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Motivation

• Want to optimize stellarator geometry to minimize turbulent heat fluxes.

• Can we use purely geometric quantity to predict turbulence?

• Critical balance prediction: Qi ∝ L∥ (for slabs1 and tokamaks2)

• In tokamaks: L∥ ∝ qR ∝ 1/ι

• What about QA stellarators?

1T. Adkins+, JPP 89(4) 905890406 (2023)
2T. Adkins+, in preparation
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Critical balance

• Parallel dissipation rate and non-linear dissipation rate are assumed to balance
[M. Barnes+ 2011, T. Adkins+ 2022]

• Assumes far above marginality. (Qi “large”, meaning L∥ large if Qi ∝ L∥)

• Assumes FLR effects are negligible (k⊥ρs ≪ 1)

Introduction 3/15



Scale invariance

• Electrostatic, collisionless, no FLR (k⊥ρs ≪ 1) gyrokinetics:

0 =
∂

∂t

(
hs − qsϕ

T0s
f0s

)
+

(
v∥b⃗0 + v⃗ms

)
· ∇⃗hs +

1

B2
0

B⃗0 ·
[
∇⃗ϕ × ∇⃗ (hs + f0s)

]
0 =

∑
s

qs

[
−qsϕ

T0s
n0s +

∫
d3v⃗hs

]
.

• Symmetry. For any λ:

h̃s = λ hs(x/λ, y/λ, z/λ, t/λ),

ϕ̃ = λ ϕ(x/λ, y/λ, z/λ, t/λ),
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Implications for transport

• Suppose hs is periodic in x , y and z with domain sizes Lx , Ly , L∥.

=⇒ h̃s is periodic with domain sizes λLx , λLy and λL∥.

• Electrostatic heat flux

Qs [hs ](Lx , Ly , L∥, t) =

∫
Lx ,Ly ,L∥

d3r⃗
(
v⃗E · ∇⃗x

) ∫
d3v

mv2

2
hs(t)

/ ∫
Lx ,Ly ,L∥

d3r⃗ ,

will transform as:

• Locality : Qs is independent of perpendicular domain size.

• Stationarity : Qs has been able to reach a statistical steady-state.
• Given that λ can be chosen arbitrarily, it follows that:

Qs ∝ L∥
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Scale invariance in a tokamak

• What is L∥ in toroidal geometry?

• Parallel scale invariance broken due to variation in geometry. For a tokamak:

L∥ ∼ qR, where q =
# of toroidal turns

# of poloidal turns
⇒ Qs ∝ q
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Scale invariance in a tokamak

• ion-scale (adiabatic electron) Cyclone Base Case GX simulations.
• Miller geometry:
r/a = 0.5, R/a = 2.8, ŝ = 0.8, a/LTi

= 2.5 , a/Ln = 0.8, νii/(vthi/a) = 1.2 × 10−4.
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= 2.5 , a/Ln = 0.8, νii/(vthi/a) = 1.2 × 10−4.

Tokamak 7/15



From tokamak to QA stellarator

QA stellarator 8/15



Series of precise QA with varying ι

QA stellarator 9/15



Qi in QA ι scan
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• GX simulations: r/a = 0.5, α = 0.0, a/LT = 3.0, a/Ln = 1.0
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Changes in safety factor for Miller tokamak – and for QA stellarator

• Changing q in Miller
geometry only changes ∇θ

• Changing ι in stellarator
equilibrium is more
complicated

• Stellarator has more than
1 lenght scale for parallel
variation in geometry.

• If Qi ∝ L∥ for any lenght
scale, changing ∇θ should
change it.
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Artificial flux-tubes: Miller-like fake ι scan
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Artificial flux-tubes: Miller-like fake ι scan
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Artificial flux-tubes: Miller-like fake ι scan

• Lower 1/ι has heat flux at higher
ky

=⇒ FLR effects become important.

• Lower 1/ι has smaller Qi

=⇒ Closer to marginality. (Critical
balance does not apply)

• Thus, we don’t expect scaling to
apply for low 1/ι
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Summary - Relevance to turbulence optimization?

• Critical balance scaling may
apply to low ι (here, ι ≲ 0.4)

• Typically, do not want ι too low

• Scaling is complicated by several
parallel lenght scales

• Simple ι scaling not observed
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BONUS SLIDES
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The Parallel Boundary Condition for Turbulence Simulations in Low
Magnetic Shear Devices. M. Martin+ (2018)
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QA iota scan
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