE ROTATIONS AND TRANSLATIONS (AND TILTS OF WP ?)
- ROTATIONS APPEAR TO CONTRIBUTE THE MOST TO MAGNETIC FIELD DEGRADATION