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“Generic” many-particle systems (with local Hamiltonians)

Relaxation of observables to equilibrium

Structure of local operators
in the basis of energy eigenstates

H|E) =E_|E,), H has local density, O local operator

PDF(@n,m) fulfils Eigenstate Thermalisation Hypothesis



Structure of energy-eigenstates in “generic” models

e.g. lattice model of spins with “local” Hamiltonians

El’l

L

Cmax T lowly entangled states

& T+ "typical states” are locally thermal, ETH holds

can have rare non-thermal states: “scars”

€GS =< lowly entangled states



Part I: What is PDF((E,| O |E,,)) in integrable models ?

While we believe our findings are more general, they are obtained
for the repulsive Lieb-Liniger model:

H(c) = de< — O (x)07D(x) + c(CI)T(x))Z(CI)(x))z)

®d(x) canonical Bose field ¢>0

Reason to work with LL is technical: no bound states (“strings”)



Integrable models: conservation laws

Extensive # of mutually compatible “local” conservation laws

Q"= 0" 1<n<N  [Q".H]=0=[Q",Q0")
j |

t

spatially local



Structure of energy-eigenstates in integrable models

e.g. lattice model of spins with “local” Hamiltonians
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Cmax T lowly entangled states

. el thermal states = typical
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eLstig™)] atypical states with densities {g"™}

€GS =< lowly entangled states



Micro-states Lieb&Liniger ‘63

Bethe Ansatz gives simultaneous eigenstates of all cons. laws:

N
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EQ)
Bethe equations
AL+ Z 2arctan ( - ) =2zl j=1,..N; [; (half-odd) integers

n=1

(L} < (A} < |4 dy) | I; are “quantum numbers” that

characterise energy eigenstates




Matrix elements are known BBV

[ (Ags oo Ay | p(O,0) | piygs ooy i) |* =

px) = O (x)D(x)
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Organising principle: Macro-states

Macro-states = families of micro-states in large L that have the

same densities {g"”} of all conservation laws up to finite-size
corrections

I
Lo(z)Az = number of z] in [z,z+ AZ]



Computation of PDF((Enl O | Em)):

1. Choose a local operator.

2. Fix two macro-states ¢ ,(z)

3. Sample corresponding micro-states (fulfil Bethe eqns):

Generate sets {Jj\j = 1,...N} of (half-odd) integers that
correspond to @ (2) and solve Bethe equations for {4;},{y;}

4. Use exact expressions for matrix elements to compute them

5. Repeat steps 3 &4 to obtain statistics

(correctly sampling macro-states is non-trivial)



Results: Diagonal matrix elements

JN1O1T) = folp] + o(L)

Depend only on macro-state, i.e. ¢(z), in thermodyn. limit.

cf Korepin et al 80ies
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cf Alba ‘15



Results II: Off-diagonal matrix elements

® |I),|J) belonging to different macro-states g,

| -
ﬁ

K100 1) 2 e~wal” | for all ME

® |I),|J) belonging to the same (thermal) macro-state

[16) 1) o e™sHMOMul| - for typical MEs

interesting PDF for M, ,

11160)17) 2« L™l | for rare MEs




o \I) |J) belongmg to same macro-state

scaling collapse for
L =64,128,256,512




(@7(0))*(P(0))* and ®(0)D(0) at ¢ =4 and
thermal state with T=5, D=1:

scaling collapse for

L=64,96,160,224 Fits to Frechet distributions



VoIsldd  typical MEs not relevant for local correlation fns.

(J| D (x, H®(0,0) | J) = Z (T D(0.0) | J) | e ErEn=ix(Pr=Fp
I
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Which states do contribute?




Rare large MEs and “soft modes”

Example: (I|®'(x)@(x)|J)
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Metropolis Monte-Carlo algorithm

(J D' (x, ND(0,0)|J) = Z | (I]®(0,0) | J) |* e (E—ED)=ix(PU)-PD)
1

|J) a thermal microstate

Sample I using Monte Carlo single-integer Metropolis update

exponentially many states

contribute, but sub-entropic!

r = T/n?



Results for L=N=200:
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Benchmark at ¢ = oo (Fredholm determinant) agrees extremely well.



@ Statistics of matrix elements in energy eigenstates of integrable
models has a rich and interesting structure

@® Unlike in generic models the dynamics of local observables is
governed by (exponentially many) rare states.

® Analytic results?

@® Can sample rare states by Metropolis algorithm to get finite
temperature dynamical 2-point function of Bose field.

® Generalizations to quantum quench, N-point functions? (is there
a “sign-problem”?)



