R-matrices from exterior algebras with braided Hopf structures

(Joint work with Vladimir Mangazeev)

Rinat Kashaev

University of Geneva

Baxter2025 Exactly Solved Models and Beyond: Celebrating the life and achievements of Rodney James Baxter

MSI ANU, September 8-11, 2025

Motivation

Different Paths to the Yang-Baxter Equation

- ► Fundamental role: The Yang-Baxter equation (YBE) finds applications in both physics (integrable systems, statistical mechanics, quantum theory) and mathematics (representation theory, low-dimensional topology).
- Multiple perspectives: Different approaches highlight different aspects and applications of the YBE.

Outline:

- 1. Rigid *R*-matrices.
- 2. R-Matrices from Hopf algebras.
- 3. *R*-Matrices from Braided Hopf Algebras.
- 4. Exterior algebras and associated *R*-matrices.
- 5. Further perspectives.

Rigid R-Matrices

Algebraic Ingredient for Knot Invariant Constructions

- V: vector space
- ▶ *R*-matrix over $V: r \in GL(V^{\otimes 2})$ satisfying the YBE (braid group form)

$$r'r''r' = r''r'r'', \quad r' = r \otimes id_V, \ r'' = id_V \otimes r$$

- ▶ dim $V < \infty$, $\mathbb{B} \subset V$ a basis, $\{b^*\}_{b \in \mathbb{B}} \subset V^*$ the dual basis
- ▶ Partial transpose: End($V^{\otimes 2}$) $\ni f \mapsto \tilde{f} : V^* \otimes V \to V \otimes V^*$

$$\tilde{f}(a^* \otimes b) = \sum_{c,d \in \mathbb{B}} \langle a^* \otimes c^*, f(b \otimes d) \rangle c \otimes d^* \bigvee_{v^*} \left| \tilde{f} \right|_{v}^{v^*} = \bigcap_{f} \int_{v}^{f} \left| \tilde{f} \right|_{v}^{v^*} = \bigcap_{f} \int_{v}^{v} \left| \tilde{f} \right|_{v}^{v^*} = \bigcap_{f} \int_{v}^{f} \left| \tilde{f} \right|_{v}^{v^*} =$$

Rigid R-matrix: $r^{\pm 1}$ are invertible

Example:

- $ightharpoonup \mathbb{B} \subset V$: linearly ordered basis
- ▶ Heaviside θ : $\mathbb{B} \times \mathbb{B} \to \{0,1\}$, with $(a,b) \mapsto \theta_{a,b} = 1$ iff a > b
- For $p \neq 0$: $\tau_p(a \otimes b) = (p^{\theta_{a,b}} 1)a \otimes b p^{\theta_{b,a}}b \otimes a, \quad \forall a, b \in \mathbb{B}$
- ightharpoonup au_p : R-matrix; rigid if dim $(V) < \infty$

R-Matrices from Hopf Algebras

Drinfeld's Quantum Double Construction

- ► *H*: Hopf algebra with invertible antipode
- ightharpoonup
 ightharpoonup D(H): quantum double with universal R-matrix
- $\lambda: D(H) \to \operatorname{End}(V)$: finite-dimensional representation
- ▶ Evaluating universal *R*-matrix at $\lambda \Rightarrow$ rigid *R*-matrix over *V*

Example:

- ▶ $H = B_q \subset U_q(\mathfrak{sl}_2)$: Borel Hopf subalgebra $B_q = \mathbb{C} \langle a^{\pm 1}, b \mid ab = qba, \ \Delta a = a \otimes a, \ \Delta b = a \otimes b + b \otimes 1 \rangle$
- \triangleright λ : irreducible *n*-dim representation of $D(B_q)$
- ▶ ⇒ rigid R-matrix ⇒ n-coloured Jones polynomial $J_n(K;q)$

Braided Hopf Algebras

Hopf Objects in the Category of Braided Vector Spaces

A braided vector space is a vector space V with an R-matrix.

A braided Hopf algebra is a braided vector space (H, τ) with structural maps:

$$\nabla$$
, Δ , η , ϵ , S

(product, coproduct, unit, counit, antipode), which are morphisms in the braided category and satisfy the usual Hopf algebra axioms (associativity, unitality, coassociativity, counitality, antipode invertibility) together with the braided compatibility condition

$$(\nabla \otimes \nabla)(\mathsf{id}_H \otimes \tau \otimes \mathsf{id}_H)(\Delta \otimes \Delta) = \Delta \nabla$$

Graphical notation

$$\tau = \bigvee, \quad \nabla = \bigvee, \quad \Delta = \bigvee, \quad \eta = \bigvee, \quad \epsilon = \P, \quad S = \P$$

$$\downarrow = \bigvee, \quad \downarrow = \bigvee, \quad \downarrow = \bigvee, \quad \downarrow = \bigvee$$

$$\downarrow = \bigvee, \quad \downarrow = \bigvee, \quad \downarrow = \bigvee, \quad \downarrow = \bigvee$$

$$\downarrow = \bigvee, \quad \downarrow = \bigvee, \quad \downarrow = \bigvee, \quad \downarrow = \bigvee$$

$$\downarrow = \bigvee, \quad \downarrow = \bigvee, \quad \downarrow = \bigvee, \quad \downarrow = \bigvee$$

Braiding in terms of structural maps

Relation between product, braiding and antipode

$$S\nabla = \nabla \tau (S \otimes S) \Leftrightarrow \bigwedge^{1} = \bigvee_{\Gamma}$$

Example: Braided vector space (V, τ)

- ▶ ⇒ $T(V) = \bigoplus_{n=0}^{\infty} V^{\otimes n}$: braided Hopf algebra, deg 1 elements primitive, braiding $\hat{\tau}$ of T(V) induced from τ
- $ightharpoonup \Rightarrow \mathfrak{B}(V) = T(V)/\mathfrak{J}_V \text{ (Nichols algebra)}$
- ▶ \mathfrak{J}_V : Hopf ideal generated by primitive elements of degree ≥ 2

R-Matrices from Braided Hopf Algebras

Automorphisms Replace Representations

- H: braided Hopf algebra with invertible antipode
- $\phi \in Aut(H)$: braided Hopf algebra automorphism

$$ightharpoonup$$
 $ightharpoonup$ ho ho

Example: Polynomial algebra: $\mathbb{C}[x] \simeq T(\mathbb{C}x)$

- $ightharpoonup \Rightarrow
 ho_n =
 ho|_{Y^{\otimes 2}}$: R-matrix over $Y = \mathbb{C}[x]_{\leq n}$
- ▶ \Rightarrow n+1-coloured Jones polynomial $J_{n+1}(K;q)$ [Garoufalidis–K, 2023]

Exterior Algebras $\Lambda_p(V)$

Theorem (Mangazeev-K, 2025)

Let (V, τ_p) be a braided vector space with linearly ordered basis $\mathbb{B} \subset V$, and braiding

$$au_{oldsymbol{
ho}}(a\otimes b)=ig(oldsymbol{
ho}^{ heta_{a,b}}-1ig)a\otimes b-oldsymbol{
ho}^{ heta_{b,a}}b\otimes a,\quad orall a,b\in \mathbb{B},$$

where

$$\theta_{a,b} \in \{0,1\}, \quad \theta_{a,b} = 1 \Leftrightarrow a > b.$$

Then the Nichols algebra $\mathfrak{B}(V) = T(V)/\mathfrak{J}_V$ is isomorphic to the exterior algebra $\bigwedge V$. It is a braided Hopf algebra, denoted $\Lambda_p(V)$, where all elements of V are primitive and the braiding $\hat{\tau}$ is induced by τ_p .

Set-theoretic basis of $\Lambda_p(V)$

Denote $\mathcal{P}_{\text{fin}}(\mathbb{B}) := \{A \mid A \subseteq \mathbb{B}, |A| < \infty\} = \bigsqcup_{k=0}^{\infty} {\mathbb{B} \choose k}$, where

$$\binom{\mathbb{B}}{k} := \{A \in \mathcal{P}_{fin}(\mathbb{B}) \mid |A| = k\}.$$

Set-theoretic basis: $\{f_A \mid A \in \mathcal{P}_{fin}(\mathbb{B})\},\$

$$A = \{a, b, \dots, c\}, \quad a < b < \dots < c \Rightarrow f_A = ab \dots c$$

Denoting

$$\theta_{A,B} := \sum_{a \in A} \sum_{b \in B} \theta_{a,b}, \quad \gamma_k := (-1)^k p^{k(k-1)/2},$$

we have

$$f_{E}f_{F} = \delta_{|E \cap F|,0} (-1)^{\theta_{E,F}} f_{E \cup F}$$

$$\Delta f_{E} = \sum_{A \subseteq E} (-p)^{\theta_{A,E \setminus A}} f_{A} \otimes f_{E \setminus A}$$

$$Sf_{E} = \gamma_{|E|} f_{E}$$

Braiding of $\Lambda_p(V)$ via MOY calculus

Braiding $\hat{\tau}$ of $\Lambda_p(V)$ is given by MOY diagrammatic formula

$$\hat{\tau}(\pi_m \otimes \pi_n) = \sum_{m = \infty}^{\infty} \sum_{k=0}^{\min(m,n)} \gamma_k \sum_{k=0}^{\infty} \gamma_k \sum_{m=0}^{\infty} \gamma_k \sum_{k=0}^{\infty} \gamma_k \sum_{m=0}^{\infty} \gamma_m \sum_{m=0}^{\infty} \gamma_k \sum_{m=0}^{\infty} \gamma_m \sum_{m=0}$$

with projections to homogeneous subspaces

$$\pi_k : \Lambda_p(V) \to \Lambda_p^k(V), \quad f_A \in \Lambda_p^k(V) \Leftrightarrow |A| = k$$

Similar formula is derived by [Murakami–Ohtsuki–Yamada, 1998] and [Cautis–Kamnitzer–Morrison, 2014].

New proof is based on equality
$$\hat{\tau} = \begin{array}{c} \\ \\ \end{array} = \begin{array}{c} \\ \\ \end{array}$$

Matrix coefficients of $\hat{\tau}$

Let E, F, G, H be such that $G \subseteq E \setminus F, H \subseteq F \setminus E$. Define

$$C := E \cap F$$
, $\dot{E} := (E \setminus F) \setminus G$, $\dot{F} := (F \setminus E) \setminus H$,

$$E' := (E \setminus G) \cup H, \quad F' := (F \setminus H) \cup G, \quad G \stackrel{E}{\longrightarrow} C \stackrel{F}{\longleftarrow} C$$

and

$$\beta_{\mathsf{E},\mathsf{G};\mathsf{F},\mathsf{H}} = (-1)^{\theta_{\mathsf{F},\mathsf{E}} + \theta_{\mathsf{F}',\mathsf{E}'}} p^{\theta_{\mathsf{G} \sqcup \mathsf{C},\mathsf{E}} + \theta_{\dot{\mathsf{F}},\mathsf{E}'}} \prod_{\mathsf{A} \in \binom{\mathsf{G}}{\mathsf{C}}} (p^{\theta_{\mathsf{A},\mathsf{H}} - \theta_{\mathsf{A},\mathsf{G}}} - 1)$$

We have

$$\hat{\tau}(f_{\mathsf{E}} \otimes f_{\mathsf{F}}) = (-1)^{|\mathsf{E}||\mathsf{F}|} \sum \beta_{\mathsf{E},\mathsf{G};\mathsf{F},\mathsf{H}} f_{\mathsf{F}'} \otimes f_{\mathsf{E}'}$$

where summation runs over G and H satisfying |G| = |H|

R-matrix ρ

Let $\phi \in \operatorname{Aut}(\Lambda_p(V))$ be defined by $\phi f_A = t^{|A|} f_A$, $t \neq 0$. Then the associated R-matrix ρ has the form

Furthermore,

$$\rho(f_{\mathsf{E}}\otimes f_{\mathsf{F}})=(-1)^{|\mathsf{E}||\mathsf{F}|}\sum r_{\mathsf{E},\mathsf{G};\mathsf{F},\mathsf{H}}f_{(\mathsf{F}\backslash\mathsf{H})\sqcup\mathsf{G}}\otimes f_{(\mathsf{E}\backslash\mathsf{G})\sqcup\mathsf{H}}$$

with summation running over $G \subseteq E \setminus F$ and $H \subseteq F \setminus E$ satisfying $|G| \le |H|$, and

$$r_{E,G;F,H} = t^{|F|-|H|+|G|} (tp^{|E|};p)_{|H|-|G|} \beta_{E,G;F,H}$$

Further perspectives

Let $\dim(V) = N$. Then the knot invariant associated with ρ is conjecturally the invariant $LG^{(N)}(p,t)$ of [Links–Gould, 1993] associated with 2^N -dim representations of super quantum group $U_q(\mathfrak{gl}(N|1))$.

Calculations for few knots with N=2,3,4 are consistent with results of [De Wit, 2001]

Future directions include:

- Computation of knot invariants without fixing N;
- ▶ Representation theory of $U_q(\mathfrak{gl}(N|1))$ and construction of coloured versions of Links–Gould invariants.