Metrical properties of exponentially growing partial quotients.

Nikita Shulga

Joint work with Mumtaz Hussain

Number Theory Down Under 11, Australian National University, 5 September 2023

The central result in the theory of Diophantine approximations is the Dirichlet's Theorem.

Theorem (Dirichlet, 1842)
For any $x \in \mathbb{R}$ and $N \in \mathbb{N}$, there exist $p, q \in \mathbb{Z}$ such that

$$
\left|x-\frac{p}{q}\right|<\frac{1}{q N} \quad \text { and } \quad 1 \leq q \leq N .
$$

The central result in the theory of Diophantine approximations is the Dirichlet's Theorem.

Theorem (Dirichlet, 1842)

For any $x \in \mathbb{R}$ and $N \in \mathbb{N}$, there exist $p, q \in \mathbb{Z}$ such that

$$
\left|x-\frac{p}{q}\right|<\frac{1}{q N} \quad \text { and } \quad 1 \leq q \leq N .
$$

Corollary

For any irrational $x \in \mathbb{R}$ there infinitely many $p, q \in \mathbb{Z}$, such that

$$
\left|x-\frac{p}{q}\right|<\frac{1}{q^{2}} .
$$

Continued fraction

Every irrational number $x \in(0,1)$ has a unique infinite continued fraction expansion

$$
x=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}=\left[a_{1}, a_{2}, \ldots\right]
$$

Denote its nth convergent by

$$
\frac{p_{n}}{q_{n}}:=\left[a_{1}, a_{2}, \ldots, a_{n}\right] .
$$

Denote its nth convergent by

$$
\frac{p_{n}}{q_{n}}:=\left[a_{1}, a_{2}, \ldots, a_{n}\right] .
$$

It turns out that convergents provide explicit solutions to the Corollary of Dirichlet's Theorem; that is,

$$
\left|x-\frac{p_{n}}{q_{n}}\right|<\frac{1}{q_{n}^{2}} \quad \forall n \in \mathbb{N} .
$$

Denote its nth convergent by

$$
\frac{p_{n}}{q_{n}}:=\left[a_{1}, a_{2}, \ldots, a_{n}\right] .
$$

It turns out that convergents provide explicit solutions to the Corollary of Dirichlet's Theorem; that is,

$$
\left|x-\frac{p_{n}}{q_{n}}\right|<\frac{1}{q_{n}^{2}} \quad \forall n \in \mathbb{N} .
$$

Surprisingly, the opposite is also (almost) true, namely there is a following result.

Theorem

If for an irrational number $x \in \mathbb{R}$, we have that

$$
\left|x-\frac{p}{q}\right|<\frac{1}{2 q^{2}}
$$

for a rational number $\frac{p}{q}$, then $\frac{p}{q}=\frac{p_{n}}{q_{n}}$ for some n.

Can we improve the function $1 / q^{2}$?

This leads us to considering the following set

$$
\mathcal{K}(\Psi)=\left\{x \in[0,1):\left|x-\frac{p}{q}\right|<\frac{1}{q^{2} \Psi(q)} \quad \text { for i.m. }(p, q) \in \mathbb{Z} \times \mathbb{N}\right\}
$$

Theorem (Khintchine, 1924)

Lebesgue measure of the set $\mathcal{K}(\Psi)$ satisfies the following 0-1 law:

$$
\left.\begin{array}{ll}
\lambda(\mathcal{K}(\Psi))=0 & \text { if }
\end{array} \quad \sum_{q=1}^{\infty}(q \Psi(q))^{-1}<\infty\right)
$$

Notice that the Lebesgue measure is zero for $\mathcal{K}(\Psi)=q^{\tau}$ for any $\tau>0$, and Khintchine's theorem gives no further information about the size of the set $\mathcal{K}(\Psi)$.

The growth rate of partial quotients plays main role in approximation properties due to a corollary of the Perron formula:

Lemma

For all irrational numbers $x=\left[a_{1}, \ldots, a_{n}, \ldots\right]$ and for all convergents $\frac{p_{n}}{q_{n}}$ to x, we have

$$
\frac{1}{\left(a_{n+1}+2\right) q_{n}^{2}}<\frac{1}{q_{n}\left(q_{n+1}+q_{n}\right)}<\left|x-\frac{p_{n}}{q_{n}}\right|<\frac{1}{q_{n} q_{n+1}}<\frac{1}{a_{n+1} q_{n}^{2}}
$$

The growth rate of partial quotients plays main role in approximation properties due to a corollary of the Perron formula:

Lemma

For all irrational numbers $x=\left[a_{1}, \ldots, a_{n}, \ldots\right]$ and for all convergents $\frac{p_{n}}{q_{n}}$ to x, we have

$$
\frac{1}{\left(a_{n+1}+2\right) q_{n}^{2}}<\frac{1}{q_{n}\left(q_{n+1}+q_{n}\right)}<\left|x-\frac{p_{n}}{q_{n}}\right|<\frac{1}{q_{n} q_{n+1}}<\frac{1}{a_{n+1} q_{n}^{2}}
$$

Because of this, set $\mathcal{K}(\Psi)$ for $\Psi(q)=q^{\tau}$ can be rewritten as

$$
\left\{x \in[0,1): a_{n+1}(x) \geq \Psi\left(q_{n}\right) \quad \text { for infinitely many } n \in \mathbb{N}\right\}
$$

Improving the Dirichlet

Alternatively, if one wants to improve an 'original' Dirichlet's theorem, one can consider a set of ψ-Dirichlet improvable numbers:

$$
D(\psi):=\left\{x \in \mathbb{R}: \begin{array}{l}
\exists N \text { such that the system }|q x-p|<\psi(t),|q|<t \\
\text { has a nontrivial integer solution for all } t>N
\end{array}\right\} .
$$

Improving the Dirichlet

Alternatively, if one wants to improve an 'original' Dirichlet's theorem, one can consider a set of ψ-Dirichlet improvable numbers:

$$
D(\psi):=\left\{x \in \mathbb{R}: \begin{array}{l}
\exists N \text { such that the system }|q x-p|<\psi(t),|q|<t \\
\text { has a nontrivial integer solution for all } t>N
\end{array}\right\} .
$$

Denote $\Phi(t)=\frac{t \psi(t)}{1-t \psi(t)}$. Then for non-increasing function ψ with $t \psi(t)<1$ we have

Lemma (Kleinbock-Wadleigh)

Let $x \in[0,1) \backslash \mathbb{Q}$. Then
(i) $x \in D(\psi)$ if $a_{n+1}(x) a_{n}(x) \leq \Phi\left(q_{n}\right) / 4$ for all sufficiently large n.
(ii) $x \in D^{c}(\psi)$ if $a_{n+1}(x) a_{n}(x)>\Phi\left(q_{n}\right)$ for infinitely many n.

Improving the Dirichlet

Alternatively, if one wants to improve an 'original' Dirichlet's theorem, one can consider a set of ψ-Dirichlet improvable numbers:

$$
D(\psi):=\left\{x \in \mathbb{R}: \begin{array}{l}
\exists N \text { such that the system }|q x-p|<\psi(t),|q|<t \\
\text { has a nontrivial integer solution for all } t>N
\end{array}\right\} .
$$

Denote $\Phi(t)=\frac{t \psi(t)}{1-t \psi(t)}$. Then for non-increasing function ψ with $t \psi(t)<1$ we have

Lemma (Kleinbock-Wadleigh)

Let $x \in[0,1) \backslash \mathbb{Q}$. Then
(i) $x \in D(\psi)$ if $a_{n+1}(x) a_{n}(x) \leq \Phi\left(q_{n}\right) / 4$ for all sufficiently large n.
(ii) $x \in D^{c}(\psi)$ if $a_{n+1}(x) a_{n}(x)>\Phi\left(q_{n}\right)$ for infinitely many n.

This tell us that sometimes it is important to know the growth rate of the product of consecutive partial quotients.

$\Phi\left(q_{n}\right) \rightarrow \Phi(n)$

There exists $w>1$ such that for every $x \notin \mathbb{Q}, w^{n} \leq q_{n}(x)$ for all $n \geq 2$. There also exists $W>w$ such that for almost every $x, q_{n}(x) \leq W^{n}$ for all large enough n.

$\Phi\left(q_{n}\right) \rightarrow \Phi(n)$

There exists $w>1$ such that for every $x \notin \mathbb{Q}, w^{n} \leq q_{n}(x)$ for all $n \geq 2$. There also exists $W>w$ such that for almost every $x, q_{n}(x) \leq W^{n}$ for all large enough n.
This fact naturally suggests to consider sets of the form

$$
\mathcal{E}_{1}(\psi):=\left\{x \in[0,1): a_{n}(x) \geq \psi(n) \text { for infinitely many } n \in \mathbb{N}\right\}
$$

or

$$
\mathcal{E}_{2}(\psi):=\left\{x \in[0,1): a_{n}(x) a_{n+1}(x) \geq \psi(n) \text { for infinitely many } n \in \mathbb{N}\right\} .
$$

and many others.
We want to analyse them in terms of Lebesgue measure and Hausdorff dimension.

Borel-Bernstein theorem

Theorem (Borel-Berstein, 1912)

The Lebesgue measure of the set

$$
\mathcal{E}_{1}(\psi):=\left\{x \in[0,1): a_{n}(x) \geq \psi(n) \text { for infinitely many } n \in \mathbb{N}\right\}
$$

is either zero or full depending upon the convergence or divergence of the series $\sum_{n=1}^{\infty} \psi(n)^{-1}$ respectively.

Preparations for formulating some known results.

It turns out that the most important case is when $\psi(n)=B^{n}$ for $B>1$. Consider an equation

$$
\begin{equation*}
\sum_{1 \leq a_{1}, \ldots, a_{n} \leq M} \frac{1}{q_{n}^{2 x}}=B^{n x} \tag{1}
\end{equation*}
$$

It has a unique solution $x=s_{n, M, B}$. It is possible to show that the limit of $s_{n, M, B}$ when $n, M \rightarrow \infty$ exists. Denote it by $s(B)$.

Preparations for formulating some known results.

It turns out that the most important case is when $\psi(n)=B^{n}$ for $B>1$.
Consider an equation

$$
\begin{equation*}
\sum_{1 \leq a_{1}, \ldots, a_{n} \leq M} \frac{1}{q_{n}^{2 x}}=B^{n x} \tag{1}
\end{equation*}
$$

It has a unique solution $x=s_{n, M, B}$. It is possible to show that the limit of $s_{n, M, B}$ when $n, M \rightarrow \infty$ exists. Denote it by $s(B)$.
Consider the set

$$
\varepsilon_{1}(B)=\left\{x \in[0,1): a_{n}(x) \geq B^{n} \text { for infinitely many } n \in \mathbb{N}\right\} .
$$

Preparations for formulating some known results.

It turns out that the most important case is when $\psi(n)=B^{n}$ for $B>1$.
Consider an equation

$$
\begin{equation*}
\sum_{1 \leq a_{1}, \ldots, a_{n} \leq M} \frac{1}{q_{n}^{2 x}}=B^{n x} . \tag{1}
\end{equation*}
$$

It has a unique solution $x=s_{n, M, B}$. It is possible to show that the limit of $s_{n, M, B}$ when $n, M \rightarrow \infty$ exists. Denote it by $s(B)$.
Consider the set

$$
\mathcal{E}_{1}(B)=\left\{x \in[0,1): a_{n}(x) \geq B^{n} \text { for infinitely many } n \in \mathbb{N}\right\} .
$$

The Hausdorff dimension of this set is given by

Theorem (Wang-Wu, 2008)

For any $1 \leq B<\infty$,

$$
\operatorname{dim}_{H} \varepsilon_{1}(B)=s(B)
$$

For different applications we will change the function $B^{n x}$ on the right hand side of (1) to other functions.

Some sets to consider 1

Consider sets

$$
\mathcal{E}_{2}=\left\{x \in[0,1): a_{n}(x) a_{n+1}(x) \geq B^{n} \quad \text { for infinitely many } n \in \mathbb{N}\right\} .
$$

and $\mathcal{F}(B):=\varepsilon_{2}(B) \backslash \varepsilon_{1}(B)$, so that

$$
\mathcal{F}(B)=\left\{x \in[0,1): \begin{array}{r}
a_{n+1}(x) a_{n}(x) \geq B^{n} \text { for infinitely many } n \in \mathbb{N} \text { and } \\
a_{n+1}(x)<B^{n} \text { for all sufficiently large } n \in \mathbb{N}
\end{array}\right\} .
$$

It is known that $\mathcal{F}(B)$ has positive Hausdorff dimension.

Some sets to consider 1

Consider sets

$$
\mathcal{E}_{2}=\left\{x \in[0,1): a_{n}(x) a_{n+1}(x) \geq B^{n} \quad \text { for infinitely many } n \in \mathbb{N}\right\} .
$$

and $\mathcal{F}(B):=\varepsilon_{2}(B) \backslash \varepsilon_{1}(B)$, so that

$$
\mathcal{F}(B)=\left\{x \in[0,1): \begin{array}{r}
a_{n+1}(x) a_{n}(x) \geq B^{n} \text { for infinitely many } n \in \mathbb{N} \text { and } \\
a_{n+1}(x)<B^{n} \text { for all sufficiently large } n \in \mathbb{N}
\end{array}\right\} .
$$

It is known that $\mathcal{F}(B)$ has positive Hausdorff dimension. More precisely, one has

Theorem (Bakhtawar-Bos-Hussain, 2020)

$$
\begin{equation*}
\operatorname{dim}_{H} \mathcal{F}(B)=\operatorname{dim}_{H} \varepsilon_{2}=t_{B}, \tag{2}
\end{equation*}
$$

where the corresponding r.h.s. of (1) is equal to $B^{n x^{2}}$.

Some sets to consider 2

Previous result was recently generalised. Consider the set $\mathcal{F}\left(B_{1}, B_{2}\right):=\varepsilon_{2}\left(B_{1}\right) \backslash \mathcal{E}_{1}\left(B_{2}\right)$, so
$\mathcal{F}\left(B_{1}, B_{2}\right)=\left\{x \in[0,1): \begin{array}{r}a_{n+1}(x) a_{n}(x) \geq B_{1}^{n} \text { for infinitely many } n \in \mathbb{N} \text { and } \\ a_{n+1}(x)<B_{2}^{n} \text { for all sufficiently large } n \in \mathbb{N}\end{array}\right\}$.

Some sets to consider 2

Previous result was recently generalised. Consider the set $\mathcal{F}\left(B_{1}, B_{2}\right):=\mathcal{E}_{2}\left(B_{1}\right) \backslash \mathcal{E}_{1}\left(B_{2}\right)$, so
$\mathcal{F}\left(B_{1}, B_{2}\right)=\left\{x \in[0,1): \begin{array}{r}a_{n+1}(x) a_{n}(x) \geq B_{1}^{n} \text { for infinitely many } n \in \mathbb{N} \text { and } \\ a_{n+1}(x)<B_{2}^{n} \text { for all sufficiently large } n \in \mathbb{N}\end{array}\right\}$.

Theorem (Hussain-Li-Sh., 2023)

For any $B_{1}, B_{2}>1$, we have

- if $B_{1}^{t_{B_{1}}} \leq B_{2}$, then $\operatorname{dim}_{H} \mathcal{F}_{B_{1}, B_{2}}=t_{B_{1}}$;
- if $B_{1}^{t_{B_{1}}} \geq B_{2}>B_{1}^{1 / 2}$, then $\operatorname{dim}_{H} \mathcal{F}_{B_{1}, B_{2}}=g_{B_{1}, B_{2}}$;
- if $B_{1}^{1 / 2} \geq B_{2}$, then $\mathcal{F}_{B_{1}, B_{2}}=\emptyset$,
where for $g_{B_{1}, B_{2}}$ the corresponding r.h.s. of (1) is equal to $\frac{B_{1}^{n x}}{B_{2}^{(1-x) n}}$.

Some sets to consider 3

Another example is the main result from paper by Huang-Wu-Xu. They have considered a set
$E_{m}(B):=\left\{x \in[0,1): a_{n}(x) a_{n+1}(x) \cdots a_{n+m-1}(x) \geq B^{n}\right.$ for infinitely many $\left.n \in \mathbb{N}\right\}$

Some sets to consider 3

Another example is the main result from paper by Huang-Wu-Xu. They have considered a set
$E_{m}(B):=\left\{x \in[0,1): a_{n}(x) a_{n+1}(x) \cdots a_{n+m-1}(x) \geq B^{n}\right.$ for infinitely many $\left.n \in \mathbb{N}\right\}$
At the heart of their paper is the following result.
Theorem (Huang-Wu-Xu, 2020)
For $1 \leq B<\infty$, and any integer $m \geq 1$,

$$
\begin{equation*}
\operatorname{dim}_{H} E_{m}(B)=t_{B}^{(m)}, \tag{3}
\end{equation*}
$$

where the corresponding r.h.s. of (1) is equal to $B^{n f_{m}(x)}$ and $f_{m}(s)$ is given by the following iterative formula:

$$
f_{1}(s)=s, \quad f_{k+1}(s)=\frac{s f_{k}(s)}{1-s+f_{k}(s)}, k \geq 1 .
$$

How are those results proved?

Hausdorff dimension is usually found in two steps: the upper bound and the lower bound.
The lower bound can be found from the Mass Distribution principle formulated below.

Lemma

Let $E \subset[0,1)$ be a Borel set and μ be a measure with $\mu(E)>0$, suppose that for some $s>0$, there is a constant $c>0$ such that for any $x \in[0,1)$ one has

$$
\begin{equation*}
\mu(B(x, r)) \leq c r^{s} \tag{4}
\end{equation*}
$$

where $B(x, r)$ denotes an open ball centred at x and radius r, then $\operatorname{dim}_{\mathcal{H}} E \geq s$.

Main result

For a fixed integer number m and for all integers $0 \leq i \leq m-1$, let $A_{i}>1$ be a real number. Define the set
$S_{m}\left(A_{0}, \ldots, A_{m-1}\right)=\left\{x: c_{i} A_{i}^{n} \leq a_{n+i}(x)<2 c_{i} A_{i}^{n}, 0 \leq i \leq m-1\right.$, for i. m. $\left.n \in \mathbb{N}\right\}$ where $c_{i}>0 \in \mathbb{R}$. For any $0 \leq i \leq m-1$, define the quantities

$$
\beta_{-1}=1, \quad \beta_{i}=A_{0} \cdots A_{i} .
$$

Main result

For a fixed integer number m and for all integers $0 \leq i \leq m-1$, let $A_{i}>1$ be a real number. Define the set
$S_{m}\left(A_{0}, \ldots, A_{m-1}\right)=\left\{x: c_{i} A_{i}^{n} \leq a_{n+i}(x)<2 c_{i} A_{i}^{n}, 0 \leq i \leq m-1\right.$, for i. m. $\left.n \in \mathbb{N}\right\}$ where $c_{i}>0 \in \mathbb{R}$. For any $0 \leq i \leq m-1$, define the quantities

$$
\beta_{-1}=1, \quad \beta_{i}=A_{0} \cdots A_{i} .
$$

Define d_{j} as a limit for $n, M \rightarrow \infty$ of solution of the equation

$$
\begin{equation*}
\sum_{1 \leq a_{1}, \ldots, a_{n} \leq M} \frac{1}{q_{n}^{2 x}}=\frac{\beta_{i}^{n x}}{\beta_{i-1}^{n(1-x)}} . \tag{5}
\end{equation*}
$$

Then

Main result

For a fixed integer number m and for all integers $0 \leq i \leq m-1$, let $A_{i}>1$ be a real number. Define the set
$S_{m}\left(A_{0}, \ldots, A_{m-1}\right)=\left\{x: c_{i} A_{i}^{n} \leq a_{n+i}(x)<2 c_{i} A_{i}^{n}, 0 \leq i \leq m-1\right.$, for i. m. $\left.n \in \mathbb{N}\right\}$ where $c_{i}>0 \in \mathbb{R}$. For any $0 \leq i \leq m-1$, define the quantities

$$
\beta_{-1}=1, \quad \beta_{i}=A_{0} \cdots A_{i} .
$$

Define d_{j} as a limit for $n, M \rightarrow \infty$ of solution of the equation

$$
\begin{equation*}
\sum_{1 \leq a_{1}, \ldots, a_{n} \leq M} \frac{1}{q_{n}^{2 x}}=\frac{\beta_{i}^{n x}}{\beta_{i-1}^{n(1-x)}} \tag{5}
\end{equation*}
$$

Then
Theorem (Hussain-Sh., 2023)

$$
\operatorname{dim}_{\mathrm{H}} S_{m}=\min _{0 \leq i \leq m-1} d_{i}
$$

Why is this set interesting?

The set $S_{m}\left(A_{0}, \ldots, A_{m-1}\right)$ for a suitable choice of the parameters m, A_{i}, c_{i} is a subset of all of the previously listed sets and has the same Hausdroff dimension as them.
For example, consider a set

$$
\mathcal{E}_{1}=\left\{x \in[0,1): a_{n}(x) \geq B^{n} \quad \text { for infinitely many } n \in \mathbb{N}\right\} .
$$

Why is this set interesting?

The set $S_{m}\left(A_{0}, \ldots, A_{m-1}\right)$ for a suitable choice of the parameters m, A_{i}, c_{i} is a subset of all of the previously listed sets and has the same Hausdroff dimension as them.
For example, consider a set

$$
\mathcal{E}_{1}=\left\{x \in[0,1): a_{n}(x) \geq B^{n} \quad \text { for infinitely many } n \in \mathbb{N}\right\} .
$$

To get a lower bound in this setup using our result, we set $m=1, A_{0}=B$, that is we consider the set

$$
S_{1}(B)=\left\{x \in[0,1): B^{n} \leq a_{n}(x) \leq 2 B^{n} \quad \text { for infinitely many } n \in \mathbb{N}\right\} .
$$

which is clearly a subset of ε_{1}.

Thank you!

