Symbolic Dynamics and Complex Diophantine Approximation

Gerardo González Robert

Joint with F. García-Ramos and M. Hussain

Some authors that have worked on the topic

- Alexander Kechris
- Haseo Kim, Tom Linton
- Verónica Becher, Sergio Yuhjtman
- Oleksandr Sharkovsky, Andrei Sivak
- Dylan Airey, Steven Jackson, Dominik Kwietniak, and Bill Mance

Definition

The nearest Gaussian integer function [•] : $\mathbb{C} \rightarrow \mathbb{Z}[i]$ is given by

$$
\forall z \in \mathbb{C} \quad[z]:=\left\lfloor\Re(z)+\frac{1}{2}\right\rfloor+i\left\lfloor\Im(z)+\frac{1}{2}\right\rfloor
$$

Define $\mathfrak{F}:=\{z \in \mathbb{C}:[z]=0\}$ and $T: \mathfrak{F} \rightarrow \mathfrak{F}$ by

$$
\forall z \in \mathfrak{F} \quad T(z)=\left\{\begin{array}{l}
z^{-1}-\left[z^{-1}\right], \text { if } z \neq 0, \\
0, \text { if } z=0 .
\end{array}\right.
$$

Define $a_{1}: \mathfrak{F} \backslash\{0\} \rightarrow \mathbb{Z}[i]$ by $a_{1}(z)=\left[z^{-1}\right], a_{n}(z)=a_{1}\left(T^{n}(z)\right)$ if $T^{n}(z) \neq 0$, and $a_{0}: \mathbb{C} \rightarrow \mathbb{Z}[i]$ by $a_{0}(z)=[z]$. The Hurwitz continued fraction of a complex number z is

$$
a_{0}(z)+\frac{1}{a_{1}(z)+\frac{1}{a_{2}(z)+\frac{1}{\ddots}}}
$$

Theorem (A. Hurwitz, 1887)

Let ζ be any complex number.
(1) If $\zeta \in \mathbb{Q}(i)$, the Hurwitz continued fraction algorithm associates to each a finite sequence $\left(a_{j}\right)_{j=0}^{n}$ in $\mathbb{Z}[i]$ such that

$$
\zeta=\left[a_{0} ; a_{1}, \ldots, a_{n}\right] .
$$

(2) If $\zeta \in \mathbb{C} \backslash \mathbb{Q}(i)$, the algorithm associates an infinite sequence $\left(a_{n}\right)_{n \geq 1}$ in $\mathbb{Z}[i]$ such that

$$
\zeta=\left[a_{0} ; a_{1}, \ldots\right] .
$$

Hurwitz Continued Fraction Process

For any $z \in \mathbb{C} \backslash\{0\}$, put $\iota(z)=$ z^{-1}. The set $\iota[\mathfrak{F}]$, the image of \mathfrak{F} under ι, is
$\iota[\mathfrak{F}]=\mathbb{E}(1) \cap \overline{\mathbb{E}}(i) \cap \overline{\mathbb{E}}(-1) \cap \mathbb{E}(-i)$,
where

$$
\begin{aligned}
& \mathbb{D}(z ; \rho)=\{w \in \mathbb{C}:|z-w|<\rho\}, \\
& \overline{\mathbb{D}}(z ; \rho)=\{w \in \mathbb{C}:|z-w| \leq \rho\},
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{D}(z)=\mathbb{D}(z ; 1), \\
& \overline{\mathbb{D}}(z)=\overline{\mathbb{D}}(z ; 1), \\
& \mathbb{E}(z)=\mathbb{C} \backslash \overline{\mathbb{D}}(z), \\
& \overline{\mathbb{E}}(z)=\mathbb{C} \backslash \mathbb{D}(z) .
\end{aligned}
$$

Hurwitz Continued Fraction Process

For any $z \in \mathbb{C} \backslash\{0\}$, put $\iota(z)=$ z^{-1}. The set $\iota[\mathfrak{F}]$, the image of \mathfrak{F} under ι, is
$\iota[\mathfrak{F}]=\mathbb{E}(1) \cap \overline{\mathbb{E}}(i) \cap \overline{\mathbb{E}}(-1) \cap \mathbb{E}(-i)$,
where

$$
\begin{aligned}
& \mathbb{D}(z ; \rho)=\{w \in \mathbb{C}:|z-w|<\rho\} . \\
& \overline{\mathbb{D}}(z ; \rho)=\{w \in \mathbb{C}:|z-w| \leq \rho\},
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{D}(z)=\mathbb{D}(z ; 1), \\
& \overline{\mathbb{D}}(z)=\overline{\mathbb{D}}(z ; 1), \\
& \mathbb{E}(z)=\mathbb{C} \backslash \overline{\mathbb{D}}(z), \\
& \overline{\mathbb{E}}(z)=\mathbb{C} \backslash \mathbb{D}(z) .
\end{aligned}
$$

Hurwitz Continued Fraction Process

For any $z \in \mathbb{C} \backslash\{0\}$, put $\iota(z)=$ z^{-1}. The set $\iota[\mathfrak{F}]$, the image of \mathfrak{F} under ι, is
$\iota[\mathfrak{F}]=\mathbb{E}(1) \cap \overline{\mathbb{E}}(i) \cap \overline{\mathbb{E}}(-1) \cap \mathbb{E}(-i)$,
where

$$
\begin{aligned}
& \mathbb{D}(z ; \rho)=\{w \in \mathbb{C}:|z-w|<\rho\} \\
& \overline{\mathbb{D}}(z ; \rho)=\{w \in \mathbb{C}:|z-w| \leq \rho\},
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{D}(z)=\mathbb{D}(z ; 1), \\
& \overline{\mathbb{D}}(z)=\overline{\mathbb{D}}(z ; 1), \\
& \mathbb{E}(z)=\mathbb{C} \backslash \overline{\mathbb{D}}(z), \\
& \overline{\mathbb{E}}(z)=\mathbb{C} \backslash \mathbb{D}(z) .
\end{aligned}
$$

Hurwitz Continued Fraction Process

For any $z \in \mathbb{C} \backslash\{0\}$, put $\iota(z)=$ z^{-1}. The set $\iota[\mathfrak{F}]$, the image of \mathfrak{F} under ι, is
$\iota[\mathfrak{F}]=\mathbb{E}(1) \cap \overline{\mathbb{E}}(i) \cap \overline{\mathbb{E}}(-1) \cap \mathbb{E}(-i)$,
where

$$
\begin{aligned}
& \mathbb{D}(z ; \rho)=\{w \in \mathbb{C}:|z-w|<\rho\}, \\
& \overline{\mathbb{D}}(z ; \rho)=\{w \in \mathbb{C}:|z-w| \leq \rho\},
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{D}(z)=\mathbb{D}(z ; 1), \\
& \overline{\mathbb{D}}(z)=\overline{\mathbb{D}}(z ; 1), \\
& \mathbb{E}(z)=\mathbb{C} \backslash \overline{\mathbb{D}}(z), \\
& \mathbb{E}(z)=\mathbb{C} \backslash \mathbb{D}(z) .
\end{aligned}
$$

Hurwitz Continued Fraction Process

For any $z \in \mathbb{C} \backslash\{0\}$, put $\iota(z)=$ z^{-1}. The set $\iota[\mathfrak{F}]$, the image of \mathfrak{F} under ι, is
$\iota[\mathfrak{F}]=\mathbb{E}(1) \cap \overline{\mathbb{E}}(i) \cap \overline{\mathbb{E}}(-1) \cap \mathbb{E}(-i)$,
where

$$
\begin{aligned}
& \mathbb{D}(z ; \rho)=\{w \in \mathbb{C}:|z-w|<\rho\}, \\
& \overline{\mathbb{D}}(z ; \rho)=\{w \in \mathbb{C}:|z-w| \leq \rho\},
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{D}(z)=\mathbb{D}(z ; 1), \\
& \overline{\mathbb{D}}(z)=\overline{\mathbb{D}}(z ; 1), \\
& \mathbb{E}(z)=\mathbb{C} \backslash \overline{\mathbb{D}}(z), \\
& \overline{\mathbb{E}}(z)=\mathbb{C} \backslash \mathbb{D}(z) .
\end{aligned}
$$

Definitions

Definition

Write $\mathcal{D}:=\{a \in \mathbb{Z}[i]:|a| \geq \sqrt{2}\}$.
Definition
For each $n \in \mathbb{N}$ and each $\mathbf{b} \in \mathcal{D}^{n}$, define

$$
\mathcal{C}_{n}(\mathbf{b}):=\left\{z \in \mathfrak{F}: a_{1}(z)=b_{1}, \ldots, a_{n}(z)=b_{n}\right\} .
$$

Partition of \mathfrak{F} by cylinders

Figure 1: Partition of \mathfrak{F}.

Normal numbers

Theorem (H. Nakada, 1976)
There is a T-ergodic Borel probability measure μ on \mathfrak{F} which is equivalent to the Lebesgue measure.

Normal numbers

Theorem (H. Nakada, 1976)
There is a T-ergodic Borel probability measure μ on \mathfrak{F} which is equivalent to the Lebesgue measure.

Definition

A number $z \in \mathfrak{F}$ is normal if for all $n \in \mathbb{N}$ and all $\mathbf{a} \in \mathcal{D}^{n}$, we have

$$
\lim _{N \rightarrow \infty} \frac{\#\left\{0 \leq j \leq N-1: T^{j}(z) \in \mathfrak{C}_{n}(\mathbf{a})\right\}}{N}=\mu\left(\mathfrak{C}_{n}(\mathbf{a})\right) .
$$

We denote the set of normal numbers by $\operatorname{Norm}(\mu)$.

A theorem on normal numbers

Theorem
The set $\operatorname{Norm}(\mu)$ is $\Pi_{3}^{0}(\mathbb{C})$-complete.

Some symbolic dynamics

Let \mathcal{A} be a non-empty and at most countable set.

Definition

For $n \in \mathbb{N}$ and $\mathbf{v}=v_{1} \cdots v_{n}, \mathbf{w}=w_{1} \cdots w_{n} \in \mathcal{A}^{n}$, the normalized Hamming distance between \mathbf{v} and \mathbf{w} is

$$
d_{H}(\mathbf{v}, \mathbf{w})=\frac{\#\left\{j \in\{1, \ldots, n\}: v_{j} \neq w_{j}\right\}}{n}
$$

Some symbolic dynamics

Let \mathcal{A} be a non-empty and at most countable set.

Definition

For $n \in \mathbb{N}$ and $\mathbf{v}=v_{1} \cdots v_{n}, \mathbf{w}=w_{1} \cdots w_{n} \in \mathcal{A}^{n}$, the normalized Hamming distance between \mathbf{v} and \mathbf{w} is

$$
d_{H}(\mathbf{v}, \mathbf{w})=\frac{\#\left\{j \in\{1, \ldots, n\}: v_{j} \neq w_{j}\right\}}{n}
$$

Definition

A subshift X of \mathcal{A} is a closed and shift invariant subset of $\mathcal{A}^{\mathbb{N}}$. Denote by $\mathcal{L}(X)$ the set of all finite words that appear as factors of some words in X.
A sub-shift X has the right feeble specification property if there is some $\mathcal{G} \subseteq \mathcal{L}(X)$ such that:
(1.) If $\mathbf{u}, \mathbf{v} \in \mathcal{G}$, then $\mathbf{u v} \in \mathcal{G}$;
(2. For every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for any $\mathbf{u} \in \mathcal{G}$ and any $\mathbf{v} \in \mathcal{L}(X)$ satisfying $|\mathbf{v}| \geq N$ there are $\mathbf{s}^{\prime}, \mathbf{v}^{\prime} \in \mathcal{A}^{<\omega}$ satisfying

$$
\left|\mathbf{v}^{\prime}\right|=|\mathbf{v}|, \quad 0 \leq|\mathbf{s}| \leq \varepsilon|\mathbf{v}|, \quad d_{H}\left(\mathbf{v}, \mathbf{v}^{\prime}\right)<\varepsilon, \quad \mathbf{u s v}^{\prime} \in \mathcal{G} .
$$

Theorem (Airey, Jackson, Kwietniak, Mance (TAMS, 2020))
Let X be a sub-shift of \mathcal{A} such that:
(1) X has the right feeble specification property,
(1) X has at least two shift-invariant Borel probability measures.

Let μ be a shift-invariant Borel probability measure. The set of μ-generic points G_{μ} is Π_{3}^{0}-hard.

Back to Hurwitz continued fractions

Proposition (Dani, Nogueira (TAMS, 2014))
Consider any $n \in \mathbb{N}$ and any $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathrm{R}(n)$.
(1) If $\operatorname{Pm}\left(a_{n}\right) \geq 3$ and $\mathbf{b} \in \Omega(m)$ for some $m \in \mathbb{N}$, then $\mathbf{a b} \in \Omega(m+n)$.
(1) If $\mathbf{a} \in \mathrm{R}(n)$, there exists some $b \in \mathbb{Z}[i]$ such that $\operatorname{Pm}(b) \geq 3$ and $a b \in \mathrm{~F}(n+1)$.

Yes, but . . .

Consider the sequences

$$
\begin{aligned}
& \mathbf{a}=(-2,1+2 i,-2+i, 1+2 i,-2+i, 1+2 i,-2+i, \ldots), \\
& \mathbf{b}=(-2,2 i, 2,-2 i,-2,2 i, 2,-2 i, \ldots) .
\end{aligned}
$$

We have

- $\mathbf{a} \in \Omega$.
- $\mathbf{b} \notin \Omega$, but $\left(b_{1}, \ldots, b_{n}\right) \in \mathrm{R}(n)$ for all $n \in \mathbb{N}$.
- If $\zeta=-\frac{1}{2}+i\left(\frac{2-\sqrt{3}}{2}\right)$, then

$$
\begin{aligned}
\zeta & =[0 ;-2,1+2 i,-2+i, 1+2 i,-2+i, 1+2 i,-2+i, \ldots] \\
& =[0 ;-2,2 i, 2,-2 i,-2,2 i, 2,-2 i, \ldots] .
\end{aligned}
$$

Symbolic extension of (T, \mathfrak{F})

Let $\Lambda: \Omega \rightarrow \mathfrak{F}$ be given by

$$
\Lambda\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left[0 ; a_{1}, a_{2}, a_{3}, \ldots\right]
$$

Let $\bar{\Lambda}$ be the unique continuous extension of $\left.\Lambda\right|_{\mathrm{R}}$ to $\overline{\mathrm{R}} \subseteq \mathcal{D}^{\mathbb{N}}$.
Theorem (García-Ramos, G.R., Hussain, 2023)

$$
\bar{\Lambda}[\overline{\mathrm{R}}]=\overline{\mathfrak{F}} \backslash \mathbb{Q}(i) .
$$

Theorem (García-Ramos, G.R., Hussain, 2023)
The function $\bar{\Lambda}$ is at most six-to-one.

Algorithm

- Input. $z=\left[0 ; a_{1}, a_{2}, \ldots\right] \in \mathfrak{F}$ with $\left(a_{n}\right)_{n \geq 1} \in \Omega \backslash R$.
- Output. A sequence $\mathbf{b}=\left(b_{j}\right)_{j \geq 1} \in \mathcal{D}^{\mathbb{N}}$ such that: $\left(b_{1}, \ldots, b_{n}\right) \in \mathrm{R}(n)$ and $z \in \overline{\mathrm{C}}_{n}\left(a_{1}, \ldots, a_{n}\right)$ for all $n \in \mathbb{N}$.
(1) Put $\mathbf{b}^{0}:=\left(b_{j}^{0}\right)_{j \geq 1}:=\left(a_{j}\right)_{j \geq 1}$ and $N=0$.
(2. If possible, pick $j_{N} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left(b_{1}, \ldots, b_{j_{N}}\right) \in \mathrm{R}\left(j_{N}\right) \quad \text { and } \quad\left(b_{1}, \ldots, b_{j}, b_{j_{N}+1}\right) \notin \mathrm{R}\left(j_{N}+1\right) . \tag{1}
\end{equation*}
$$

Put

$$
b_{j_{N}+1}^{N+1}:=S\left(b_{j_{N+1}}^{N}\right), \quad b_{l}^{N+1}:=b_{l}^{N} \text { for all } I \in\left\{1, \ldots, j_{N}\right\} .
$$

If $b_{j+1}^{N}=1+i m$ or $b_{j+1}^{N}=-1+i m$, establish $b_{j+1+n}^{N+1}:=-\overline{b_{j+1+n}^{N}}$ for every $n \in \mathbb{N}$. If $b_{j_{N+1}}^{N}=m+i$ or $b_{j+1}^{N}=m-i$, establish $b_{j_{N}+1+n}^{N+1}:=\overline{b_{j+1+n}^{N}}$ for every $n \in \mathbb{N}$. If there is no $j_{N} \in \mathbb{N}$ such that (1) holds, put $\mathbf{b}^{N+1}:=\mathbf{b}^{N}$.
(3. Repeat step 2
(4. Take $\mathbf{b}:=\lim _{N \rightarrow \infty} \mathbf{b}^{N}$.

Thank you for your attention.

