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Extension of absolute values

C : a projective, geometrically irreducible and smooth curve over a finite
field Fq, e.g. the projective line P1 over Fq

k : the function field of C, e.g. Fq(t).

Mk : the set of places of k.

∞ : a fixed closed point of C, representing a place ∞ ∈ Mk.

kv : completion of k with respect to v ∈ Mk.

To each v ∈ Mk, we associate an absolute value | · |v as

|x|v := |k(v)|−v(x), ∀x ∈ k,

where k(v) denotes the residue field of v.

If F/k is a field extension of finite degree and MF is the set of places of
F , for any w ∈ MF which lies over v ∈ Mk we normalize the absolute
value as

|y|w := |NFw/kv(y)|
1

[F :k]
v , ∀y ∈ F.
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Extension of absolute values

Some results:

Since k has degree of imperfection 1, for any place v ∈ Mk we have:

F ⊗k kv ∼=
∏

w∈MF
w|v

Fw.

Product formula: For every y ∈ F ,
∑

w∈MF
log |y|w = 0.

Extension formula: [F : k] =
∑

w|v[Fw : kv].

For any y ∈ F , we set:

|y| :=
∏

w∈MF
w|∞

|y|w.

It corresponds to the usual archimedean absolute value on the complex
numbers C.
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Weil heights

Definition

Let x = (x0 : · · · : xn) ∈ Pn(k) and F be a finite extension of k containing
these coordinates. The Weil height of x is:

h(x) :=
∑

w∈MF

max
j

log |xj |w.

Remark: It is independent of the choice of both the field F and the
representatives of the coordinates thanks to the product formula and
extension formula.

Theorem (Northcott)

For any H ≥ 0 and D ≥ 0, the set {α ∈ ksep : h(α) ≤ H,deg(α) ≤ D} is
finite.
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Drinfeld modules

A : ring of functions in k that are regular outside ∞.

k∞: the completion of k with respect to the absolute value |·|∞, analogue
of real numbers

C∞ : the completion of an algebraic closure of k∞ with respect to the
absolute value extended from | · |∞, analogue of complex numbers.

Let L be an A-field, i.e. a field L together with a ring homomorphism
γ : A → L which is called the characteristic of L. If ker(γ) = (0), we say
γ is a generic characteristic. So k∞ and C∞ are A-fields with a natural
generic characteristic.
Let Ga = Spec L[X] be the additive group over L. It is known that

EndFq(Ga) = L{τ} :=

{
n∑

i=0

aiτ
i : ai ∈ L, n ∈ N.

}
,

where L{τ} is the ring of twisted polynomials over L and τ is the q-th
Frobenius such that τ · x = xq · τ, ∀x ∈ L.
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Drinfeld modules

Definition

Let L be an A-field with characteristic γ. A Drinfeld A-module ϕ over
L is a ring homomorphism ϕ : A → EndFq(Ga) = L{τ} such that

1 ∂ ◦ ϕ(a) = γ(a), where ∂ is the differentiation operator.

2 there exists some 0 ̸= a such that ϕ(a) ̸= γ(a)τ0.

Given a Drinfeld A-module ϕ over L, the rank of ϕ is an integer r such
that

deg(ϕa(τ)) = r · deg(a), ∀a ∈ A.

Example: Let A = Fq[t] and ϕ be a Drinfeld A-module of rank r over
C∞ which is an A-field equipped with a natural generic characteristic.
Then ϕ is characterized by

ϕt := tτ0 + g1τ + · · ·+ grτ
r.
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Drinfeld modules

It can be easily checked that

ϕa(x+ y) = ϕa(x) + ϕa(y), ∀a ∈ A,∀x, y ∈ C∞,

which endows C∞ an A-module structure.

Ga Ga

T0(Ga) T0(Ga)

ϕ

·∂(ϕ)

where ϕ ∈ EndFq(Ga) and the vertical arrows mean taking the tangent
space at the identity element 0 of the additive group, and T0(Ga) is the
tangent space of Ga at 0.
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Drinfeld modules - analytic theory

Definition

A finitely generated discrete A-submodule Λ of a normed k∞-vector
space is called an A-lattice. The rank of a lattice Λ is defined to be
the dimension of the k-vector space Λ⊗A k.

Remark : Let F∞ be a complete extension of k∞ in C∞. In this talk, we
focus onA-lattices Λ ⊂ F sep

∞ such that Λ is invariant under Gal(F sep
∞ /F∞).

For any such lattice, we have an associated function

eΛ(z) := z
∏
λ∈Λ
0̸=α

(
1− z

λ

)
: C∞/Λ

∼−→ C∞.

Now ϕΛ
a (z) := az

∏
0̸=λ∈a−1Λ/Λ

(1− z/eΛ(λ)) gives a Drinfeld A-module

over C∞ of the rank same as that of Λ.
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Drinfeld modules - analytic theory

Theorem (Uniformization theorem)

Let F∞ be a complete extension of k∞ in C∞, and ϕ be a Drinfeld A-
module over F∞ of rank r > 0. Then there is an A-lattice Λ := Λϕ over
F∞ of rank r such that ϕ is the associated Drinfeld A-module. Moreover,
the association ϕ 7→ Λϕ gives rise to an equivalence of categories between
the category of Drinfeld A-modules of rank r over F∞ and the category
of A-lattices of rank r over F∞.

Remark : the morphisms in the category of Drinfeld A-modules over an
A-field L are given by L{τ} ∋ f : ϕ → φ such that

f ◦ ϕa = φa ◦ f,∀a ∈ A.

If f ̸= 0, then we say f is an isogeny.
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Graded heights

F : a field in C∞ that is a finite extension of k. Let ϕ be a Drinfeld
A-module over F . For any w ∈ MF , we set

w(ϕ) := −min
a

min
i

{
w(ai)

qi − 1
: 0 ̸= a ∈ A, 1 ≤ i ≤ r deg(a)

}
.

Definition

Let ϕ be a Drinfeld A-module of rank r over F . The graded height hG(ϕ)
of ϕ is

hG(ϕ) :=
1

[F : k]

∑
w∈MF

deg(w)w(ϕ).

Remark : the graded height of ϕ does not depend on the choice of the
field F and it is invariant under isomorphisms.
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Graded heights

Example: let ϕ be a Drinfeld Fq[t]-module of rank r over F . Then it is
characterised by:

ϕt = tτ0 + g1τ + · · ·+ grτ
r, gi ∈ F, gr ̸= 0.

The graded height of ϕ is then given by:

hG(ϕ) =
∑

w∈MF

max
1≤i≤r

log |gi|1/(q
i−1)

w .

Proposition

Let ϕ be a Drinfeld A-module of rank r over F such that F/k is a
separable extension. For any σ ∈ Gal(ksep/k), we denote by σ(ϕ) the
Drinfeld A-module obtained by acting σ on the coefficients of a Drinfeld
A-module ϕ. Then we have

hG(ϕ) = hG(σ(ϕ)).
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Taguchi heights

For each infinite place MF ∋ w|∞, there is a lattice Λw associated to
the Drinfeld module ϕ⊗ Fw, i.e. we embed F into C∞ via w.

Definition

Let ϕ be a Drinfeld A-module over F with everywhere stable reduction.
The stable Taguchi height of ϕ is defined by

hstTag(ϕ/F ) =
1

[F : k]

 ∑
w∈Mfin

F

deg(w)w(ϕ)−
∑

w∈M∞
F

ϵw logDA(Λw)

 ,

where Mfin
F (resp. M∞

F ) denotes the set of finite (resp. infinite) places
of F and ϵw is the local degree at w, and DA(Λw) is the covolume of the
A-lattice Λw.

Remark : the stable Taguchi height is invariant under finite field exten-
sions so that we will just write hstTag(ϕ) instead of hstTag(ϕ/F ).
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Taguchi heights

Definition

Let Λ be an A-lattice of rank r in C∞, and let O∞ be the ring of ∞-adic
integers in k∞. Choose a k∞-basis {λi}ri=1 of k∞ ⊗ Λ such that:

(1) λi ∈ Λ for 1 ≤ i ≤ r;

(2) |a1λ1 + · · ·+ arλr|∞ = max{|aiλi|∞ : 1 ≤ i ≤ r} for all
a1, ..., ar ∈ k∞;

(3) k∞ ⊗ Λ = Λ+ (O∞λ1 + · · ·+O∞λr).

The covolume DA(Λ) of the A-lattice Λ is defined as follows:

DA(Λ) : = q1−gk ·
( ∏r

i=1 |λi|∞
#(Λ ∩ (O∞λ1 + · · ·+O∞λr))

) 1
r

=

( ∏r
i=1 |λi|∞

#(Λ/(Aλ1 + · · ·+Aλr))

) 1
r

.
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Variation of Taguchi heights

Lemma

Let f : ϕ1 → ϕ2 be an isogeny of Drinfeld A-modules over F with
everywhere stable reduction. Then we have:

hstTag(ϕ2)− hstTag(ϕ1) =
1

r
log | deg(f)| − 1

[F : k]
log#(R/Df ),

where Df is the different of f .

Theorem (Ran)

Let f : ϕ1 → ϕ2 be an isogeny of Drinfeld A-modules over F with
everywhere good reduction. Then we have:

hstTag(ϕ2)− hstTag(ϕ1) =
1

r
log |deg(f)| − log |f0|+ hfinG (ϕ2)− hfinG (ϕ1),

where f0 = ∂(f) and hfinG (ϕj) =
∑

w∈Mfin
F

deg(w)w(ϕj), j = 1, 2.
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Analogous result of Nakkajima and Taguchi’s theorem

Theorem

Let A = Fq[t], and ϕ1, ϕ2 be two Drinfeld A-modules of rank 2 with
CM by OK and O respectively, where K is an imaginary quadratic field
and OK (resp. O) is the maximal (resp. an arbitrary) order. We write
O = A+ f0OK for some f0 ∈ A. Then

hstTag(ϕ2)− hstTag(ϕ1) =
1

2
log |f0| −

1

2

∑
v|f0

deg(v)ef0(v),

where v runs over all monic prime factors of f0 and for l := qdeg(v)

ef0(v) =
(1− χ(v))(1− l−v(f0))

(l − χ(v))(1− l−1)
,

and χ(v) = 1 if v splits in K; χ(v) = 0 if v ramifies in K; χ(v) = −1 if
v is inert in K.
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Variation of graded hehgits

Corollary

Assume the same conditions as the previous theorem. The following
formula is true

hG(ϕ2)− hG(ϕ1) = log |f0| −
1

2

∑
v|f0

deg(v)ef0(v) + h∞G (ϕ′
2)− h∞G (ϕ′

1),

where ϕ′
1 is the Drinfeld A-module given by the lattice OK and ϕ′

2 is
given by O, and for j = 1, 2

h∞G (ϕ′
j) =

∑
w|∞

deg(w)w(ϕ′
j).
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Lower bound of the Weil heights of singular moduli

Some setups: we fix A = Fq[t] and ϕ a rank 2 A-Drinfeld module over
C∞. Then it is characterized by

ϕt = tτ0 + gτ +∆τ2.

The j-invariant of ϕ is given by gq+1

∆ . A singular modulus is the j-
invariant of a Drinfeld module over C∞ with complex multiplication.

Theorem (Ran)

Let J be a singular modulus of a rank 2 CM Drinfeld A-module ϕ. Let
δ be the discriminant of the endomorphism ring of ϕ with conductor f0.
There exists some computable constant Cq with respect to q such that

h(J) ≥ (q2 − 1)

(
1

2
− 1

√
q + 1

)
log

√
|δ|+

(
1

2
+

1
√
q + 1

)
log |f0|

− 9

4
log log |f0| − Cq.
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Lower bound of the Weil heights of singular moduli

Sketch of the proof :

1 Notice that (q2 − 1)hG(ϕ) = h(J).
2 Do the following estimate:

1

2

∑
v|f0

deg(v)ef0(v) ≤
9

4
log log |f0|+ Cq,

where Cq is a computable constant depending on q.
3 Apply a result from Breuer-Pazuki-Razafinjatovo, which

essentially tells us

|h∞G (ϕ)− h∞G (ϕ′)| ≤ q

q − 1
− qr

qr − 1
.

4 Apply Wei’s work on the the Colmez conjecture for Drinfeld
modules.

5 Note that hG(ϕ) ≥ hstTag(ϕ).
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End

Thank you!
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