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Definition
The nearest Gaussian integer function [·] : C → Z[i] is given by

∀z ∈ C [z] :=
⌊
ℜ(z) + 1

2

⌋
+ i

⌊
ℑ(z) + 1

2

⌋
.

Define F := {z ∈ C : [z] = 0} and T : F → F by

∀z ∈ F T (z) =

{
z−1 − [z−1], if z ̸= 0,
0, if z = 0.

Define a1 : F \ {0} → Z[i] by a1(z) = [z−1], an(z) = a1(T n(z)) if T n(z) ̸= 0, and
a0 : C → Z[i] by a0(z) = [z]. The Hurwitz continued fraction of a complex number z
is

a0(z) +
1

a1(z) +
1

a2(z) +
1
. . .

.



Theorem (A. Hurwitz, 1887)
Let ζ be any complex number.

1. If ζ ∈ Q(i), the Hurwitz continued fraction algorithm associates to
each a finite sequence (aj)

n
j=0 in Z[i] such that

ζ = [a0;a1, . . . ,an].

2. If ζ ∈ C \Q(i), the algorithm associates an infinite sequence
(an)n≥1 in Z[i] such that

ζ = [a0;a1, . . .].



Hurwitz Continued Fraction Process
For any z ∈ C \ {0}, put ι(z) =
z−1. The set ι[F], the image of
F under ι, is

ι[F] = E(1)∩E(i)∩E(−1)∩E(−i),

where

D(z; ρ) = {w ∈ C : |z − w | < ρ},
D(z; ρ) = {w ∈ C : |z − w | ≤ ρ},

D(z) = D(z;1),
D(z) = D(z;1),
E(z) = C \ D(z),
E(z) = C \ D(z).
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Definitions

Definition
Write D := {a ∈ Z[i] : |a| ≥

√
2}.

Definition
For each n ∈ N and each b ∈ Dn, define

Cn(b) := {z ∈ F : a1(z) = b1, . . . ,an(z) = bn} .



Partition of F by cylinders
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Figure 1: Partition of F.



Normal numbers

Theorem (H. Nakada, 1976)
There is a T -ergodic Borel probability measure µ on F which is
equivalent to the Lebesgue measure.

Definition
A number z ∈ F is normal if for all n ∈ N and all a ∈ Dn, we have

lim
N→∞

#
{

0 ≤ j ≤ N − 1 : T j(z) ∈ Cn(a)
}

N
= µ (Cn(a)) .

We denote the set of normal numbers by Norm(µ).
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A theorem on normal numbers

Theorem

The set Norm(µ) is Π0
3(C)-complete.



Some symbolic dynamics
Let A be a non-empty and at most countable set.

Definition
For n ∈ N and v = v1 · · · vn, w = w1 · · ·wn ∈ An, the normalized Hamming distance
between v and w is

dH(v,w) =
#{j ∈ {1, . . . , n} : vj ̸= wj}

n
.

Definition
A subshift X of A is a closed and shift invariant subset of AN. Denote by L(X ) the set
of all finite words that appear as factors of some words in X.
A sub-shift X has the right feeble specification property if there is some G ⊆ L(X )
such that:

1. If u, v ∈ G, then uv ∈ G;
2. For every ε > 0 there exists N ∈ N such that for any u ∈ G and any v ∈ L(X )

satisfying |v| ≥ N there are s′, v′ ∈ A<ω satisfying

|v′| = |v|, 0 ≤ |s| ≤ ε|v|, dH(v, v′) < ε, usv′ ∈ G.
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Theorem (Airey, Jackson, Kwietniak, Mance (TAMS, 2020))

Let X be a sub-shift of A such that:
i. X has the right feeble specification property,
ii. X has at least two shift-invariant Borel probability measures.

Let µ be a shift-invariant Borel probability measure. The set of
µ-generic points Gµ is Π0

3-hard.



Back to Hurwitz continued fractions

Proposition (Dani, Nogueira (TAMS, 2014))
Consider any n ∈ N and any a = (a1, . . . ,an) ∈ R(n).

i. If Pm(an) ≥ 3 and b ∈ Ω(m) for some m ∈ N, then ab ∈ Ω(m + n).
ii. If a ∈ R(n), there exists some b ∈ Z[i] such that Pm(b) ≥ 3 and

ab ∈ F(n + 1).



Yes, but . . .

Consider the sequences

a = (−2,1 + 2i ,−2 + i ,1 + 2i ,−2 + i ,1 + 2i ,−2 + i , . . .),
b = (−2,2i ,2,−2i ,−2,2i ,2,−2i , . . .).

We have
a ∈ Ω.
b ̸∈ Ω, but (b1, . . . ,bn) ∈ R(n) for all n ∈ N.

If ζ = −1
2 + i

(
2−

√
3

2

)
, then

ζ = [0;−2,1 + 2i ,−2 + i ,1 + 2i ,−2 + i ,1 + 2i ,−2 + i , . . .]
= [0;−2,2i ,2,−2i ,−2,2i ,2,−2i , . . .].



Symbolic extension of (T ,F)

Let Λ : Ω → F be given by

Λ(a1,a2,a3, . . .) = [0;a1,a2,a3, . . .].

Let Λ be the unique continuous extension of Λ|R to R ⊆ DN.

Theorem (García-Ramos, G.R., Hussain, 2023)

Λ
[

R
]
= F \Q(i).

Theorem (García-Ramos, G.R., Hussain, 2023)

The function Λ is at most six-to-one.



Algorithm

Input. z = [0; a1, a2, . . .] ∈ F with (an)n≥1 ∈ Ω \ R.

Output. A sequence b = (bj)j≥1 ∈ DN such that: (b1, . . . , bn) ∈ R(n) and
z ∈ Cn(a1, . . . , an) for all n ∈ N.

1. Put b0 : = (b0
j )j≥1 : = (aj)j≥1 and N = 0.

2. If possible, pick jN ∈ N such that

(b1, . . . , bjN ) ∈ R(jN) and (b1, . . . , bj , bjN+1) ̸∈ R(jN + 1). (1)

Put
bN+1

jN+1 : = S(bN
jN+1), bN+1

l : = bN
l for all l ∈ {1, . . . , jN}.

If bN
j+1 = 1 + im or bN

j+1 = −1 + im, establish bN+1
j+1+n : = −bN

j+1+n for every n ∈ N.

If bN
jN+1 = m + i or bN

j+1 = m − i , establish bN+1
jN+1+n : = bN

j+1+n for every n ∈ N.

If there is no jN ∈ N such that (1) holds, put bN+1 : = bN .
3. Repeat step 2
4. Take b := lim

N→∞
bN . ■



Thank you for your attention.
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