2023 Theory & Simulation Performance Target: 3D MHD.
presentation given to Theory Coordinating Committee 10/30/23

1. The domestic & international, public & private stellarator community base their fusion reactor designs on 3D
MHD equilibrium calculations.

This TSPT sought to address the following:

Q1 Are our equilibrium codes (herein, VMEC, DESC & SPEC) accurate for the free-boundary calculation?

Yes; herein, we present quantitative comparisons, for relevant and challenging configurations.

Q2 Beyond the equilibrium, can we predict the nonlinear evolution of optimized stellarators?

Yes, using the extended-MHD code M3D-C1.

* Herein, only work performed under the TSPT will be presented. This is not a review.

** A lot of work was performed. For completeness, some of the following slides are detailed, but I will try to keep to the main topics.
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Outline.

1. Description of

i. FOCUS, a Biot-Savart code;
ii. VMEC, DESC and SPEC, inverse equilibrium codes; and
iii. M3D-C1, an extended dynamical MHD code.

2. Two vacuum cases were studied, one with magnetic islands and one without (namely, the precise-QA case).

For each equilibrium calculation, we computed volume, surface and line integrals of the error.

Ll

Including pressure: VMEC and SPEC give the same Shafranov shift.
5. Allowing dynamics: extended MHD calculations performed using M3D-C1 for an optimized configuation.

6. Concluding comments.

7. Backup slides.



The FOCUS code for stellarator coil design gives “exact” vacuum magnetic field

4

1. Given geometry, x;(6), of a set of i =1,..., N¢ filamentary coils with current I;, compute the magnetic field,
Je rx x!
B(x) = —Z—;; ;Izjg 3 t df, where r = x — x(0).

3. FOCUS [Zhu, Hudson et al., Nucl. Fusion 58, 016008 (2017)] used herein to

i. construct coil sets for rotating elliptical boundary,
ii. construct Poincaré plots, find magnetic axis, measure ¢-profile,

iii. construct input for free-boundary VMEC,
B R, B¢, B:-Z on 3D mgrid, resolution Ngr, Ny, Nz.

iv. construct input for free-boundary SPEC,
(9B -n)m » on “computational boundary”, Fourier resolution M, N.

v. FOCUS coil representation consistent with SIMSOPT coil representation.




What is VMEC? Why is the vacuum calculation non-trivial? 5

1. VMEC remains the most widely used 3D ideal-MHD equilibrium code; used for design & reconstruction.

i. Hirshman & Whitson, Phys. Fluids, 26, 3553, (1983); Hirshman, van Rij & Merkel, Comp. Phys. Comm., 43, 143 (1986).

2. The vacuum field is provided to free-boundary VMEC on input . . . so why is the vacuum calculation non-trivial?

i. VMEC is an inverse equilibrium solver; assumes nested flux surfaces; pressure is a given function, p = p(1).

ii. The “degree-of-freedom” is geometry of nested flux surfaces, given by mapping x(¢,0,() =xi+yj+ z k.

B2
( P + ) dv, with respect to geometry of flux surfaces.
~

3. Find minimum of energy functional, W[x| = / T+ 3
- Ho

v
i. For variation, & = dx, and ideal constraint 0B =V x (£ x B), oW = / £ (Vp—jxB)dv.
1%

ii. For free-boundary calculations, the plasma boundary moves until p(v) + %BQ = %BQ

‘GV* ‘8V+



DESC is a “modern, improved” version of VMEC. 6

SPEC is based on multi-region relaxed MHD.

1. DESC:

i.
ii.
iii.
1v.

V.

Assumes continously nested flux surfaces, inverse solver, based on ideal MHD (like VMEC).

Uses Fourier-Zernike polynomials (accurate near the magnetic axis).

Map to real-space collocation grid, compute F = Vp — j x B, quasi-Newton method to minimize Z Ffjk
i,3,k
Uses automatic differentiation (efficient calculation of gradients).

Not just an equilibrium code, DESC is an integrated stellarator optimization package, c.f. SIMSOPT.

2. SPEC: stepped-pressure equilibrium code;

i.

ii.

1ii.

Assumes a discrete set, : = 1, ..., Ny, of nested interfaces, between which the field is “Taylor relaxed”.

Based on the multi-region relaxed MHD (MRxMHD) energy functional; inverse solver;

i B; i
— Lv.\v—1  2uo 2 \Uy,

In each region, p; = const. and V x B; = 11;B;; on the interfaces, B - n = 0; and across, [[p + B?/2]] = 0.




M3D-C1 is an extended-MHD initial-value code (can perform dynamical simulations).

1. We use the single-fluid model in M3D-C1, as described by the equations below.
i. Similiar capability (NIMSTELL) under construction with NIMROD.
2. Compared to the equilibrium calculation, this is a higher fidelity model.

i. No constraints on the magnetic field topology (no sheet currents, allows for magnetic islands and irregular fieldlines).

ii. No constraints on the pressure: anisotropic thermal transport (so that the pressure “evolves” self-consistently with B).

iii. With isotropic viscosity, with and realistic transport/dissipation parameters.

on; B
5 +V-(n;v) = V-(DVny),
mmi< +v- Vv) = jxB-Vp-V.II
oT,
Ne [(975 (v—= 1T,V - V} = (v _1)[ -V Qe]
T;
n{% v-1)T,V-vl = (y—=-1)[-II;,: Vv—-V-q,

E = nj—vxB,

where j =V x B/po, v =15/3, and qs = —k;VTs — ks bb - VT, and II; is an isotropic viscosity.

7



Comparisons performed for vacuum fields with and without magnetic islands. g

1. For the precise-QA case, which does not have islands, and for a vacuum field with islands (not optimized),
error measures were calculated. (to be described next slide).

2. Using FOCUS, free-boundary VMEC, free-boundary SPEC, and fixed-boundary DESC.
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To make quantitative comparisons, we calculated volume, surface and line integrals of
dimensionless errors. o)

1. Given a numerical approximation, Bj,, to the exact magnetic field, B, introduce:

1 1
i. Error in total energy, E = —(E), — E), where E = [ —B*dv.
FE y Mo
. : : o 1 [ |oB] :
ii. Volume-integrated relative pointwise error, ||0B|| = v B dv, where V' is plasma volume.
v
1 [ |B-n|

iii. Error in normal field on boundary, éb,, = — ds, where § = 0V, S = / ds, with unit normal, n.

s |B| s

1 J
iv. Error in geometry of magnetic axis, F4 = 7 / % dl, where x(¢) is the magnetic axis, L = / dl.
< |x

X

2. For vacuum fields, the “exact” magnetic field is provided by FOCUS.



For the precise-QA and the vacuum field with islands, the errors were computed.*

G ) [V T BB ] 10
precise QA | VMEC 0.025 0.558 [34x107° | 39x107% [ 1.3 x107*
precise QA | VMEC 0.050 1130 | 71x107° | 74x107% | 1.6 x 1074
precise QA | VMEC 0.120 2840 [39x1073] 25x1073 [ 3.9x10°°
precise QA | SPEC 0.025 53x107°% [ 36x107T [ 7.5 x 107
precise QA | DESC* 0.030 0.676 | 5.3x107° | 39x107% [ 9.7 x107°
island case | VMEC* 0.597 [ 7.9x107° | 86x107° [ 3.1 x 10~*
island case | SPEC 0.012 0246 | 1.5x107* | 54x1072 | 2.8 x107*
island case | DESC* 0.599 1.5x107% | 81x107% [ 28 x10~%

The above data is as presented in the Second Quarter Report, submitted in March, 2023. The errors are all small, higher resolution
calculations may lower the errors further, and code-development work ongoing for each code.

1. Impressive that the 3 leading 3D MHD equilibrium codes:

i. compute the same error measures, and all the errors are small,
ii. for 2 very relevant and challenging vacuum fields,

iii. without a priori knowledge of the results. Great scientific cooperation.

2. These configurations are now standard test cases for 3D MHD codes.



Beyond the vacuum: including pressure in 3D, free-boundary equilibria.

11
1. VMEC is based on ideal MHD; SPEC is based on multi-region relaxed MHD; should agree when NV — 00.

Vit
i. But what about when Ny = 8?7 Must choose stepped pressure p; (¢;+1 — ¥;) = / p(w) di.

2. Calculation performed in rotating elliptical geometry, p(¢) = po(1 — ), I(1p) = 0.

Poincaré plot ¢ profile p profile magnetic axis
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3. “Lowest-order integral property” is the Shafranov shift. error in magnetic axis |  Epy | Eps |  FEsy |
i. Despite evidence of a small error in VMEC near the magnetic axis, vacuui 14> 107" [ 1.1x107° | 1.4 % 10:1
VMEC and SPEC agree on the shift of the magnetic axis. high-/§ n/a n/a 1.3 x 10

ii. See back-up slide for discontinuities in SPEC &.



For an optimized stellarator, the nonlinear evolution was simulated using M3D-C1
12

1. For an equilibrium that was optimized for self-consistent bootstrap current, quasi-symmetry and good energetic-
particle confinement [Landreman et al., Phys. Plasmas, 29, 082501 (2022)].

2. The equilibrium is MHD unstable. Flux surfaces near the edge breakup and form an ergodic sea.
i. (top row): Poincaré plots at t = 0 7, (left) and at ¢t = 825 7, with constant (middle) and Spitzer (right) resistivity profiles.

ii. (bottom row): Electron temperature profiles on the ¢ = 90° cross-section.
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2023 Theory & Simulation Performance Target: 3D MHD: Summary. 13

1. The US stellarator community is very competent in the 3D MHD equilibrium calculation.

i. VMEC, SPEC and DESC are the world’s leading equilibrium codes.

ii. We are pursuing complementary approaches and comparing quantitative measures of the error.

2. Following recent development of M3D-C1, we have unique capability in the simulation of stellarator dynamics.

i. Similiar capability is expected from NIMSTELL.

3. The US has a dominant leadership position in the macroscopic modeling of stellarators.

i. This is all because of sustained DOE investment.

4. Backup slides: i. Quarterly Milestones. ii. Convergence of free-boundary VMEC for precise-QA case. iii. Convergence of
rotational-transform, ¢4, computed by VMEC near the magnetic axis. iv. FExtremely shaped configurations that pose challenges,
and our solutions. v. Single “sharp-boundary” configuration: a discontinuity in pressure, p(¢), can induce a discontinuity in ().
vi. Analysis of instability growth rates for an optimized stellarator using M3D-C1. vii. Some relevant papers that describe DESC
and its application to stellarator design. viii. Some relevant papers that describe SPEC and its application to understanding 3D
magnetohydrostatic equilibria.
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Theory & Simulation Performance Target: Quarterly Milestones:

1.

15

Milestones were ambitious, and were completed.

Calculating the magnetohydrodynamic (MHD) equilibrium state in strongly shaped stellarators, including W7-X and other designs, is
essential for understanding stellarator performance. The free-boundary calculation, in which the location of the plasma boundary is
determined self-consistently given the externally applied magnetic field, is particularly important because of the need to understand the
transport of heat and particles across the edge of the plasma, which is generally partially chaotic.

We shall complete a hierarchy of verification calculations of 3D MHD equilibrium codes, in particular the widely used VMEC code, which
assumes nested flux surfaces, and the SPEC code, which does not and which also accommodates the formation of singular currents. We
shall explore cases for which these codes should agree, and cases for when they should not. We shall prepare the necessary code interfaces
so that equilibrium information can be used to initialize initial value codes, such as M3D-C1, so that the nonlinear stability of 3D equilibria
can be investigated.

1st Quarter

In a relevant, non-axisymmetric geometry with a supplied set of external currents, perform a free-boundary verification calculation between
VMEC and SPEC. The first calculation should consider the vacuum case, for which the equilibrium magnetic field of both codes can be
compared to the magnetic given calculated using the Biot-Savart law.

2nd Quarter

Perform an investigation of the consequences of introducing a magnetic island into the vacuum equilibrium field, both inside and outside
the VMEC/SPEC computational boundary, and explore how this affects the comparison between the codes and the vacuum field.

3rd Quarter

Repeat the verification calculations with increasing pressure profiles, and with either the helicity, current or rotational-transform profiles
included as constraints.

. 4th Quarter

Explore configurations of interest — both existing stellarators and current designs — with increasing realistic plasma profiles. Initialize the
M3D-C1 extended-MHD initial-value code with a relevant equilibrium to explore code performance, and explore transport of pressure, for
example.



Verification calculation for free-boundary VMEC for the precise-QA vacuum. 16

1.

2.

Landreman & Paul, “Magnetic fields with precise quasisymmetry for plasma confinement”, Phys. Rev. Lett., 128:035001 (2022)

For Landreman & Paul’s precise-QQA configuration, with coils constructed Wechsung et al..

A high-resolution mgrid file was constructed, with Nr = 512, Nz = 512, and Ny = 720.

A series of free-boundary, zero-pressure, zero-current VMEC calculations was performed.

The error, Ey = / 0B - 0B dv, where 6B = By — By, is shown to reliably decrease.

1%

A fixed-boundary SPEC calculation, using the boundary computed by free-boundary VMEC, was performed,

also with low error.

Poincaré plot
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Wechsung, Landreman et al., “Precise stellarator quasi-symmetry can be achieved with electromagnetic coils”, Proc. Nat. Acad. Sci., 119(13):2202084119 (2022)



Investigating the near-axis resolution issue in VMEC.

17

1. Near the magnetic axis, VMEC converges slower than expected; error oc As® instead of error oc As?.

i. induces a “spurious current” near the axis, which complicates equilibrium reconstruction.

ii occurs for axisymmetric equilibria; e.g. analytic Grad-Shafranov equilibrium with constant ¢,

3. Current amelioration efforts focussed on finite differencing near the axis.
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Extremely shaped configurations from near-axis expansions can cause difficulties; 18

but, the difficulties we can overcome using 2 different methods.

1. The avant-garde configurations optimized using near-axis expansions are so strongly shaped that existing
algorithms for constructing nested coordinate surfaces can fz

2. E.g., a 2-field-period, quasi-helical case «
from Landreman [J. Plasma Phys., 88, 905880616 (2022)]. @

) @ -
3. Solution Method One: slowly increase shaping, ’
implemented in DESC (see lower right). 1 S

[Conlin et al., J. Plasma Phys. 89, 955890305 (2023)] o

4. Solution Method Two: “Robust” coordinates: (see below)
. e ! 2 2T \/g —— 10% shaping
choose mapping, x(s, 0, (), that minimizes F. = [ds [ df | d¢ |“—/9 + wy/Xs - Xs £ 0% shan]
0 0 0 S — o shaping
]

—— Full shaping

i. New method tested [Tecchiolli, Hudson & Loizu, in preparation] and implemented in GVEC.
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To compare VMEC & SPEC, consider a “sharp-boundary” equilibrium. 19
1. Instead of a stepped approximation to a continuous profile,
consider a polynomial approximation to a stepped profile.

Poincaré plot ¢-profile p(¥) = po(1 — '°)
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2. Placing all of the pressure gradient on/near the edge drives a localized pressure-driven current,
which creates a local discontinuity in ¢.

3. For verification: the point is, when given the same pressure profile,

that free-boundary VMEC and free-boundary SPEC agree. 1 ' ' ‘ ' 6
4. For wvalidation: well, validation is beyond this TSPT. 08 /5
i. Theoretically, MRxMHD can have arbitrarily many steps, ) 06 // T*
e.g. Hudson, Dewar et al., Phys. Plasmas, 19, 112502 (2012). - "

0.4

ii. Numerical implementation: the nonlinear solver and spectral representation

in SPEC is clumsy; SPEC is fragile for large Ny in strongly shaped geometries. 02 — 2
00 s . : s 1
00 0.2 0.4 0.6 0.8 1.0



Using M3D-C1, can perform eigenmode analyses, measure growth rates, . .

Magnetic energy (log) (a.u.)

(Right) Growth rates of the kinetic energy for various n’s
for uniform (dashed) and Spitzer (solid) resistivity profiles.

(Below) Toroidal Fourier components of the magnetic energy,
as a function of time (for Spitzer) resistivity,

i. stellarator-mode coupling: for this Npp = 2, a single unstable eigenmode
will include all even-n toroidal Fourier modes.

. In future work, incorporate self-consistent bootstrap current,

can provide additional poloidal field & transform in quasi-symmetric stellarators,
adding 2-fluid or kinetic effects.
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DESC quickly and accurately, solves and optimizes for 3D ideal-MHD equilibria
with nested flux surfaces 21

1.

DESC code developed and verified against VMEC [D. W. Dudt and E. Kolemen, DESC : A stellarator equilibrium
solver, Phys. Plasmas 27, 102513 (2020)]

DESC code shown to accurately resolve equilibria, especially at axis, better than VMEC and comparing well to near-
axis expansion theory [D. Panici, R. Conlin, D. W. Dudt, and E. Kolemen, The DESC stellarator code suite part 1:
Quick and accurate equilibria computations, J. Plasma. Phys. (2023)]

. DESC perturbation methods developed and shown to robustly and efficiently find highly shaped and high-beta equilibria

[R. Conlin, D. W. Dudt, D. Panici, and E. Kolemen, The DESC stellarator code suite part 2: Perturbation and
continuation methods, J. Plasma. Phys. (2023).]

DESC code shown to perform stellarator optimization orders of magnitude faster than previous methods such as
STELLOPT, owing to its automatic differentiation, perturbation methods, and GPU capabilities [D. W. Dudt, R.
Conlin, D. Panici, and E. Kolemen, The DESC stellarator code suite part 3: Quasi-symmetry optimization, J. Plasma.
Phys. 89, 955890201 (2023).]

. Capability to optimize for general omnigenity developed in DESC and used to optimize in previously unexplored phase

space regions [D. W. Dudt, R. Conlin, D. Panici, A. G. Goodman, and E. Kolemen, Magnetic Fields with General
Omnigenity, PNAS, submitted.]



The stepped-pressure equilibrium code computes multi-region relaxed MHD

1.

22

Bruno & Laurence [Commun. Pure App. Math. 49, 717 (1996)] proved the existence of stepped-pressure equilibria when the
nonaxisymmetry is small, with the interfaces having sufficiently irrational ¢+, and with an arbitrary number of pressure jumps;
building on original work by Berk et al. [Phys. Fluids 29, 3281 (1986)].

Hudson, Dewar, Hole et al. [Phys. Plasmas 19, 112502 (2012)] developed SPEC, which finds stationary points of the
Ny

B2
MRxMHD energy functional, F = E {/ [Ll + 7} dv+v [ A -Bdv— HZ} }

i=1
Free-boundary capability [Hudson, Loizu, Zhu et al., Plasma Phys. Contr. Fusion, 62, 084002 (2020)].

Enciso et al. [J. European Math. Soc., to appear| proved that the toroidal domains do not need to be small perturbations
of an axisymmetric domain.

Huang et al. [Phys. Plasmas 23, 032513 (2022)] computed the singular currents in ideal MHD equilibria using SPEC by
taking Ny — oo.

Not just an equilibrium code, also a linear stability code. Kumar et al. [Plasma Phys. Control. Fusion 65, 075004 (2023)]
demonstrated that SPEC recovers linear-ideal and -resistive stability.

Loizu & Bonfiglio [J. Plasma Phys., 89, 905890507 (2023)] show that saturation of tearing modes can be calculated with
SPEC; Wright et al. [J. Plasma. Phys., (2022)] show comparisons of SPEC and M3D-CI.

SPEC used to understand self-organization/double-axis states in RFPs [Phys. Rev. Lett., 111, 055003 (2013), Phys. Lett.
A, 462, 128664 (2023)]. Aleynikova et al. [Nucl. Fusion, 61, 126040 (2021)] used SPEC for interpretation of current-drive-
induced crash cycles in W7-X as partial/global relaxation events.

SPEC used in SIMSOPT optimization for nested surfaces at nonzero 5 [Baillod et al., Phys. Plasmas 29, 042505 (2022)].
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