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Relaxation of observables to equilibrium

Structure of local operators

in the basis of energy eigenstates

PDF(𝒪n,m)

, H has local density,  local operatorH |En⟩ = En |En⟩ 𝒪

“Generic” many-particle systems (with local Hamiltonians)

fulfils Eigenstate Thermalisation Hypothesis

𝒪n,m = ⟨En |𝒪 |Em⟩



Structure of energy-eigenstates in “generic” models

e.g. lattice model of spins with “local” Hamiltonians
En

L

eGS

e0

emax

lowly entangled states

lowly entangled states

“typical states” are locally thermal, ETH holds
can have rare non-thermal states: “scars”



While we believe our findings are more general, they are obtained

for the repulsive Lieb-Liniger model:

 canonical Bose fieldΦ(x)

H(c) = ∫ dx( − Φ†(x)∂2
xΦ(x) + c(Φ†(x))2(Φ(x))2)

c>0

Reason to work with LL is technical: no bound states (“strings”)

Part I: What is  in integrable models ?PDF(⟨En |𝒪 |Em⟩)



Integrable models: conservation laws

Q(n) = ∑
j

Q(n)
j ,1 ≤ n ≤ N [Q(n), H] = 0 = [Q(n), Q(m)]

Extensive # of mutually compatible “local” conservation laws

spatially local



Structure of energy-eigenstates in integrable models

e.g. lattice model of spins with “local” Hamiltonians
En

L

eGS

e0

emax

lowly entangled states

lowly entangled states

 thermal states = typicaleLsth

 atypical states with densities eLs[{q(n)}] {q(n)}



Micro-states

H |λ1, …, λN⟩ = (
N

∑
k=1

λ2
j − μ)

E(λ)

|λ1, …, λN⟩

Lieb&Liniger ‘63

λjL +
N

∑
n=1

2arctan(
λj − λn

c ) = 2πIj j=1,…,N;  (half-odd) integersIj

Bethe equations

Bethe Ansatz gives simultaneous eigenstates of all cons. laws:

{Ij} ⟷ {λj} ⟷ |λ1, …, λN⟩  are “quantum numbers” that

characterise energy eigenstates
Ij



where the rapidities ��� = {�1, ..,�N} satisfy the following set of “Bethe equations”
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with Ik an integer if N is odd, a half-integer if N is even. For c > 0, which we will assume in
this paper, all the solutions to this equation are real [3].

2.2.2 The density form factors

As set out in the introduction, our aim is to calculate the density-density correlation function
in an eigenstate |���i

h� (x, t)� (0, 0)i =
h��� |� (x, t)� (0, 0)|���i

h���|���i
. (16)

Our strategy is to use a Lehman representation in terms of energy eigenstates |µµµi = |µ1, ..., µN 0i,
where {µ1, . . . , µN 0} are solutions to the Bethe equations (15)
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The (normalized) form factors of local operators between two Bethe states have been derived
in Refs [104–109]. In the case of the density operator �, the (square of the normalized) form
factor between two eigenstates |���i, |µµµi with respective numbers of Bethe roots N,N 0 reads
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where

|⟨λ1, …λN |ρ(0,0) |μ1, …, μN⟩ |2 =

Matrix elements are known Slavnov ‘89 ρ(x) = Φ†(x)Φ(x)



Lϱ(z)Δz =  number of 
Ij

L
 in [z, z + Δz]

Macro-states = families of micro-states in large L that have the

same densities  of all conservation laws up to finite-size 
corrections

{q(n)}

Characterised by distribution function  :ϱ(z) > 0

Organising principle: Macro-states



Computation of :PDF(⟨En |𝒪 |Em⟩)

2. Fix two macro-states ϱ1,2(z)

3. Sample corresponding micro-states (fulfil Bethe eqns):

4. Use exact expressions for matrix elements to compute them

1. Choose a local operator.

5. Repeat steps 3 &4 to obtain statistics

(correctly sampling macro-states is non-trivial)

Generate sets  of (half-odd) integers that

correspond to  and solve Bethe equations for ,

{Jj | j = 1,…N}
ϱ1,2(z) {λj} {μj}



⟨J |𝒪 |J⟩ = f𝒪[ρ] + o(L)

Results: Diagonal matrix elements

Depend only on macro-state, i.e. , in thermodyn. limit.ϱ(z)



for T=10 and c=1,4,16
⟨J | (ϕ†(0))2(ϕ(0))2 |J⟩

 cf Korepin et al 80ies

 cf Alba ‘15



Results II: Off-diagonal matrix elements

|⟨I |𝒪(0) |J⟩ |2 ∝ e−c0L ln(L)−Mλ,μL

|⟨I |𝒪(0) |J⟩ |2 ∝ e−c𝒪
ϱ0,ϱ1

L2

•  belonging to different macro-states |I⟩, |J⟩ ϱ0,1

for typical MEs

for all ME

•  belonging to the same (thermal) macro-state|I⟩, |J⟩

interesting PDF for Mλ,μ

|⟨I |𝒪(0) |J⟩ |2 ∝ L−c1e−c2L for rare MEs



•  belonging to same macro-state|I⟩, |J⟩

 at  and thermal state with T=10, D=1:Φ(0) c = ∞

for typical MEs

scaling collapse for 

L=64,128,256,512

Fit is to Frechet distribution

10

FIG. 4: Normalized histograms of |M�,µ| for three
di↵erent micro-states |�i (see text) and 50000 states |µi
with L = N = 512 (respectively in yellow, blue, green,
red), where |�i and |µi are micro-states corresponding
to the thermal macro-state at temperature T = 10.The
solid lines are fits to Fréchet distribution functions.

FIG. 5: Normalized histogram for the distribution of
integers for L = N = 512 and a micro-state

corresponding to a thermal macro-state with c = 1,
� = 0.1 and D = 1

the histogram with bins [⌫1, . . . , ⌫nbin+1]

� =
nbinX

j=1

h
nj �

Z ⌫j+1

⌫j

d⌫
2⇡

L
⇢
⇣2⇡
L

⌫
⌘i2

. (64)

Here nj is the occupation of bin j and ⇢(x) the thermo-
dynamic root density describing the macro-state under
consideration. The third micro-state considered in Fig. 4
(blue histogram) has the largest distance in this sense to
the thermodynamic root density. This suggests that the
larger the deviations of the root distribution of |�i from
the thermodynamic root density are, the smaller the typ-
ical matrix elements M�,µ (sampled over hµ|) become.

The solid lines in Fig. 4 are fits to Fréchet distribution
functions

P↵,�,⌫(x) =

(
(x� ⌫)�↵�1 exp

h
�

�
x�⌫
�

��↵
i

if x > ⌫

0 else.
(65)

We find that fits to P↵,�,⌫(x) provide excellent descrip-
tions of our numerical PDFs in all cases we have consid-
ered. The parameters ↵,�, ⌫ depend not only on macro-
state information, but on details of the micro-state |�i,
i.e.

↵ = ↵� , � = �� , ⌫ = ⌫�. (66)

The next question we want to address is how the PDFs
of M�,µ scale with system size. To address this issue
we work with the smooth state, because it can be read-
ily scaled up with system size. We observe that we can
achieve excellent data collapse if we shift the matrix ele-
ments by a L-dependent constant

M�,µ = M�,µ � c0 ln(L) . (67)

In Fig. 6 we show the histograms of M�,µ when sam-
pled over the states hµ| for a thermal macro-state with
temperature T = 10 and density D = N/L = 1 for four
di↵erent values of L and c0 = 0.375801. We observe that
the data for di↵erent system sizes collapses very nicely.
Other micro-states are more di�cult to scale up in sys-

FIG. 6: Normalized histograms of M�,µ for the
”smooth” micro-state |�i (see text) and 50000 states
|µi with L = N = 128, 256, 512, 1024 (respectively in

yellow, blue, green, red), where |�i and |µi are
micro-states corresponding to the thermal macro-state
at temperature T = 10. The solid line is a Fréchet

distribution function with fitted parameters
↵ = 12.8894, � = 5.04354 and ⌫ = �4.66742.

tem size, but supposedly an analogous data collapse of
shifted distributions occurs.
In order to remove the explicit dependence of P (M�,µ)

on the ket micro-state |�i, we may sample the latter
in the same energy window as the bra states hµ|. De-
noting the energy density in the thermodynamic limit
by e1 we take this window to be |E � Le1| < 7.5.
The resulting probability distributions of appropriately
shifted matrix elements (67) is shown in Fig. 7 for a
range of system sizes. Fixing the constant in (67) to be
c0 = 0.755474 leads to an excellent data collapse, and the
resulting probability distribution is again well described
by a Fréchet distribution.

|⟨I |𝒪(0) |J⟩ |2 ∝ e−c0L ln(L)−Mλ,μL



  and   at  and 
thermal state with T=5, D=1:

(Φ†(0))2(Φ(0))2 Φ†(0)Φ(0) c = 4

scaling collapse for 

L=64,96,160,224 Fits to Frechet distributions



Upshot: typical MEs not relevant for local correlation fns.

⟨J |Φ†(x, t)Φ(0,0) |J⟩ = ∑
I

|⟨I |Φ(0,0) |J⟩ |2 eit(EJ−EI)−ix(PJ−PI)

∼ eLsT states ∼ e−c0L ln(L)−Mλ,μL

Which states do contribute?



Rare large MEs and “soft modes”

J

5

the Bethe equations numerically. In other interacting in-
tegrable models the solutions are typically complex, and
form regular patterns known as ”strings” [29, 30]. So-
lutions of the Bethe equations involving strings are nu-
merically very di�cult to obtain, because some of the
di↵erences between the corresponding rapidities lie ex-
poentially (in system size) close to poles of the Bethe
equations.

2. Macro-states

Given a description of energy eigenstates in terms of
the solutions of the Bethe equations we now turn to
the construction of macro-states. The main complica-
tion here, as compared to the process for the free theory
(described in Sec. II A 1), is that the quantization condi-
tions described in Eqs. (29) and (31) are non-trivial and
so the set of rapidities � are state dependent. We can,
however, get around this complication by instead work-
ing with the (half-odd) integers {Ij} - in analogy with
Eq. (13) we can define a density for zj = Ij/L through

L%(z)�z = number of
Ij

L
in [z, z +�z]. (32)

As in the free theory, a positive function %(z) specifies a
macro-state and corresponding microstates can be con-
structed by choosing {Ij} distributed according to %(z).
In practice, it is useful to have a formulation in terms of
the distribution function of the rapidities �j that satisfy
Eq. (29), defined via

L⇢(�)�� = number of �j in [�,�+��]. (33)

We call ⇢(�) the root density. The relationship between
⇢(�) and %(z) can be obtained from Eq. (31) by convert-
ing the sum over rapidities to an integral over ⇢(�) in the
thermodynamic limit
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Thus in the thermodynamic limit, we have

z(�) =
�
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+
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dµ ✓(�� µ) ⇢(µ) . (35)

The strictly monotonically increasing function z(�) is
known as the counting function. The relationship be-
tween %(z) and ⇢(�) is obtained by equating the number
of rapidities and integers within each interval d�

⇢(�)d� = %(z(�))| {z }
#(�)

dz

d�
d� . (36)

Here we have introduced the occupation function, #(�),
and carrying through we get

1
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+
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⇢(�)

#(�)
, K(�) =

2c
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.

(37)
It is often useful to define a so-called hole density ⇢h(�)

associated to a macro-state

⇢(�)

#(�)
= ⇢(�) + ⇢h(�). (38)

The above shows that a macro-state can be specified
through its root density ⇢(�) as well as via the distri-
bution of integers %(z).

3. Stable excitations over macro-states

Having constructed macro-states within interacting in-
tegrable models, we now turn our attention to construct-
ing excitations over these macro-states.
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FIG. 1: The set of (half-odd) integers Ĩj (solid circles)
corresponding to a single particle-hole excitation over a
given microstate characterized by {Ij}: one (half-odd)
integer is changed from Ih (red empty circle) to Ip (red
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III. GENERATING MICRO-STATES FOR A
GIVEN MACRO-STATE

We now turn to the problem of generating micro-states
in a finite systems that are associated with a macro-state
characterized by a root density ⇢(x) in the thermody-
namic limit. We start our discussion by considering what
we call ”smooth” micro-states of N particles in a system
of size L. Let us assume for definiteness that our state is
characterized by half-odd integers Ij . We define a ”par-
ticle counting function” by

zp(x) =

Z x

�1
dy ⇢(y) , (39)

and then numerically solve the equations

zp(�
(0)
j ) =

j

L
, j = 1, 2, . . . , N. (40)
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the Bethe equations numerically. In other interacting in-
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di↵erences between the corresponding rapidities lie ex-
poentially (in system size) close to poles of the Bethe
equations.

2. Macro-states

Given a description of energy eigenstates in terms of
the solutions of the Bethe equations we now turn to
the construction of macro-states. The main complica-
tion here, as compared to the process for the free theory
(described in Sec. II A 1), is that the quantization condi-
tions described in Eqs. (29) and (31) are non-trivial and
so the set of rapidities � are state dependent. We can,
however, get around this complication by instead work-
ing with the (half-odd) integers {Ij} - in analogy with
Eq. (13) we can define a density for zj = Ij/L through

L%(z)�z = number of
Ij

L
in [z, z +�z]. (32)

As in the free theory, a positive function %(z) specifies a
macro-state and corresponding microstates can be con-
structed by choosing {Ij} distributed according to %(z).
In practice, it is useful to have a formulation in terms of
the distribution function of the rapidities �j that satisfy
Eq. (29), defined via

L⇢(�)�� = number of �j in [�,�+��]. (33)

We call ⇢(�) the root density. The relationship between
⇢(�) and %(z) can be obtained from Eq. (31) by convert-
ing the sum over rapidities to an integral over ⇢(�) in the
thermodynamic limit

zj =
Ij

L
=

�j

2⇡
+

1

2⇡L

NX

k=1

✓(�j � �k)

'
�j

2⇡
+

1

2⇡

Z 1

�1
dµ ✓(�j � µ) ⇢(µ) . (34)

Thus in the thermodynamic limit, we have

z(�) =
�

2⇡
+

1

2⇡

Z 1

�1
dµ ✓(�� µ) ⇢(µ) . (35)

The strictly monotonically increasing function z(�) is
known as the counting function. The relationship be-
tween %(z) and ⇢(�) is obtained by equating the number
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⇢(�)d� = %(z(�))| {z }
#(�)

dz

d�
d� . (36)

Here we have introduced the occupation function, #(�),
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1
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Z
dµ
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⇢(�)

#(�)
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c2 + �2
.

(37)
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“soft modes”

ket state

⟨I |Φ†(x)Φ(x) |J⟩⟨I |Φ†(x)Φ(x) |J⟩

⟨I |Φ†(x)Φ(x) |J⟩Example:



Metropolis Monte-Carlo algorithm

⟨J |Φ†(x, t)Φ(0,0) |J⟩ = ∑
I

|⟨I |Φ(0,0) |J⟩ |2 eit(E(J)−E(I))−ix(P(J)−P(I))

Sample  using Monte Carlo single-integer Metropolis updateI

τ = T/n2

exponentially many states

contribute, but sub-entropic!

|J⟩ a thermal microstate



Results for L=N=200:

Benchmark at  (Fredholm determinant) agrees extremely well.c = ∞



Summary

• Statistics of matrix elements in energy eigenstates of integrable 
models has a rich and interesting structure


• Unlike in generic models the dynamics of local observables is 
governed by (exponentially many) rare states.


• Analytic results?


• Can sample rare states by Metropolis algorithm to get finite 
temperature dynamical 2-point function of Bose field.


• Generalizations to quantum quench, N-point functions? (is there 
a “sign-problem”?)



