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The problem of Cryo Electron Microscopy

The Nobel Prize in Chemistry 2017 was awarded to Jacques
Dubochet, Joachim Frank and Richard Henderson “for developing
cryo-electron microscopy for the high- resolution structure
determination of biomolecules in solution”.
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The problem of Cryo Electron Microscopy

Cryo-EM is an imaging technique for for the high-resolution
structure determination of molecules.

Each measurement consists of a noisy image of an unknown
molecule
The molecule is rotated by an unknown rotation in SO(3) in
each measurement.
The task is then to reconstruct the molecule density from
many such measurements.
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The problem of Cryo Electron Microscopy

The reconstruction problem in Cryo-EM has received
significant attention from the computational perspective.
Statistical properties remain largely unexplored.

Key features as a stochastic model :
The latent group action in each observation — in this case, a
rotation
The presence of extremely high levels of noise
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The stochastic model

The orbit recovery problem
Objective : To determine θ∗ ∈ Rp

Observations : Yi = Gi · θ∗ + ξi; i = 1, 2, . . . , n, where
Gi are i.i.d. uniform according to Haar measure on a compact
subgroup G ⊂ O(p)
ξi are i.i.d. standard Gaussians ∼ Np(0, σ2Ip).

Observe : We can only recover θ∗ up to its orbit under the action
of G; in other words, we can only hope to find the set

Oθ∗ := {θ ∈ Rp : θ = g · θ∗ for some g ∈ G}.
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The stochastic model

The orbit recovery problem : special cases
Learning a bag of numbers : θ∗ ∈ Rp,G = Sp ⊂ O(p)

Learning a rigid body : θ∗ ∈ Rk×N,G = SO(k), acting
diagonally on the columns of Rk×N

Multi Reference Alignment (MRA) : θ∗ ∈ Rp,G = Z/pZ,
acting as cyclic shifts on the coordinates of Rp

Spherical registration problem : Learn f : S2 → R from noisy
measurements of f(g−1•) with g ∈ SO(3)

Other variants for cryo-EM:
• Additional linear mapping, i.e. Yi = Π(Gi · θ∗) + ξi
• Heterogeneity, i.e. we have a finite set {θ∗1, . . . , θ∗K}, and
Yi = Π(Gi · θ∗k(i)) + ξi where k(i) ∼ Unif([K]).
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Notions of recovery

The metric

dG(θ1, θ2) = min
g∈G
‖θ1 − g · θ2‖ = dist(θ1,Oθ2)

Generic signals vs worst case signals
Study the properties of this model for all possible (i.e., worst case)
signals vs generic signals (i.e., leave out a set of signals of measure
zero).
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Natural questions

Questions
Recovery How to perform recovery of Oθ∗ to a given level of
accuracy ?
Sample complexity How many observations n to we need to
perform this recovery at a given accuracy level ?
Optimality How many observations are minimally needed
(information theoretic lower bound) ?
Computational complexity How to perform recovery fast (e.g.,
in polynomial time in the problem parameters) ? Is there a
computational-statistical gap in this model ?
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Synchronization
Synchronization is a natural approach to the orbit recovery
problem, trying to first “find” the Gi-s (up to trivial symmetries),
and then using them to recover Oθ∗ .

Concretely, we attempt to
find {Hi}ni=1 which best synchronize the observations {Yi}ni=1, by
solving the optimization problem over the group G given by

min
H1,...,Hn∈G

∑
1≤i,j≤n

‖H−1
i Yi − H−1

j Yj‖2.

Then we approximate Oθ∗ via

θ̂ :=
1
n

n∑
i=1

Ĥ−1
i Yi.

Problem
!! Synchronization works only in the low noise regime

In the high noise regime, no consistent estimation of the Gi is
possible ! [Aguerrebere, Delbracio, Bartesaghi, Sapiro ’16].
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What can we estimate well ?

Observation
Any function of θ∗ that is invariant under the action of the group
G can be estimated well using classical statistical methods

Examples
For learning a bag of numbers (G = Sp), the classical
moments µk =

∑p
i=1 θ

k
i , for k ≥ 1

For MRA (G = Z/pZ), the classical moments
∑p

i=1 θ
k
i , plus

additional functions, such as
∑

i∈Z/pZ θiθi+1 ...
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How far can we reach with invariant functions ?

Enter Invariant Theory
The theory of polynomials that are invariant under the action of a
group
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Invariant theory

• Let x = (x1, . . . , xp), and R[x] be the ring of polynomials with
real coefficients.
• R[x]G denotes the ring of polynomials that are invariant under
the action of the group G, via the map x 7→ g.x for g ∈ G.

• Let U ⊆ R[x]G be a subspace of invariant polynomials that we
have access to, e.g. can estimate effectively.

Question
Do the values {f(θ∗) : f ∈ U} determine Oθ∗ ?
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Invariant theory

Theorem
The full invariant ring R[x]G identifies Oθ for every θ ∈ Rp.

Definition
The Reynold’s Operator R : R[x]→ R[x]G is defined by

R(f) := Eg∼Haar(G) [g · f] .
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Invariant theory
Theorem
The full invariant ring R[x]G identifies Oθ for every θ ∈ Rp.

Proof.
Let o1 and o2 be two distinct (and therefore disjoint) orbits.
o1 and o2 are compact sets, via compactness of G.
By Urysohn’s Lemma, there exists a continuous function
f̄ : Rp → R such that f̄ is 0 on o1 and 1 on o2.
By Stone-Weierstrass Theorem, we can approximate f̄ to
arbitrary accuracy by a polynomial f on any compact subset
K ⊂ Rp such that o1 ∪ o2 ⊆ K ; let f ≤ 1/3 on o1 and f ≥ 2/3
on o2.
R(f) is then a G-invariant polynomial which satisfies
R(f) ≤ 1/3 on o1 and R(f) ≥ 2/3 on o2, thereby separating
the orbits o1 and o2.
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Transcendence degrees

Algebraic independence
Polynomials f1, . . . , fm ∈ R[x] are algebraically independent if there
does not exist any non-zero polynomial P in m variables such that
P(f1, . . . , fm) ≡ 0.

Transcendence degree
For a subspace U ⊆ R[x], the transcendence degree trdeg(U) is the
maximum possible size of an algebraically independent subset of U.

• Intuitively, trdeg(R[x]G) is the minimal number of parameters
required to describe an orbit of G, and is known to be always finite.
Example : If G is a finite group, trdeg(R[x]G) = p.
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Generic Recovery

Theorem (Bandeira, Blum-Smith, Kileel, Niles-Weed, Perry, Wein
’23)
Let U ⊆ R[x]G be a finite dimensional subspace. If
trdeg(U) = trdeg(R[x]G), then U identifies a generic θ∗.

The
converse is also true.

Algorithm to compute transcendence degree
There is an efficient algorithm to compute trdeg(U) for any finite
dimensional subspace U ⊆ R[x].

Based on rank of Jacobian criterion for testing algebraic
independence
Based on matroid structure of algebraically independent
subsets of R[x]
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Moment tensors

Order k moment tensor
The order k moment tensor is defined as

Tk(θ) := Eg∼Haar(G)[(g · θ)⊗k]

Moment tensors and polynomials
Each entry of Tk(θ) is a polynomial in R[x]G that is
homogeneous of degree k.
Tk(θ) contains the same information as the set of evaluations
{f(θ) : f ∈ R[x]G , homogeneous of degree k}.
In fact, any polynomial in R[x]G that is homogeneous of
degree k is a linear combination of the entries of Tk.
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Moment tensors and estimation

Estimating Tk(θ∗)

We can estimate Tk(θ∗) from the given observations by computing

T̂k :=
1
n

n∑
i=1

∑
g∈G

(g · Yi)
⊗k,

correcting for canonical bias terms coming from noise.

Definition
Define Mθ∗,k := {τ ∈ Rp : Ti(τ) = Ti(θ∗)∀1 ≤ i ≤ k}.

Clearly, Oθ∗ ⊆ Mθ∗,k . For k large enough, Oθ∗ = Mθ∗,k.
Alternative estimators via Hermite polynomials.
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Moment tensors and estimation

Theorem (Recovering orbits from moments, BBKNPW’23)
We have an explicit estimator M̂n(Y1, . . . ,Yn) (defined via
matching empirical moment tensors) such that with high
probability it holds that

Mθ∗,k ⊆ M̂n ⊆ Mε
θ∗,k,

where Mε
θ∗,k is the ε-fattening of the set Mθ∗,k for a given

tolerance ε and n = n(ε) observations.

Sample complexity
n = Ωθ∗,ε(σ

2k)
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Putting everything together : general orbit recovery

A step-by-step procedure
Compute trdeg(R[x]G) (standard techniques depending on G)

Starting from j = 1, consider U≤j := Span(T1(x), . . . ,Tj(x))
Compute trdeg(U≤j)

Check if trdeg(U≤j) = trdeg(R[x]G); if yes stop, if no increase
j to j + 1 and repeat the above steps. Let the final index be k,
such that trdeg(U≤k) = trdeg(R[x]G).
For this k, estimate Mθ∗,k (up to accuracy ε) via estimator
M̂n(Y1, . . . ,Yn)

By the choice of k,the set Mθ∗,k identifies Oθ∗ .
Roughly speaking, invert θ 7→ (T1(θ), . . . ,Tk(θ)) based on
data.
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Multi Reference Alignment (MRA)

G = Z/pZ

trdeg(R[x]G) = p
T1(x) has 1 distinct entry
T2(x) has bp/2c+ 1 distinct entries
T3(x)) has p + d(p− 1)(p− 2)/6e distinct entries

Recovery possible for generic signals from 3-rd order moment
tensors
Sample complexity O(σ6)

But most significant regime : σ ↑ ∞ ! Need to improve on
sample complexity in important structural settings for the
signal
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Sample complexity of Sparse Multi Reference Alignment
(MRA)

Sparsity is the most fundamental structural feature for
real-world signals
Fundamental question : How does the sample complexity of
sparse MRA scale with σ ?

Without latent symmetries, the sample complexity is O(σ2)

Without sparsity, the sample complexity is O(σ6)
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Sample complexity of Sparse Multi Reference Alignment
(MRA)

Theorem (G.-Rigollet,’23)
The sample complexity of MRA for the MLE exhibits a novel
intermediate scaling of O(σ4) for generic sparse signals.

O(σ4) scaling is the best possible for generic sparse signals.
(G.-Rigollet,’23)
Without sparsity, O(σ6) is best possible for generic signals.
(G.-Rigollet,’23)
Explicit dependence on sparsity level and p. (G.-Rigollet,’23)
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Sample complexity of Sparse Multi Reference Alignment
(MRA)

Theorem (G.-Tran,’24+)
If sparsity is in Fourier space, then sample complexity is O(σ6) for
generic sparse signals

Theorem (G.-Mukherjee-Pan,’24+)
Minimax optimal rates of estimation for sparse MRA in dilute
regime of sparsity
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Sample complexity of Sparse Multi Reference Alignment
(MRA)

The restricted MLE θ̂MLE satisfies a central limit theorem with
convergence of

√
n(θ̂MLE − θ∗) to N(0, I(θ∗)−1), where I(θ∗)

is the Fisher information matrix for the model at the true
parameter value θ∗.

Thus, (θ̂MLE − θ∗) ' 1√n · I(θ
∗)−1 = 1√n · ∇

2
θ(DKL(θ ‖ θ∗))−1.

If the second moment tensor mapping
θ 7→ T2(θ) = Eg∼Haar(Zp)[(g · (θ)⊗k] is suitably non-degenerate
at θ = θ∗, then (DKL(θ ‖ θ∗))−1 is O(σ2), indicating sample
complexity n ∼ σ4.
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Sample complexity of Sparse Multi Reference Alignment
(MRA)

Entries of the matrix T2(θ) are the auto-correlations of the
signal θ

Non-degeneracy of θ 7→ T2(θ)←→ Recovery of signal θ from
its autocorrelations ←→ Recovery of θ̂ from |θ̂|
Crystallographic phase retrieval
Support recovery from auto-correlations ←→ Beltway problem
/ Turnpike problem / Partial digest problem
Non-degeneracy of θ 7→ T2(θ) is best analysed in the Fourier
space; Uniform Uncertainty Principles allow us to switch
between physical and Fourier space efficiently , entailing a
sparse approximation in the frequency variables.
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Information geometry

The likelihood of the group invariant learning problem is given by

pθ(y) =
1
|G|

∑
R∈G

1
(
√

2πσ)L exp

(
−‖y− Rθ‖22

2σ2

)

The log likelihood corresponding to the data {y1, . . . , yn} as

L(θ) =
n∑

i=1
log pθ(yi).

The population risk of the model is given by

R(θ) = −Epθ0
[log pθ(Y)] + C,
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Information geometry

R(θ) =−
∫

log pθ(y)pθ0(y)dy + C

=

∫
log

(pθ0(y)
pθ(y)

· 1
pθ0(y)

)
pθ0(y)dy + C

=DKL(pθ0 ||pθ)−
(∫

pθ0(y) log pθ0(y)dy
)
+ C

where DKL(pθ0 ||pθ) is the Kullback-Leibler divergence between pθ0
and pθ.

Since θ0 is fixed, as a function of θ, the population risk
R(θ) equals

R(θ) = DKL(pθ0 ||pθ) + C(θ0),

where C(θ0) is a function of θ0.
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Information geometry

The Fisher information matrix of the MRA model is given by

I(θ0) = −E[∇2
θ log pθ(Y)

∣∣
θ=θ0

] = ∇2
θR(θ0),

where ∇2
θ denotes the Hessian with respect to the variable θ.

Theorem (Abbe,Bendory,Leeb,Pereira,Sharon,Singer’18)
The MLE θ̃n is an asymptotically consistent estimate for the true
signal θ0 in the MRA model.
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Information geometry

This immediately enables us to invoke standard asymptotic
normality theory for MLEs (c.f. van der Vaart):

Theorem
√

n(θ̃ − θ0) is asymptotically normal with and covariance I(θ0)−1.

Upshot: The distance ρ(θ̃n, θ0) is of the order

n−1/2
√

Tr [I(θ)−1] = n−1/2
√

Tr
[[
∇2

θ|θ=θ0
DKL(pθ0 ||pθ)

]−1
]
.
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Information geometry

Theorem (Bandeira,Niles-Weed,Rigollet’20)
Let θ, φ ∈ Rp satisfy 3ρ(θ, φ) ≤ ‖θ‖ ≤ σ and
EG [Gθ] = EG [Gφ] = 0.
Let ∆m = ∆m(θ, φ) = E[(Gθ)⊗m]− E[(Gφ)⊗m].

For any k ≥ 1, there exist universal constants C and C such that

C
∞∑

m=1

‖∆m‖2

(
√

3σ)2mm!
≤ DKL(pθ||pφ)

and

DKL(pθ||pφ) ≤ 2
k−1∑
m=1

‖∆m‖2

σ2mm!
+ C‖θ‖

2k−2ρ(θ, φ)2

σ2k .
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Information geometry

Corollary
If j is the minimum index such that ‖∆j(θ, θ0)‖ ≳ ρ(θ, θ0) on a
neighbourhood of θ0, then sample complexity scales as σ2j.

Upshot: to improve sample complexity beyond σ6, need to show
non-degeneracy of θ 7→ ‖∆j(θ, θ0)‖ on a neighbourhood of σ.
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The Bernoulli Gaussian model

Definition (Generic sparse signals)
Generic support : Independent Bernoulli (s/p) sampling

Generic values : Independent Gaussians
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The beltway problem

Definition
A subset S ⊆ Z is said to be collision-free if its pairwise differences
D := {i− j : i, j ∈ D} are unique.

Question (Beltway Problem / Turnpike Problem / Partial Digest
Problem (computational biology, signal processing))
What can we say about the set S from its pairwise differences D?

Conjecture (Piccard’39)
If S is collision free, D determines S uniquely up to trivial
symmetries.

Theorem (Bekir,Golomb’04’07;Bloom’77)
Piccard’s conjecture is true for |S| ≥ 7.
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The dilute regime of sparsity

For s = o(p1/4), a generic support is collision-free with high
probability

For small h, we have
∆(θ0 + h, θ0) = EG [Gθ0h∗G∗ + Ghθ∗0G∗] =: J, to the leading
order
(i, j) entry of J is 1

p
∑p

g=1[θ0(i + g)h(j + g) + h(i + g)θ0(j + g)]
J is Toeplitz, i.e. Jij = Ji−j

Target signal not too small on its support =⇒ θ0, h have
same support S
Jij = 0 unless both i, j belong to support S (⇐⇒ i− j ∈ D )
S collision-free =⇒ exactly one term in∑p

g=1[θ0(i + g)h(j + g) + h(i + g)θ0(j + g)] is non-zero =⇒
linear lower bound in h.
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The moderate regime of sparsity

polylog(p) ≲ s ≲ p/polylog(p)
Signal θ0 is symmetric (implies Fourier coefficients are real)

Set ȟ(x) = h(−x), then

1
p

p∑
g=1

θ0(i+g)h(j+g) = 1
p

p∑
g=1

θ0(i+g)ȟ(−j−g) = [θ0∗ȟ](i−j).

Set M[v] :=
(
v(i− j)

)
, then

∆(θ0+h, θ0) = EG [Gθ0h∗G∗+Ghθ∗0 G∗]+o(h) = M[θ0∗ȟ]+M[θ̌0∗h]+o(h)

Discrete Fourier analysis and Parseval’s Theorem:

∥M(θ0 ∗ ȟ)∥F =
√p∥θ0 ∗ ȟ∥2 =

√p · 1
√p · ∥θ̂0 ∗ ȟ∥2 = ∥θ̂0 · ˆ̌h∥2 = ∥θ̂0 · ĥ∥2
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The moderate regime of sparsity

All said and done :
‖∆(θ0 + h, θ0)‖2 =

∑
ξ∈Z/pZ |θ̂0(ξ)|2|ĥ(ξ)|2

Naive bound : lower bound minξ∈Z/pZ |θ̂0(ξ)| ... too crude
Want to leverage sparsity which is in physical coordinates but
analysis is in Fourier coordinates
Need: a bridge between physical and Fourier coordinates that

(a) doesn’t lose much information
(b) transfers sparsity to Fourier coordinates (e..g, so that
minξ∈Λ |θ̂0(ξ)| is not too small)
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Naive bound : lower bound minξ∈Z/pZ |θ̂0(ξ)| ... too crude
Want to leverage sparsity which is in physical coordinates but
analysis is in Fourier coordinates

Need: a bridge between physical and Fourier coordinates that
(a) doesn’t lose much information
(b) transfers sparsity to Fourier coordinates (e..g, so that
minξ∈Λ |θ̂0(ξ)| is not too small)

37 / 46



The moderate regime of sparsity

All said and done :
‖∆(θ0 + h, θ0)‖2 =

∑
ξ∈Z/pZ |θ̂0(ξ)|2|ĥ(ξ)|2
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The moderate regime of sparsity

Need: a bridge between physical and Fourier coordinates that
(a) doesn’t lose much information
(b) transfers sparsity to Fourier coordinates (e..g, so that
minξ∈Λ |θ̂0(ξ)| is not too small)

Solution: Uniform Uncertainty Principle (UUP) : random set
of frequencies Λ of size s log p suffices for (a) with high
probability
But for (b), min of θ̂0 over a random set of frequencies Λ is
still very small with high probability (in Λ

Show that this high probability is strictly smaller than 1
Application of probabilistic method to show existence of good
set Λ of frequencies satisfying both (a) and (b) where the
probability of finding good set → 0 with system size
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Information geometry : the upper bound
Density pζ(y) given by

EG

[
1
σd g(σ−1(y − Gζ))

]
=

1
σd g(σ−1y) exp(−∥ζ∥2/2)EG

[
exp(y⊤Gζ/σ2)

]

By Jensen, pθ(y) ≥ 1
σd g(σ−1y) exp(−∥ζ∥2/2) since EG [Gθ] = 0

DKL(pθ||pφ) ≤ χ2(θ, φ) =
∫ (pθ(y)−pφ(y))2

pθ(y)
dy

Using y = Gθ + σξ, we can simplify to χ2(θ, φ) bounded above by

2EG

[
exp(

(
G′θ

)⊤ Gθ/σ2)− 2 exp(
(
G′φ

)⊤ Gθ/σ2) + exp(
(
G′φ

)⊤ Gφ/σ2)
]

Expand exponentials to get the upper bound∑
m≥0

2
σ2mm!

E
[((

G′θ
)⊤ Gθ

)m
− 2

((
G′φ

)⊤ Gθ
)m

+
((

G′φ
)⊤ Gφ

)m]
=

∑
m≥0

2
σ2mm!

∥∥E [
(Gθ)⊗m]∥∥2 − 2

〈
E
[
(Gθ)⊗m] ,E [

(Gφ)⊗m]〉+ ∥∥E [
(Gφ)⊗m]∥∥2

=
∑
m≥0

2
σ2mm!

∥∆m∥2 ≤ 2
k−1∑
m=1

∥∆m∥2

σ2mm!
+ C · ∥θ∥

2k−2 · ρ(θ, φ)2

σ2k
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Information geometry : the lower bound

Lemma
Let P0 and P1 be any two distributions on a space X . If there
exists a measurable function T : X → R such that
(E0[T(X)]− E1[T(X)])2 = µ2 and
max {var1(T(X)), var0(T(X))} ≤ σ2, then

DKL (P0‖P1) ≥
µ2

4σ2 + µ2

Corollary
If σ2 ≤ a · µ and µ ≤ b in above, then DKL (P0‖P1) ≥ µ/(4a + b).

Our goal : To use the Lemma and the Corollary to obtain lower
bound on DKL(pθ‖pφ).
Need : Suitable statistic T, variance bounds ...
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Analysis on Gaussian space

Let γ be standard Gaussian on R

Hermite polynomials in 1 dimension:
For k ≥ 0, the function hk(x) is a degree- k polynomial.
{hk}k≥0 form an orthogonal basis of of L2(γ)

‖hk‖2
γ = k!

If Y ∼ N (µ, 1), then E [hk(Y)] = µk

If Y ∼ N (µ, σ2), then E
[
σkhk(σ−1Y)

]
= µk

Hermite polynomials in p dimensions :
Given a multi-index α ∈ Np, define the multivariate Hermite
polynomial hα by hα (x1, . . . , xp) =

∏p
i=1 hαi (xi)

The multivariate Hermite polynomials form an orthonormal
basis for the space R [x1, . . . , xp] of p-variate polynomial
functions with respect to the inner product over L2 (γ⊗p).

In summary, for Y ∼ Np(µ, σ2Ip) and α ∈ Np, we have
E
[
σ∥α∥1hα(σ−1Y)

]
=

∏p
i=1 µ

αi
i .
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The lower bound : constructing the statistic

Define Hm(X) (for X ∈ Rp) to be the order m symmetric
tensor given by (Hm(X))i1,...,im = σmhα(σ−1(X)). where
α ∈ Np is defined by αj = |{k : ik = j}|, for 1 ≤ j ≤ p.

Upshot: if Y ∼ Np(µ, σ2Ip), then
(E[Hm(Y)])i1,...,im =

∏p
j=1 µ

αj
j =

∏m
k=1 µik

In summary, E[Hm(Y)] = µ⊗m (can be used to construct
unbiased estimators for Tk(θ))
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The lower bound : constructing the statistic

For k ≥ 1, define the degree-k multivariate polynomial on
y = (y1, . . . , yp) as:

t(y) =
k∑

m=1

⟨∆m,Hm(y)⟩
(
√

3σ)2mm!

If Y ∼ Pζ , then

E[t(Y)] = E

[ k∑
m=1

⟨∆m,E [Hm(Y) | G]⟩
(
√

3σ)2mm!

]
=

k∑
m=1

〈
∆m,E

[
(Gζ)⊗m]〉

(
√

3σ)2mm!

=⇒ EPθ [t(Y)]− EPφ [t(Y)]

=
k∑

m=1

〈
∆m,

(
E
[
(Gθ)⊗m]− E

[
(Gφ)⊗m])〉

(
√

3σ)2mm!
=

k∑
m=1

∥∆m∥2

(
√

3σ)2mm!
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The lower bound : controlling the variance

For Y ∼ Pζ , want Var[t(Y)] ≤ e∥ζ∥2/σ2 ·
∑k

m=1
∥∆m∥2

(
√

3σ)2mm!

If Z ∼ P0, then

E[t(Y)2] ≤ E
[
t(Z)2 ·

dPζ

dP0

]
≤ (E[t(Z)4])1/2(χ2(Pζ ,P0)+1)1/2

χ2(Pζ ,P0) + 1 ≤ e∥ζ∥2/σ2 (direct computation)
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Controlling the variance : Gaussian hypercontractivity

For Z ∼ P0, want E[t(Z)4]1/2 ≤
∑k

m=1
∥∆m∥2

(
√

3)2m
σ2mm!

Gaussian noise operator & Ornstein-Uhlenbeck process :
[Uρf ](x) = Eg∼N(0,I)

[
f (ρx +

√
1− ρ2 g)

]
Gaussian Hypercontractivity : For
1 ≤ p ≤ q ≤ ∞, ‖Uρf ‖q ≤ ‖f ‖p∀ 0 ≤ ρ ≤

√
p−1
q−1 in Gaussian

space
Uρhk = ρkhk (in 1D); Uρhα = ρ∥α∥1hα (in general)
Define polynomial t̃(y) =

∑k
m=1

⟨∆m,Hm(y)⟩
(
√

3)m
σ2mm!

Observe that t = U1/
√

3t̃ as functions
Gaussian Hypercontractivity : in Gaussian space, we have
‖t‖4 ≤ ‖t̃‖2 ⇐⇒ E[t(Z)4]1/4 ≤ E[t(Z)2]1/2

Explicit computation : E[t(Z)2] =
∑k

m=1
∥∆m∥2

(
√

3)2m
σ2mm!
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