

Parallel length scale and nonlinear heat flux from gyrokinetic simulations

Stefan Buller, Toby Adkins, Rahul Gaur, Patrick Kim, Noah Mandell, Bill Dorland, Matt Landreman

Simons Hidden Symmetries retreat, Canberra December 13, 2023

- Want to optimize stellarator geometry to minimize turbulent heat fluxes.
- Can we use purely geometric quantity to predict turbulence?
- Critical balance prediction: $Q_i \propto L_{\parallel}$ (for slabs¹ and tokamaks²)
- In tokamaks: $L_{\parallel} \propto q R \propto 1/\iota$
- What about QA stellarators?

¹T. Adkins+, JPP **89**(4) 905890406 (2023) ²T. Adkins+, in preparation

- Parallel dissipation rate and non-linear dissipation rate are assumed to balance [M. Barnes+ 2011, T. Adkins+ 2022]
- Assumes far above marginality. (Q_i "large", meaning L_{\parallel} large if $Q_i \propto L_{\parallel}$)
- Assumes FLR effects are negligible $(k_{\perp}
 ho_s \ll 1)$

Scale invariance

• Electrostatic, collisionless, no FLR ($k_{\perp} \rho_{s} \ll 1$) gyrokinetics:

$$0 = \frac{\partial}{\partial t} \left(h_s - \frac{q_s \phi}{T_{0s}} f_{0s} \right) + \left(v_{\parallel} \vec{b}_0 + \vec{v}_{ms} \right) \cdot \vec{\nabla} h_s + \frac{1}{B_0^2} \vec{B}_0 \cdot \left[\vec{\nabla} \phi \times \vec{\nabla} \left(h_s + f_{0s} \right) \right]$$
$$0 = \sum_s q_s \left[-\frac{q_s \phi}{T_{0s}} n_{0s} + \int d^3 \vec{v} h_s \right].$$

Scale invariance

• Electrostatic, collisionless, no FLR ($k_{\perp}\rho_{s} \ll 1$) gyrokinetics:

$$0 = \frac{\partial}{\partial t} \left(h_s - \frac{q_s \phi}{T_{0s}} f_{0s} \right) + \left(v_{\parallel} \vec{b}_0 + \vec{v}_{ms} \right) \cdot \vec{\nabla} h_s + \frac{1}{B_0^2} \vec{B}_0 \cdot \left[\vec{\nabla} \phi \times \vec{\nabla} \left(h_s + f_{0s} \right) \right]$$
$$0 = \sum_s q_s \left[-\frac{q_s \phi}{T_{0s}} n_{0s} + \int d^3 \vec{v} h_s \right].$$

• Symmetry. For any λ :

$$\begin{split} \tilde{h}_s &= \lambda \; h_s(x/\lambda, y/\lambda, z/\lambda, t/\lambda), \ \tilde{\phi} &= \lambda \; \phi(x/\lambda, y/\lambda, z/\lambda, t/\lambda), \end{split}$$

• Suppose h_s is periodic in x, y and z with domain sizes L_x , L_y , L_{\parallel} . $\implies \tilde{h}_s$ is periodic with domain sizes λL_x , λL_y and λL_{\parallel} .

- Suppose h_s is periodic in x, y and z with domain sizes L_x , L_y , L_{\parallel} .
 - \implies \tilde{h}_s is periodic with domain sizes λL_x , λL_y and λL_{\parallel} .
- Electrostatic heat flux

$$Q_{s}[h_{s}](L_{x}, L_{y}, L_{\parallel}, t) = \int_{L_{x}, L_{y}, L_{\parallel}} d^{3}\vec{r} \left(\vec{v}_{E} \cdot \vec{\nabla}x\right) \int d^{3}v \frac{mv^{2}}{2} h_{s}(t) \quad \left/ \int_{L_{x}, L_{y}, L_{\parallel}} d^{3}\vec{r} \right.,$$

$$Q_{s}[\tilde{h}_{s}](\lambda L_{x},\lambda L_{y},\lambda L_{\parallel},t) = \lambda Q_{s}[h_{s}](L_{x},L_{y},L_{\parallel},t/\lambda).$$

- Suppose h_s is periodic in x, y and z with domain sizes L_x , L_y , L_{\parallel} .
 - \implies \tilde{h}_s is periodic with domain sizes λL_x , λL_y and λL_{\parallel} .
- Electrostatic heat flux

$$Q_{s}[h_{s}](L_{x}, L_{y}, L_{\parallel}, t) = \int_{L_{x}, L_{y}, L_{\parallel}} d^{3}\vec{r} \left(\vec{v}_{E} \cdot \vec{\nabla}x\right) \int d^{3}v \frac{mv^{2}}{2} h_{s}(t) \quad \left/ \int_{L_{x}, L_{y}, L_{\parallel}} d^{3}\vec{r} \right.,$$

will transform as:

$$Q_{s}[\tilde{h}_{s}](\lambda L_{x},\lambda L_{y},\lambda L_{\parallel},t) = \lambda Q_{s}[h_{s}](L_{x},L_{y},L_{\parallel},t/\lambda).$$

• Locality : Q_s is independent of perpendicular domain size.

- Suppose h_s is periodic in x, y and z with domain sizes L_x , L_y , L_{\parallel} .
 - \implies \tilde{h}_s is periodic with domain sizes λL_x , λL_y and λL_{\parallel} .
- Electrostatic heat flux

$$Q_{s}[h_{s}](L_{x}, L_{y}, L_{\parallel}, t) = \int_{L_{x}, L_{y}, L_{\parallel}} d^{3}\vec{r} \left(\vec{v}_{E} \cdot \vec{\nabla}x\right) \int d^{3}v \frac{mv^{2}}{2} h_{s}(t) \quad \left/ \int_{L_{x}, L_{y}, L_{\parallel}} d^{3}\vec{r} \right.,$$

will transform as:

$$Q_{s}[\tilde{h}_{s}](\lambda L_{x}, \lambda L_{y}, \lambda L_{\parallel}, t) = \lambda Q_{s}[h_{s}](L_{x}, L_{y}, L_{\parallel}, t/\lambda).$$

• Locality : Q_s is independent of perpendicular domain size.

- Suppose h_s is periodic in x, y and z with domain sizes L_x , L_y , L_{\parallel} .
 - \implies \tilde{h}_s is periodic with domain sizes λL_x , λL_y and λL_{\parallel} .
- Electrostatic heat flux

$$Q_{s}[h_{s}](L_{x}, L_{y}, L_{\parallel}, t) = \int_{L_{x}, L_{y}, L_{\parallel}} d^{3}\vec{r} \left(\vec{v}_{E} \cdot \vec{\nabla}x\right) \int d^{3}v \frac{mv^{2}}{2} h_{s}(t) \int_{L_{x}, L_{y}, L_{\parallel}} d^{3}\vec{r},$$

$$Q_{s}[\tilde{h}_{s}](\lambda L_{x}, \lambda L_{y}, \lambda L_{\parallel}, t) = \lambda Q_{s}[h_{s}](L_{x}, L_{y}, L_{\parallel}, t/\lambda).$$

- Locality : Q_s is independent of perpendicular domain size.
- Stationarity: Q_s has been able to reach a statistical steady-state.

- Suppose h_s is periodic in x, y and z with domain sizes L_x , L_y , L_{\parallel} .
 - \implies \tilde{h}_s is periodic with domain sizes λL_x , λL_y and λL_{\parallel} .
- Electrostatic heat flux

$$Q_{s}[h_{s}](L_{x}, L_{y}, L_{\parallel}, t) = \int_{L_{x}, L_{y}, L_{\parallel}} d^{3}\vec{r} \left(\vec{v}_{E} \cdot \vec{\nabla}x\right) \int d^{3}v \frac{mv^{2}}{2} h_{s}(t) \int_{L_{x}, L_{y}, L_{\parallel}} d^{3}\vec{r},$$

$$Q_{s}[\tilde{h}_{s}](\lambda L_{x}, \lambda L_{y}, \lambda L_{\parallel}, t) = \lambda Q_{s}[h_{s}](L_{x}, L_{y}, L_{\parallel}, t/\lambda).$$

- Locality : Q_s is independent of perpendicular domain size.
- Stationarity: Q_s has been able to reach a statistical steady-state.

- Suppose h_s is periodic in x, y and z with domain sizes L_x , L_y , L_{\parallel} .
 - $\implies \tilde{h}_s$ is periodic with domain sizes λL_x , λL_y and λL_{\parallel} .
- Electrostatic heat flux

$$Q_{s}[h_{s}](L_{x}, L_{y}, L_{\parallel}, t) = \int_{L_{x}, L_{y}, L_{\parallel}} d^{3}\vec{r} \left(\vec{v}_{E} \cdot \vec{\nabla}x\right) \int d^{3}v \frac{mv^{2}}{2} h_{s}(t) \int_{L_{x}, L_{y}, L_{\parallel}} d^{3}\vec{r},$$

$$Q_{s}[\tilde{h}_{s}](\lambda L_{x}, \lambda L_{y}, \lambda L_{\parallel}, t) = \lambda Q_{s}[h_{s}](L_{x}, L_{y}, L_{\parallel}, t/\lambda)$$

- Locality : Q_s is independent of perpendicular domain size.
- Stationarity: Q_s has been able to reach a statistical steady-state.
- Given that λ can be chosen arbitrarily, it follows that:

$$Q_s \propto L_{\parallel}$$

• What is L_{\parallel} in toroidal geometry?

- What is L_{\parallel} in toroidal geometry?
- Parallel scale invariance broken due to variation in geometry. For a tokamak:

$$L_{\parallel} \sim qR$$
, where $q = rac{\# ext{ of toroidal turns}}{\# ext{ of poloidal turns}} \Rightarrow Q_s \propto q$

- ion-scale (adiabatic electron) Cyclone Base Case GX simulations.
- Miller geometry:

 $r/a = 0.5, \ R/a = 2.8, \ \hat{s} = 0.8, \ a/L_{T_i} = 2.5, \ a/L_n = 0.8, \
u_{ii}/(
u_{\mathrm{th}i}/a) = 1.2 imes 10^{-4}.$

- ion-scale (adiabatic electron) Cyclone Base Case GX simulations.
- Miller geometry:

$$r/a = 0.5$$
, $R/a = 2.8$, $\hat{s} = 0.8$, $a/L_{T_i} = 2.5$, $a/L_n = 0.8$, $\nu_{ii}/(v_{\text{th}i}/a) = 1.2 \times 10^{-4}$.

- ion-scale (adiabatic electron) Cyclone Base Case GX simulations.
- Miller geometry:

r/a = 0.5, R/a = 2.8, $\hat{s} = 0.8$, $a/L_{T_i} = 2.5$, $a/L_n = 0.8$, $\nu_{ii}/(v_{\mathrm{th}i}/a) = 1.2 \times 10^{-4}$.

From tokamak to QA stellarator

Series of precise QA with varying ι

QA stellarator

• GX simulations: r/a = 0.5, $\alpha = 0.0$, $a/L_T = 3.0$, $a/L_n = 1.0$

• GX simulations: r/a = 0.5, $\alpha = 0.0$, $a/L_T = 3.0$, $a/L_n = 1.0$

Changes in safety factor for Miller tokamak – and for QA stellarator

 Changing *q* in Miller geometry only changes *∇θ*

Changes in safety factor for Miller tokamak - and for QA stellarator

- Changing *q* in Miller geometry only changes *∇θ*
- Changing *i* in stellarator equilibrium is more complicated

Changes in safety factor for Miller tokamak - and for QA stellarator

- Changing *q* in Miller geometry only changes *∇θ*
- Changing *i* in stellarator equilibrium is more complicated
- Stellarator has more than 1 lenght scale for parallel variation in geometry.

Changes in safety factor for Miller tokamak - and for QA stellarator

- Changing *q* in Miller geometry only changes *∇θ*
- Changing ι in stellarator equilibrium is more complicated
- Stellarator has more than 1 lenght scale for parallel variation in geometry.
- If $Q_i \propto L_{\parallel}$ for any lenght scale, changing $\nabla \theta$ should change it.

QA stellarator

- Lower $1/\iota$ has heat flux at higher k_y
- \Rightarrow FLR effects become important.
 - Lower $1/\iota$ has smaller Q_i
- ⇒ Closer to marginality. (Critical balance does not apply)
 - Thus, we don't expect scaling to apply for low $1/\iota$

• Critical balance scaling may apply to low ι (here, $\iota \lesssim 0.4$)

- Critical balance scaling may apply to low ι (here, $\iota \lesssim 0.4$)
- Typically, do not want ι too low

SIMPLE: C. G. Albert+ (2020)

- Critical balance scaling may apply to low ι (here, $\iota \lesssim 0.4$)
- Typically, do not want ι too low
- Scaling is complicated by several parallel lenght scales

- Critical balance scaling may apply to low ι (here, $\iota \lesssim 0.4$)
- Typically, do not want ι too low
- Scaling is complicated by several parallel lenght scales
- Simple ι scaling not observed

BONUS SLIDES

The Parallel Boundary Condition for Turbulence Simulations in Low Magnetic Shear Devices. M. Martin+ (2018)

