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The central result in the theory of Diophantine approximations is the Dirichlet’s
Theorem.

Theorem (Dirichlet, 1842)
For any x ∈ R and N ∈ N, there exist p,q ∈ Z such that∣∣∣∣x − p

q

∣∣∣∣ < 1
qN

and 1 ≤ q ≤ N.

Corollary
For any irrational x ∈ R there infinitely many p,q ∈ Z, such that∣∣∣∣x − p

q

∣∣∣∣ < 1
q2 .
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Continued fraction

Every irrational number x ∈ (0,1) has a unique infinite continued fraction
expansion

x =
1

a1 + 1
a2+

1
a3+...

= [a1,a2, ...]
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Denote its nth convergent by

pn

qn
:= [a1,a2, . . . ,an].

It turns out that convergents provide explicit solutions to the Corollary of
Dirichlet’s Theorem; that is,∣∣∣∣x − pn

qn

∣∣∣∣ < 1
q2

n
∀n ∈ N.

Surprisingly, the opposite is also (almost) true, namely there is a following
result.

Theorem
If for an irrational number x ∈ R, we have that∣∣∣∣x − p

q

∣∣∣∣ < 1
2q2

for a rational number p
q , then p

q = pn
qn

for some n.
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Can we improve the function 1/q2?

This leads us to considering the following set

K(Ψ) =

{
x ∈ [0,1) :

∣∣∣∣x − p
q

∣∣∣∣ < 1
q2Ψ(q)

for i.m. (p,q) ∈ Z× N
}

Theorem (Khintchine, 1924)
Lebesgue measure of the set K(Ψ) satisfies the following 0-1 law:

λ(K(Ψ)) = 0 if
∞∑

q=1

(qΨ(q))−1 <∞

λ(K(Ψ)) = 1 if
∞∑

q=1

(qΨ(q))−1 =∞

Notice that the Lebesgue measure is zero for K(Ψ) = qτ for any τ > 0, and
Khintchine’s theorem gives no further information about the size of the set
K(Ψ).
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The growth rate of partial quotients plays main role in approximation
properties due to a corollary of the Perron formula:

Lemma
For all irrational numbers x = [a1, . . . ,an, . . .] and for all convergents pn

qn
to x,

we have

1
(an+1 + 2)q2

n
<

1
qn(qn+1 + qn)

<

∣∣∣∣x − pn

qn

∣∣∣∣ < 1
qnqn+1

<
1

an+1q2
n

Because of this, set K(Ψ) for Ψ(q) = qτ can be rewritten as

{x ∈ [0,1) : an+1(x) ≥ Ψ(qn) for infinitely many n ∈ N}
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Improving the Dirichlet

Alternatively, if one wants to improve an ‘original’ Dirichlet’s theorem, one can
consider a set of ψ-Dirichlet improvable numbers:

D(ψ) :=

{
x ∈ R :

∃N such that the system |qx − p| < ψ(t), |q| < t
has a nontrivial integer solution for all t > N

}
.

Denote Φ(t) = tψ(t)
1−tψ(t) . Then for non-increasing function ψ with tψ(t) < 1 we

have

Lemma (Kleinbock-Wadleigh)

Let x ∈ [0,1) rQ. Then
(i) x ∈ D(ψ) if an+1(x)an(x) ≤ Φ(qn)/4 for all sufficiently large n.

(ii) x ∈ Dc(ψ) if an+1(x)an(x) > Φ(qn) for infinitely many n.

This tell us that sometimes it is important to know the growth rate of the
product of consecutive partial quotients.
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Φ(qn)→ Φ(n)

There exists w > 1 such that for every x /∈ Q, wn ≤ qn(x) for all n ≥ 2. There
also exists W > w such that for almost every x , qn(x) ≤W n for all large
enough n.

This fact naturally suggests to consider sets of the form

E1(ψ) := {x ∈ [0,1) : an(x) ≥ ψ(n) for infinitely many n ∈ N}

or

E2(ψ) := {x ∈ [0,1) : an(x)an+1(x) ≥ ψ(n) for infinitely many n ∈ N} .

and many others.
We want to analyse them in terms of Lebesgue measure and Hausdorff
dimension.
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Borel-Bernstein theorem

Theorem (Borel-Berstein, 1912)
The Lebesgue measure of the set

E1(ψ) := {x ∈ [0,1) : an(x) ≥ ψ(n) for infinitely many n ∈ N}

is either zero or full depending upon the convergence or divergence of the
series

∑∞
n=1 ψ(n)−1 respectively.
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Preparations for formulating some known results.

It turns out that the most important case is when ψ(n) = Bn for B > 1.
Consider an equation ∑

1≤a1,...,an≤M

1
q2x

n
= Bnx . (1)

It has a unique solution x = sn,M,B. It is possible to show that the limit of sn,M,B
when n,M →∞ exists. Denote it by s(B).

Consider the set

E1(B) = {x ∈ [0,1) : an(x) ≥ Bn for infinitely many n ∈ N}.

The Hausdorff dimension of this set is given by

Theorem (Wang-Wu, 2008)
For any 1 ≤ B <∞,

dimH E1(B) = s(B).

For different applications we will change the function Bnx on the right hand
side of (1) to other functions.
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Some sets to consider 1

Consider sets

E2 = {x ∈ [0,1) : an(x)an+1(x) ≥ Bn for infinitely many n ∈ N} .

and F(B) := E2(B) \ E1(B), so that

F(B) =

{
x ∈ [0,1) :

an+1(x)an(x) ≥ Bn for infinitely many n ∈ N and
an+1(x) < Bn for all sufficiently large n ∈ N

}
.

It is known that F(B) has positive Hausdorff dimension.

More precisely, one
has

Theorem (Bakhtawar-Bos-Hussain, 2020)

dimH F(B) = dimH E2 = tB, (2)

where the corresponding r.h.s. of (1) is equal to Bnx2
.
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Some sets to consider 2

Previous result was recently generalised. Consider the set
F(B1,B2) := E2(B1) \ E1(B2), so

F(B1,B2) =

{
x ∈ [0,1) :

an+1(x)an(x) ≥ Bn
1 for infinitely many n ∈ N and

an+1(x) < Bn
2 for all sufficiently large n ∈ N

}
.

Theorem (Hussain-Li-Sh., 2023)
For any B1,B2 > 1, we have

if B
tB1
1 ≤ B2, then dimH FB1,B2 = tB1 ;

if B
tB1
1 ≥ B2 > B1/2

1 , then dimH FB1,B2 = gB1,B2 ;

if B1/2
1 ≥ B2, then FB1,B2 = ∅,

where for gB1,B2 the corresponding r.h.s. of (1) is equal to Bnx
1

B(1−x)n
2

.
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Some sets to consider 3

Another example is the main result from paper by Huang-Wu-Xu. They have
considered a set

Em(B) := {x ∈ [0,1) : an(x)an+1(x) · · · an+m−1(x) ≥ Bn for infinitely many n ∈ N}.

At the heart of their paper is the following result.

Theorem (Huang-Wu-Xu, 2020)

For 1 ≤ B <∞, and any integer m ≥ 1,

dimH Em(B) = t (m)
B , (3)

where the corresponding r.h.s. of (1) is equal to Bnfm(x) and fm(s) is given by
the following iterative formula:

f1(s) = s, fk+1(s) =
sfk (s)

1− s + fk (s)
, k ≥ 1.
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How are those results proved?

Hausdorff dimension is usually found in two steps: the upper bound and the
lower bound.
The lower bound can be found from the Mass Distribution principle formulated
below.

Lemma
Let E ⊂ [0,1) be a Borel set and µ be a measure with µ (E) > 0, suppose that
for some s > 0, there is a constant c > 0 such that for any x ∈ [0,1) one has

µ (B (x , r)) ≤ cr s, (4)

where B (x , r) denotes an open ball centred at x and radius r , then
dimH E ≥ s.

13 / 16



Main result

For a fixed integer number m and for all integers 0 ≤ i ≤ m− 1, let Ai > 1 be a
real number. Define the set

Sm(A0, . . . ,Am−1) = {x : ciAn
i ≤ an+i (x) < 2ciAn

i ,0 ≤ i ≤ m − 1, for i. m. n ∈ N} ,

where ci > 0 ∈ R. For any 0 ≤ i ≤ m − 1, define the quantities

β−1 = 1, βi = A0 · · ·Ai .

Define di as a limit for n,M →∞ of solution of the equation∑
1≤a1,...,an≤M

1
q2x

n
=

βnx
i

β
n(1−x)
i−1

. (5)

Then

Theorem (Hussain-Sh., 2023)

dimH Sm = min
0≤i≤m−1

di
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Why is this set interesting?

The set Sm(A0, . . . ,Am−1) for a suitable choice of the parameters m,Ai , ci is a
subset of all of the previously listed sets and has the same Hausdroff
dimension as them.
For example, consider a set

E1 = {x ∈ [0,1) : an(x) ≥ Bn for infinitely many n ∈ N} .

To get a lower bound in this setup using our result, we set m = 1,A0 = B, that
is we consider the set

S1(B) = {x ∈ [0,1) : Bn ≤ an(x) ≤ 2Bn for infinitely many n ∈ N} .

which is clearly a subset of E1.

15 / 16



Why is this set interesting?

The set Sm(A0, . . . ,Am−1) for a suitable choice of the parameters m,Ai , ci is a
subset of all of the previously listed sets and has the same Hausdroff
dimension as them.
For example, consider a set

E1 = {x ∈ [0,1) : an(x) ≥ Bn for infinitely many n ∈ N} .

To get a lower bound in this setup using our result, we set m = 1,A0 = B, that
is we consider the set

S1(B) = {x ∈ [0,1) : Bn ≤ an(x) ≤ 2Bn for infinitely many n ∈ N} .

which is clearly a subset of E1.

15 / 16



Thank you!
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