Learning under latent symmetries

Subhro Ghosh National University of Singapore

◆□> ◆舂> ◆注> ◆注> 注目

The Nobel Prize in Chemistry 2017 was awarded to Jacques Dubochet, Joachim Frank and Richard Henderson "for developing cryo-electron microscopy for the high- resolution structure determination of biomolecules in solution".

• Cryo-EM is an imaging technique for for the high-resolution structure determination of molecules.

- Cryo-EM is an imaging technique for for the high-resolution structure determination of molecules.
- Each measurement consists of a noisy image of an unknown molecule
- The molecule is rotated by an unknown rotation in SO(3) in each measurement.
- The task is then to reconstruct the molecule density from many such measurements.

- The reconstruction problem in Cryo-EM has received significant attention from the computational perspective.
- Statistical properties remain largely unexplored.

- The reconstruction problem in Cryo-EM has received significant attention from the computational perspective.
- Statistical properties remain largely unexplored.
- Key features as a stochastic model :
 - The latent group action in each observation in this case, a rotation
 - The presence of extremely high levels of noise

• Objective : To determine $\theta^* \in \mathbb{R}^p$

- Objective : To determine $\theta^* \in \mathbb{R}^p$
- Observations : $Y_i = G_i \cdot \theta^* + \xi_i$; i = 1, 2, ..., n,

- Objective : To determine $\theta^* \in \mathbb{R}^p$
- Observations : $Y_i = G_i \cdot \theta^* + \xi_i$; i = 1, 2, ..., n, where
 - G_i are i.i.d. uniform according to Haar measure on a compact subgroup G ⊂ O(p)

- Objective : To determine $\theta^* \in \mathbb{R}^p$
- Observations : $Y_i = G_i \cdot \theta^* + \xi_i$; i = 1, 2, ..., n, where
 - G_i are i.i.d. uniform according to Haar measure on a compact subgroup G ⊂ O(p)
 - ξ_i are i.i.d. standard Gaussians $\sim N_p(0, \sigma^2 I_p)$.

- Objective : To determine $\theta^* \in \mathbb{R}^p$
- Observations : $Y_i = G_i \cdot \theta^* + \xi_i$; i = 1, 2, ..., n, where
 - G_i are i.i.d. uniform according to Haar measure on a compact subgroup G ⊂ O(p)
 - ξ_i are i.i.d. standard Gaussians $\sim N_p(0, \sigma^2 I_p)$.

Observe : We can only recover θ^* up to its orbit under the action of \mathcal{G} ; in other words, we can only hope to find the set

$$\mathcal{O}_{\theta^*} := \{ \theta \in \mathbb{R}^p : \theta = g \cdot \theta^* \text{ for some } g \in \mathcal{G} \}.$$

• Learning a bag of numbers : $\theta^* \in \mathbb{R}^p, \mathcal{G} = S_p \subset O(p)$

- Learning a bag of numbers : $\theta^* \in \mathbb{R}^p, \mathcal{G} = S_p \subset O(p)$
- Learning a rigid body : θ^{*} ∈ ℝ^{k×N}, G = SO(k), acting diagonally on the columns of ℝ^{k×N}

- Learning a bag of numbers : $\theta^* \in \mathbb{R}^p, \mathcal{G} = S_p \subset O(p)$
- Learning a rigid body : θ^{*} ∈ ℝ^{k×N}, G = SO(k), acting diagonally on the columns of ℝ^{k×N}
- Multi Reference Alignment (MRA) : θ^{*} ∈ ℝ^p, G = ℤ/pℤ, acting as cyclic shifts on the coordinates of ℝ^p

- Learning a bag of numbers : $\theta^* \in \mathbb{R}^p, \mathcal{G} = S_p \subset O(p)$
- Learning a rigid body : θ^{*} ∈ ℝ^{k×N}, G = SO(k), acting diagonally on the columns of ℝ^{k×N}
- Multi Reference Alignment (MRA) : θ^{*} ∈ ℝ^p, G = Z/pZ, acting as cyclic shifts on the coordinates of ℝ^p
- Spherical registration problem : Learn f: S² → ℝ from noisy measurements of f(g⁻¹•) with g ∈ SO(3)

- Learning a bag of numbers : $\theta^* \in \mathbb{R}^p, \mathcal{G} = S_p \subset O(p)$
- Learning a rigid body : θ^{*} ∈ ℝ^{k×N}, G = SO(k), acting diagonally on the columns of ℝ^{k×N}
- Multi Reference Alignment (MRA) : θ^{*} ∈ ℝ^p, G = ℤ/pℤ, acting as cyclic shifts on the coordinates of ℝ^p
- Spherical registration problem : Learn f: S² → ℝ from noisy measurements of f(g⁻¹•) with g ∈ SO(3)

Other variants for cryo-EM:

- Additional linear mapping, i.e. $Y_i = \Pi(G_i \cdot \theta^*) + \xi_i$
- Heterogeneity, i.e. we have a finite set $\{\theta^*_1, \ldots, \theta^*_K\}$, and $Y_i = \prod(G_i \cdot \theta^*_{k(i)}) + \xi_i$ where $k(i) \sim Unif([K])$.

The metric

$$d_{\mathcal{G}}(\theta_1, \theta_2) = \min_{g \in \mathcal{G}} \|\theta_1 - g \cdot \theta_2\| = \mathsf{dist}(\theta_1, \mathcal{O}_{\theta_2})$$

Generic signals vs worst case signals

Study the properties of this model for all possible (i.e., worst case) signals vs *generic* signals (i.e., leave out a set of signals of measure zero).

Questions

- Recovery How to perform recovery of \mathcal{O}_{θ^*} to a given level of accuracy ?
- Sample complexity How many observations *n* to we need to perform this recovery at a given accuracy level ?
- Optimality How many observations are minimally needed (information theoretic lower bound) ?
- Computational complexity How to perform recovery fast (e.g., in polynomial time in the problem parameters) ? Is there a computational-statistical gap in this model ?

Synchronization is a natural approach to the orbit recovery problem, trying to first "find" the G_{i} -s (up to trivial symmetries), and then using them to recover \mathcal{O}_{θ^*} .

Synchronization is a natural approach to the orbit recovery problem, trying to first "find" the G_{i} -s (up to trivial symmetries), and then using them to recover \mathcal{O}_{θ^*} . Concretely, we attempt to find $\{H_i\}_{i=1}^n$ which best synchronize the observations $\{Y_i\}_{i=1}^n$, by solving the optimization problem over the group \mathcal{G} given by

$$\min_{H_1,...,H_n\in\mathcal{G}}\sum_{1\leq i,j\leq n}\|H_i^{-1}Y_i-H_j^{-1}Y_j\|^2.$$

Synchronization is a natural approach to the orbit recovery problem, trying to first "find" the G_{i} -s (up to trivial symmetries), and then using them to recover \mathcal{O}_{θ^*} . Concretely, we attempt to find $\{H_i\}_{i=1}^n$ which best synchronize the observations $\{Y_i\}_{i=1}^n$, by solving the optimization problem over the group \mathcal{G} given by

$$\min_{H_1,...,H_n\in\mathcal{G}}\sum_{1\leq i,j\leq n} \|H_i^{-1}Y_i - H_j^{-1}Y_j\|^2.$$

Then we approximate \mathcal{O}_{θ^*} via

$$\hat{\theta} := \frac{1}{n} \sum_{i=1}^n \hat{H}_i^{-1} Y_i.$$

Synchronization is a natural approach to the orbit recovery problem, trying to first "find" the G_{i} -s (up to trivial symmetries), and then using them to recover \mathcal{O}_{θ^*} . Concretely, we attempt to find $\{H_i\}_{i=1}^n$ which best synchronize the observations $\{Y_i\}_{i=1}^n$, by solving the optimization problem over the group \mathcal{G} given by

$$\min_{H_1,...,H_n\in\mathcal{G}}\sum_{1\leq i,j\leq n}\|H_i^{-1}Y_i-H_j^{-1}Y_j\|^2.$$

Then we approximate \mathcal{O}_{θ^*} via

$$\hat{\theta} := \frac{1}{n} \sum_{i=1}^n \hat{H}_i^{-1} Y_i.$$

Problem

!! Synchronization works only in the low noise regime

In the high noise regime, no consistent estimation of the G_i is possible ! [Aguerrebere, Delbracio, Bartesaghi, Sapiro '16].

Observation

Any function of θ^* that is *invariant* under the action of the group ${\mathcal G}$ can be estimated well using classical statistical methods

Observation

Any function of θ^* that is *invariant* under the action of the group ${\mathcal G}$ can be estimated well using classical statistical methods

Examples

Observation

Any function of θ^* that is *invariant* under the action of the group ${\mathcal G}$ can be estimated well using classical statistical methods

Examples

- For learning a bag of numbers $(\mathcal{G} = S_p)$, the classical moments $\mu_k = \sum_{i=1}^p \theta_i^k$, for $k \ge 1$
- For MRA ($\mathcal{G} = \mathbb{Z}/p\mathbb{Z}$), the classical moments $\sum_{i=1}^{p} \theta_{i}^{k}$, plus additional functions, such as $\sum_{i \in \mathbb{Z}/p\mathbb{Z}} \theta_{i} \theta_{i+1} \dots$

How far can we reach with invariant functions ?

Enter Invariant Theory

The theory of polynomials that are invariant under the action of a group

• Let $\mathbf{x} = (x_1, \dots, x_p)$, and $\mathbb{R}[\mathbf{x}]$ be the ring of polynomials with real coefficients.

• $\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ denotes the ring of polynomials that are invariant under the action of the group \mathcal{G} , via the map $\mathbf{x} \mapsto g.\mathbf{x}$ for $g \in \mathcal{G}$.

• Let $\mathbf{x} = (x_1, \dots, x_p)$, and $\mathbb{R}[\mathbf{x}]$ be the ring of polynomials with real coefficients.

• $\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ denotes the ring of polynomials that are invariant under the action of the group \mathcal{G} , via the map $\mathbf{x} \mapsto g.\mathbf{x}$ for $g \in \mathcal{G}$.

• Let $U \subseteq \mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ be a subspace of invariant polynomials that we have access to, e.g. can estimate effectively.

Question

Do the values $\{f(\theta^*) : f \in U\}$ determine \mathcal{O}_{θ^*} ?

Theorem

The full invariant ring $\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ identifies \mathcal{O}_{θ} for every $\theta \in \mathbb{R}^{p}$.

Theorem

The full invariant ring $\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ identifies \mathcal{O}_{θ} for every $\theta \in \mathbb{R}^{p}$.

Definition

The Reynold's Operator $\mathcal{R}: \mathbb{R}[\mathbf{x}] \to \mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ is defined by

$$\mathcal{R}(f) := \mathbb{E}_{g \sim \mathsf{Haar}(\mathcal{G})} \left[g \cdot f\right].$$

Theorem

The full invariant ring $\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ identifies \mathcal{O}_{θ} for every $\theta \in \mathbb{R}^{p}$.

Theorem

The full invariant ring $\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ identifies \mathcal{O}_{θ} for every $\theta \in \mathbb{R}^{p}$.

Proof.

• Let o_1 and o_2 be two distinct (and therefore disjoint) orbits.

Theorem

The full invariant ring $\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ identifies \mathcal{O}_{θ} for every $\theta \in \mathbb{R}^{p}$.

- Let o_1 and o_2 be two distinct (and therefore disjoint) orbits.
- \mathfrak{o}_1 and \mathfrak{o}_2 are compact sets, via compactness of \mathcal{G} .

Theorem

The full invariant ring $\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ identifies \mathcal{O}_{θ} for every $\theta \in \mathbb{R}^{p}$.

- Let o_1 and o_2 be two distinct (and therefore disjoint) orbits.
- \mathfrak{o}_1 and \mathfrak{o}_2 are compact sets, via compactness of \mathcal{G} .
- By Urysohn's Lemma, there exists a continuous function $\overline{f} : \mathbb{R}^p \to \mathbb{R}$ such that \overline{f} is 0 on \mathfrak{o}_1 and 1 on \mathfrak{o}_2 .

Theorem

The full invariant ring $\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ identifies \mathcal{O}_{θ} for every $\theta \in \mathbb{R}^{p}$.

- Let o_1 and o_2 be two distinct (and therefore disjoint) orbits.
- \mathfrak{o}_1 and \mathfrak{o}_2 are compact sets, via compactness of \mathcal{G} .
- By Urysohn's Lemma, there exists a continuous function $\overline{f} : \mathbb{R}^{p} \to \mathbb{R}$ such that \overline{f} is 0 on \mathfrak{o}_{1} and 1 on \mathfrak{o}_{2} .
- By Stone-Weierstrass Theorem, we can approximate *f* to arbitrary accuracy by a polynomial *f* on any compact subset *K* ⊂ ℝ^p such that o₁ ∪ o₂ ⊆ *K*

Theorem

The full invariant ring $\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ identifies \mathcal{O}_{θ} for every $\theta \in \mathbb{R}^{p}$.

- Let o_1 and o_2 be two distinct (and therefore disjoint) orbits.
- \mathfrak{o}_1 and \mathfrak{o}_2 are compact sets, via compactness of \mathcal{G} .
- By Urysohn's Lemma, there exists a continuous function $\overline{f} : \mathbb{R}^{p} \to \mathbb{R}$ such that \overline{f} is 0 on \mathfrak{o}_{1} and 1 on \mathfrak{o}_{2} .
- By Stone-Weierstrass Theorem, we can approximate f to arbitrary accuracy by a polynomial f on any compact subset K ⊂ ℝ^p such that o₁ ∪ o₂ ⊆ K; let f ≤ 1/3 on o₁ and f ≥ 2/3 on o₂.
Invariant theory

Theorem

The full invariant ring $\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ identifies \mathcal{O}_{θ} for every $\theta \in \mathbb{R}^{p}$.

Proof.

- Let o_1 and o_2 be two distinct (and therefore disjoint) orbits.
- \mathfrak{o}_1 and \mathfrak{o}_2 are compact sets, via compactness of \mathcal{G} .
- By Urysohn's Lemma, there exists a continuous function $\overline{f} : \mathbb{R}^{p} \to \mathbb{R}$ such that \overline{f} is 0 on \mathfrak{o}_{1} and 1 on \mathfrak{o}_{2} .
- By Stone-Weierstrass Theorem, we can approximate \overline{f} to arbitrary accuracy by a polynomial f on any compact subset $K \subset \mathbb{R}^p$ such that $\mathfrak{o}_1 \cup \mathfrak{o}_2 \subseteq K$; let $f \leq 1/3$ on \mathfrak{o}_1 and $f \geq 2/3$ on \mathfrak{o}_2 .
- $\mathcal{R}(f)$ is then a \mathcal{G} -invariant polynomial which satisfies $\mathcal{R}(f) \leq 1/3$ on \mathfrak{o}_1 and $\mathcal{R}(f) \geq 2/3$ on \mathfrak{o}_2 , thereby separating the orbits \mathfrak{o}_1 and \mathfrak{o}_2 .

Polynomials $f_1, \ldots, f_m \in \mathbb{R}[\mathbf{x}]$ are algebraically independent if there *does not* exist any non-zero polynomial *P* in *m* variables such that $P(f_1, \ldots, f_m) \equiv 0$.

Polynomials $f_1, \ldots, f_m \in \mathbb{R}[\mathbf{x}]$ are algebraically independent if there *does not* exist any non-zero polynomial *P* in *m* variables such that $P(f_1, \ldots, f_m) \equiv 0$.

Transcendence degree

For a subspace $U \subseteq \mathbb{R}[\mathbf{x}]$, the transcendence degree trdeg(U) is the maximum possible size of an algebraically independent subset of U.

Polynomials $f_1, \ldots, f_m \in \mathbb{R}[\mathbf{x}]$ are algebraically independent if there *does not* exist any non-zero polynomial P in m variables such that $P(f_1, \ldots, f_m) \equiv 0$.

Transcendence degree

For a subspace $U \subseteq \mathbb{R}[\mathbf{x}]$, the transcendence degree trdeg(U) is the maximum possible size of an algebraically independent subset of U.

• Intuitively, $\operatorname{trdeg}(\mathbb{R}[\mathbf{x}]^{\mathcal{G}})$ is the minimal number of parameters required to describe an orbit of \mathcal{G} , and is known to be always finite.

Polynomials $f_1, \ldots, f_m \in \mathbb{R}[\mathbf{x}]$ are algebraically independent if there *does not* exist any non-zero polynomial P in m variables such that $P(f_1, \ldots, f_m) \equiv 0$.

Transcendence degree

For a subspace $U \subseteq \mathbb{R}[\mathbf{x}]$, the transcendence degree trdeg(U) is the maximum possible size of an algebraically independent subset of U.

• Intuitively, $\operatorname{trdeg}(\mathbb{R}[\mathbf{x}]^{\mathcal{G}})$ is the minimal number of parameters required to describe an orbit of \mathcal{G} , and is known to be always finite. Example : If \mathcal{G} is a finite group, $\operatorname{trdeg}(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}) = p$.

Generic Recovery

Theorem (Bandeira, Blum-Smith, Kileel, Niles-Weed, Perry, Wein '23)

Let $U \subseteq \mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ be a finite dimensional subspace. If $trdeg(U) = trdeg(\mathbb{R}[\mathbf{x}]^{\mathcal{G}})$, then U identifies a generic θ^* .

Generic Recovery

Theorem (Bandeira, Blum-Smith, Kileel, Niles-Weed, Perry, Wein '23)

Let $U \subseteq \mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ be a finite dimensional subspace. If $trdeg(U) = trdeg(\mathbb{R}[\mathbf{x}]^{\mathcal{G}})$, then U identifies a generic θ^* . The converse is also true.

Theorem (Bandeira, Blum-Smith, Kileel, Niles-Weed, Perry, Wein '23)

Let $U \subseteq \mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ be a finite dimensional subspace. If $trdeg(U) = trdeg(\mathbb{R}[\mathbf{x}]^{\mathcal{G}})$, then U identifies a generic θ^* . The converse is also true.

Algorithm to compute transcendence degree

There is an efficient algorithm to compute trdeg(U) for any finite dimensional subspace $U \subseteq \mathbb{R}[\mathbf{x}]$.

Theorem (Bandeira, Blum-Smith, Kileel, Niles-Weed, Perry, Wein '23)

Let $U \subseteq \mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ be a finite dimensional subspace. If $trdeg(U) = trdeg(\mathbb{R}[\mathbf{x}]^{\mathcal{G}})$, then U identifies a generic θ^* . The converse is also true.

Algorithm to compute transcendence degree

There is an efficient algorithm to compute trdeg(U) for any finite dimensional subspace $U \subseteq \mathbb{R}[\mathbf{x}]$.

- Based on *rank of Jacobian* criterion for testing algebraic independence
- Based on *matroid structure* of algebraically independent subsets of $\mathbb{R}[\mathbf{x}]$

Order *k* moment tensor

The order k moment tensor is defined as

$${\mathcal T}_k(heta) := \mathbb{E}_{g \sim \mathsf{Haar}(\mathcal{G})}[(g \cdot heta)^{\otimes k}]$$

Order k moment tensor

The order k moment tensor is defined as

$$T_k(heta) := \mathbb{E}_{g \sim \mathsf{Haar}(\mathcal{G})}[(g \cdot heta)^{\otimes k}]$$

Moment tensors and polynomials

- Each entry of *T_k(θ)* is a polynomial in ℝ[**x**]^G that is homogeneous of degree *k*.
- *T_k(θ)* contains the same information as the set of evaluations {*f*(*θ*) : *f* ∈ ℝ[**x**]^G, homogeneous of degree *k*}.

Order k moment tensor

The order k moment tensor is defined as

$$T_k(heta) := \mathbb{E}_{g \sim \mathsf{Haar}(\mathcal{G})}[(g \cdot heta)^{\otimes k}]$$

Moment tensors and polynomials

- Each entry of *T_k(θ)* is a polynomial in ℝ[**x**]^G that is homogeneous of degree *k*.
- *T_k(θ)* contains the same information as the set of evaluations {*f*(*θ*) : *f* ∈ ℝ[**x**]^G, homogeneous of degree *k*}.
- In fact, any polynomial in ℝ[x]^G that is homogeneous of degree k is a linear combination of the entries of T_k.

We can estimate $T_k(\theta^*)$ from the given observations by computing

$$\hat{T}_k := \frac{1}{n} \sum_{i=1}^n \sum_{g \in G} (g \cdot Y_i)^{\otimes k},$$

correcting for canonical bias terms coming from noise.

We can estimate $T_k(\theta^*)$ from the given observations by computing

$$\hat{T}_k := \frac{1}{n} \sum_{i=1}^n \sum_{g \in G} (g \cdot Y_i)^{\otimes k},$$

correcting for canonical bias terms coming from noise.

Definition

Define $M_{\theta^*,k} := \{ \tau \in \mathbb{R}^p : T_i(\tau) = T_i(\theta^*) \forall 1 \le i \le k \}.$

Clearly, $\mathcal{O}_{\theta^*} \subseteq M_{\theta^*,k}$.

We can estimate $T_k(\theta^*)$ from the given observations by computing

$$\hat{T}_k := \frac{1}{n} \sum_{i=1}^n \sum_{g \in G} (g \cdot Y_i)^{\otimes k},$$

correcting for canonical bias terms coming from noise.

Definition

Define
$$M_{\theta^*,k} := \{ \tau \in \mathbb{R}^p : T_i(\tau) = T_i(\theta^*) \forall 1 \le i \le k \}.$$

Clearly, $\mathcal{O}_{\theta^*} \subseteq M_{\theta^*,k}$. For k large enough, $\mathcal{O}_{\theta^*} = M_{\theta^*,k}$.

We can estimate $T_k(\theta^*)$ from the given observations by computing

$$\hat{T}_k := \frac{1}{n} \sum_{i=1}^n \sum_{g \in G} (g \cdot Y_i)^{\otimes k},$$

correcting for canonical bias terms coming from noise.

Definition

Define
$$M_{\theta^*,k} := \{ \tau \in \mathbb{R}^p : T_i(\tau) = T_i(\theta^*) \forall 1 \le i \le k \}.$$

Clearly, $\mathcal{O}_{\theta^*} \subseteq M_{\theta^*,k}$. For *k* large enough, $\mathcal{O}_{\theta^*} = M_{\theta^*,k}$. Alternative estimators via Hermite polynomials.

Theorem (Recovering orbits from moments, BBKNPW'23)

We have an explicit estimator $\hat{M}_n(Y_1, \ldots, Y_n)$ (defined via matching empirical moment tensors) such that with high probability it holds that

$$M_{\theta^*,k} \subseteq \hat{M}_n \subseteq M_{\theta^*,k}^{\varepsilon},$$

where $M_{\theta^*,k}^{\varepsilon}$ is the ε -fattening of the set $M_{\theta^*,k}$ for a given tolerance ε and $n = n(\varepsilon)$ observations.

Theorem (Recovering orbits from moments, BBKNPW'23)

We have an explicit estimator $\hat{M}_n(Y_1, \ldots, Y_n)$ (defined via matching empirical moment tensors) such that with high probability it holds that

$$M_{\theta^*,k} \subseteq \hat{M}_n \subseteq M_{\theta^*,k}^{\varepsilon},$$

where $M_{\theta^*,k}^{\varepsilon}$ is the ε -fattening of the set $M_{\theta^*,k}$ for a given tolerance ε and $n = n(\varepsilon)$ observations.

Sample complexity

$$n = \Omega_{\theta^*,\varepsilon}(\sigma^{2k})$$

 $\bullet~\mathsf{Compute}~\mathsf{trdeg}(\mathbb{R}[x]^\mathcal{G})$ (standard techniques depending on $\mathcal{G})$

- Compute trdeg($\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$) (standard techniques depending on \mathcal{G})
- Starting from j = 1, consider $U_{\leq j} := \text{Span}(T_1(\mathbf{x}), \dots, T_j(\mathbf{x}))$

- Compute trdeg($\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$) (standard techniques depending on \mathcal{G})
- Starting from j = 1, consider $U_{\leq j} := \text{Span}(T_1(\mathbf{x}), \dots, T_j(\mathbf{x}))$
- Compute trdeg(U_{≤j})

- Compute trdeg($\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$) (standard techniques depending on \mathcal{G})
- Starting from j = 1, consider $U_{\leq j} := \text{Span}(T_1(\mathbf{x}), \dots, T_j(\mathbf{x}))$
- Compute trdeg(U_{≤j})
- Check if trdeg(U_{≤j}) = trdeg(ℝ[x]^G); if yes stop, if no increase *j* to *j*+1 and repeat the above steps.

- Compute trdeg($\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$) (standard techniques depending on \mathcal{G})
- Starting from j = 1, consider $U_{\leq j} := \text{Span}(T_1(\mathbf{x}), \dots, T_j(\mathbf{x}))$
- Compute trdeg(U_{≤j})
- Check if $\operatorname{trdeg}(U_{\leq j}) = \operatorname{trdeg}(\mathbb{R}[\mathbf{x}]^{\mathcal{G}})$; if yes stop, if no increase j to j+1 and repeat the above steps. Let the final index be k, such that $\operatorname{trdeg}(U_{\leq k}) = \operatorname{trdeg}(\mathbb{R}[\mathbf{x}]^{\mathcal{G}})$.

- Compute trdeg($\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$) (standard techniques depending on \mathcal{G})
- Starting from j = 1, consider $U_{\leq j} := \text{Span}(T_1(\mathbf{x}), \dots, T_j(\mathbf{x}))$
- Compute trdeg(U_{≤j})
- Check if $\operatorname{trdeg}(U_{\leq j}) = \operatorname{trdeg}(\mathbb{R}[\mathbf{x}]^{\mathcal{G}})$; if yes stop, if no increase j to j+1 and repeat the above steps. Let the final index be k, such that $\operatorname{trdeg}(U_{\leq k}) = \operatorname{trdeg}(\mathbb{R}[\mathbf{x}]^{\mathcal{G}})$.
- For this k, estimate $M_{\theta^*,k}$ (up to accuracy ε) via estimator $\hat{M}_n(Y_1,\ldots,Y_n)$

- Compute trdeg($\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$) (standard techniques depending on \mathcal{G})
- Starting from j = 1, consider $U_{\leq j} := \text{Span}(T_1(\mathbf{x}), \dots, T_j(\mathbf{x}))$
- Compute trdeg(U_{≤j})
- Check if $\operatorname{trdeg}(U_{\leq j}) = \operatorname{trdeg}(\mathbb{R}[\mathbf{x}]^{\mathcal{G}})$; if yes stop, if no increase j to j+1 and repeat the above steps. Let the final index be k, such that $\operatorname{trdeg}(U_{\leq k}) = \operatorname{trdeg}(\mathbb{R}[\mathbf{x}]^{\mathcal{G}})$.
- For this k, estimate $M_{\theta^*,k}$ (up to accuracy ε) via estimator $\hat{M}_n(Y_1,\ldots,Y_n)$
- By the choice of k, the set $M_{\theta^*,k}$ identifies \mathcal{O}_{θ^*} .
- Roughly speaking, invert $\theta \mapsto (T_1(\theta), \ldots, T_k(\theta))$ based on data.

• $\mathcal{G} = \mathbb{Z}/p\mathbb{Z}$

- $\mathcal{G} = \mathbb{Z}/p\mathbb{Z}$
- • $trdeg(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}) = p$
 - $T_1(x)$ has 1 distinct entry
 - $T_2(x)$ has $\lfloor p/2 \rfloor + 1$ distinct entries
 - $T_3(x)$ has $p + \lceil (p-1)(p-2)/6 \rceil$ distinct entries
- Recovery possible for generic signals from 3-rd order moment tensors

- $\mathcal{G} = \mathbb{Z}/p\mathbb{Z}$
- • $trdeg(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}) = p$
 - $T_1(x)$ has 1 distinct entry
 - $T_2(x)$ has $\lfloor p/2 \rfloor + 1$ distinct entries
 - $T_3(x)$ has $p + \lceil (p-1)(p-2)/6 \rceil$ distinct entries
- Recovery possible for generic signals from 3-rd order moment tensors
- Sample complexity $O(\sigma^6)$

- $\mathcal{G} = \mathbb{Z}/p\mathbb{Z}$
- • $trdeg(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}) = p$
 - $T_1(x)$ has 1 distinct entry
 - $T_2(x)$ has $\lfloor p/2 \rfloor + 1$ distinct entries
 - $T_3(x)$) has $p + \lceil (p-1)(p-2)/6 \rceil$ distinct entries
- Recovery possible for generic signals from 3-rd order moment tensors
- Sample complexity $O(\sigma^6)$
- But most significant regime : $\sigma \uparrow \infty$!

- $\mathcal{G} = \mathbb{Z}/p\mathbb{Z}$
- • $trdeg(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}) = p$
 - $T_1(x)$ has 1 distinct entry
 - $T_2(x)$ has $\lfloor p/2 \rfloor + 1$ distinct entries
 - $T_3(x)$) has $p + \lceil (p-1)(p-2)/6 \rceil$ distinct entries
- Recovery possible for generic signals from 3-rd order moment tensors
- Sample complexity $O(\sigma^6)$
- But most significant regime : $\sigma \uparrow \infty$! Need to improve on sample complexity in important structural settings for the signal

- $\mathcal{G} = \mathbb{Z}/p\mathbb{Z}$
- • $trdeg(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}) = p$
 - $T_1(x)$ has 1 distinct entry
 - $T_2(x)$ has $\lfloor p/2 \rfloor + 1$ distinct entries
 - $T_3(x)$) has $p + \lceil (p-1)(p-2)/6 \rceil$ distinct entries
- Recovery possible for generic signals from 3-rd order moment tensors
- Sample complexity $O(\sigma^6)$
- But most significant regime : $\sigma \uparrow \infty$! Need to improve on sample complexity in important structural settings for the signal

- Sparsity is the most fundamental structural feature for real-world signals
- Fundamental question : How does the sample complexity of sparse MRA scale with σ ?

- Sparsity is the most fundamental structural feature for real-world signals
- Fundamental question : How does the sample complexity of sparse MRA scale with σ ?
- Without latent symmetries, the sample complexity is $O(\sigma^2)$
- Without sparsity, the sample complexity is $O(\sigma^6)$

Theorem (G.-Rigollet,'23)

The sample complexity of MRA for the MLE exhibits a **novel** intermediate scaling of $O(\sigma^4)$ for generic sparse signals.

Theorem (G.-Rigollet,'23)

The sample complexity of MRA for the MLE exhibits a **novel** intermediate scaling of $O(\sigma^4)$ for generic sparse signals.

O(σ⁴) scaling is the best possible for generic sparse signals.
 (G.-Rigollet, '23)

Theorem (G.-Rigollet,'23)

The sample complexity of MRA for the MLE exhibits a **novel** intermediate scaling of $O(\sigma^4)$ for generic sparse signals.

- O(σ⁴) scaling is the best possible for generic sparse signals.
 (G.-Rigollet, '23)
- Without sparsity, $O(\sigma^6)$ is best possible for generic signals. (G.-Rigollet, '23)
Theorem (G.-Rigollet,'23)

The sample complexity of MRA for the MLE exhibits a **novel** intermediate scaling of $O(\sigma^4)$ for generic sparse signals.

- O(σ⁴) scaling is the best possible for generic sparse signals.
 (G.-Rigollet, '23)
- Without sparsity, $O(\sigma^6)$ is best possible for generic signals. (G.-Rigollet, '23)
- Explicit dependence on sparsity level and p. (G.-Rigollet, '23)

Theorem (G.-Rigollet,'23)

The sample complexity of MRA for the MLE exhibits a **novel** intermediate scaling of $O(\sigma^4)$ for generic sparse signals.

- O(σ⁴) scaling is the best possible for generic sparse signals.
 (G.-Rigollet, '23)
- Without sparsity, $O(\sigma^6)$ is best possible for generic signals. (G.-Rigollet, '23)
- Explicit dependence on sparsity level and p. (G.-Rigollet, '23)

Theorem (G.-Tran,'24+)

If sparsity is in Fourier space, then sample complexity is $O(\sigma^6)$ for generic sparse signals

Theorem (G.-Tran,'24+)

If sparsity is in Fourier space, then sample complexity is $O(\sigma^6)$ for generic sparse signals

Theorem (G.-Mukherjee-Pan,'24+)

Minimax optimal rates of estimation for sparse MRA in dilute regime of sparsity

• The restricted MLE $\hat{\theta}_{MLE}$ satisfies a central limit theorem with convergence of $\sqrt{n}(\hat{\theta}_{MLE} - \theta^*)$ to $N(0, \mathcal{I}(\theta^*)^{-1})$, where $\mathcal{I}(\theta^*)$ is the Fisher information matrix for the model at the true parameter value θ^* .

• The restricted MLE $\hat{\theta}_{MLE}$ satisfies a central limit theorem with convergence of $\sqrt{n}(\hat{\theta}_{MLE} - \theta^*)$ to $N(0, \mathcal{I}(\theta^*)^{-1})$, where $\mathcal{I}(\theta^*)$ is the Fisher information matrix for the model at the true parameter value θ^* .

• Thus,
$$(\hat{ heta}_{\mathsf{MLE}} - heta^*) \simeq rac{1}{\sqrt{n}} \cdot \mathcal{I}(heta^*)^{-1}$$

• The restricted MLE $\hat{\theta}_{MLE}$ satisfies a central limit theorem with convergence of $\sqrt{n}(\hat{\theta}_{MLE} - \theta^*)$ to $N(0, \mathcal{I}(\theta^*)^{-1})$, where $\mathcal{I}(\theta^*)$ is the Fisher information matrix for the model at the true parameter value θ^* .

• Thus,
$$(\hat{\theta}_{\mathsf{MLE}} - \theta^*) \simeq \frac{1}{\sqrt{n}} \cdot \mathcal{I}(\theta^*)^{-1} = \frac{1}{\sqrt{n}} \cdot \nabla^2_{\theta} (D_{\mathcal{KL}}(\theta \parallel \theta^*))^{-1}.$$

• The restricted MLE $\hat{\theta}_{MLE}$ satisfies a central limit theorem with convergence of $\sqrt{n}(\hat{\theta}_{MLE} - \theta^*)$ to $N(0, \mathcal{I}(\theta^*)^{-1})$, where $\mathcal{I}(\theta^*)$ is the Fisher information matrix for the model at the true parameter value θ^* .

• Thus,
$$(\hat{\theta}_{\mathsf{MLE}} - \theta^*) \simeq \frac{1}{\sqrt{n}} \cdot \mathcal{I}(\theta^*)^{-1} = \frac{1}{\sqrt{n}} \cdot \nabla^2_{\theta} (D_{\mathsf{KL}}(\theta \parallel \theta^*))^{-1}.$$

• If the second moment tensor mapping $\theta \mapsto T_2(\theta) = \mathbb{E}_{g \sim \text{Haar}(\mathbb{Z}_p)}[(g \cdot (\theta)^{\otimes k}] \text{ is suitably non-degenerate}$ at $\theta = \theta^*$, then $(D_{KL}(\theta \parallel \theta^*))^{-1}$ is $O(\sigma^2)$,

• The restricted MLE $\hat{\theta}_{MLE}$ satisfies a central limit theorem with convergence of $\sqrt{n}(\hat{\theta}_{MLE} - \theta^*)$ to $N(0, \mathcal{I}(\theta^*)^{-1})$, where $\mathcal{I}(\theta^*)$ is the Fisher information matrix for the model at the true parameter value θ^* .

• Thus,
$$(\hat{\theta}_{\mathsf{MLE}} - \theta^*) \simeq \frac{1}{\sqrt{n}} \cdot \mathcal{I}(\theta^*)^{-1} = \frac{1}{\sqrt{n}} \cdot \nabla^2_{\theta} (D_{\mathsf{KL}}(\theta \parallel \theta^*))^{-1}.$$

• If the second moment tensor mapping $\theta \mapsto T_2(\theta) = \mathbb{E}_{g \sim \text{Haar}(\mathbb{Z}_p)}[(g \cdot (\theta)^{\otimes k}] \text{ is suitably non-degenerate}$ at $\theta = \theta^*$, then $(D_{KL}(\theta \parallel \theta^*))^{-1}$ is $O(\sigma^2)$, indicating sample complexity $n \sim \sigma^4$.

Entries of the matrix T₂(θ) are the *auto-correlations* of the signal θ

- Entries of the matrix T₂(θ) are the *auto-correlations* of the signal θ
- Non-degeneracy of $\theta \mapsto T_2(\theta) \longleftrightarrow$ Recovery of signal θ from its autocorrelations \longleftrightarrow Recovery of $\hat{\theta}$ from $|\hat{\theta}|$

- Entries of the matrix T₂(θ) are the *auto-correlations* of the signal θ
- Non-degeneracy of $\theta \mapsto T_2(\theta) \longleftrightarrow$ Recovery of signal θ from its autocorrelations \longleftrightarrow Recovery of $\hat{\theta}$ from $|\hat{\theta}|$
- Crystallographic phase retrieval

- Entries of the matrix T₂(θ) are the *auto-correlations* of the signal θ
- Non-degeneracy of $\theta \mapsto T_2(\theta) \longleftrightarrow$ Recovery of signal θ from its autocorrelations \longleftrightarrow Recovery of $\hat{\theta}$ from $|\hat{\theta}|$
- Crystallographic phase retrieval
- Support recovery from auto-correlations ↔ Beltway problem / Turnpike problem / Partial digest problem

- Entries of the matrix T₂(θ) are the *auto-correlations* of the signal θ
- Non-degeneracy of $\theta \mapsto T_2(\theta) \longleftrightarrow$ Recovery of signal θ from its autocorrelations \longleftrightarrow Recovery of $\hat{\theta}$ from $|\hat{\theta}|$
- Crystallographic phase retrieval
- Support recovery from auto-correlations ↔ Beltway problem / Turnpike problem / Partial digest problem
- Non-degeneracy of $\theta \mapsto T_2(\theta)$ is best analysed in the Fourier space;

- Entries of the matrix T₂(θ) are the *auto-correlations* of the signal θ
- Non-degeneracy of $\theta \mapsto T_2(\theta) \longleftrightarrow$ Recovery of signal θ from its autocorrelations \longleftrightarrow Recovery of $\hat{\theta}$ from $|\hat{\theta}|$
- Crystallographic phase retrieval
- Support recovery from auto-correlations ↔ Beltway problem / Turnpike problem / Partial digest problem
- Non-degeneracy of $\theta \mapsto T_2(\theta)$ is best analysed in the Fourier space; Uniform Uncertainty Principles allow us to switch between physical and Fourier space efficiently, entailing a sparse approximation in the frequency variables.

- Entries of the matrix T₂(θ) are the *auto-correlations* of the signal θ
- Non-degeneracy of $\theta \mapsto T_2(\theta) \longleftrightarrow$ Recovery of signal θ from its autocorrelations \longleftrightarrow Recovery of $\hat{\theta}$ from $|\hat{\theta}|$
- Crystallographic phase retrieval
- Support recovery from auto-correlations ↔ Beltway problem / Turnpike problem / Partial digest problem
- Non-degeneracy of $\theta \mapsto T_2(\theta)$ is best analysed in the Fourier space; Uniform Uncertainty Principles allow us to switch between physical and Fourier space efficiently, entailing a sparse approximation in the frequency variables.

The likelihood of the group invariant learning problem is given by

$$p_{\theta}(y) = \frac{1}{|\mathcal{G}|} \sum_{R \in \mathcal{G}} \frac{1}{(\sqrt{2\pi}\sigma)^{L}} \exp\left(-\frac{\|y - R\theta\|_{2}^{2}}{2\sigma^{2}}\right)$$

The likelihood of the group invariant learning problem is given by

$$p_{\theta}(y) = \frac{1}{|\mathcal{G}|} \sum_{R \in \mathcal{G}} \frac{1}{(\sqrt{2\pi}\sigma)^{L}} \exp\left(-\frac{\|y - R\theta\|_{2}^{2}}{2\sigma^{2}}\right)$$

The log likelihood corresponding to the data $\{y_1, \ldots, y_n\}$ as

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} \log p_{\theta}(y_i).$$

The likelihood of the group invariant learning problem is given by

$$p_{\theta}(y) = \frac{1}{|\mathcal{G}|} \sum_{R \in \mathcal{G}} \frac{1}{(\sqrt{2\pi}\sigma)^{L}} \exp\left(-\frac{\|y - R\theta\|_{2}^{2}}{2\sigma^{2}}\right)$$

The log likelihood corresponding to the data $\{y_1, \ldots, y_n\}$ as

$$\mathcal{L}(heta) = \sum_{i=1}^n \log p_{ heta}(y_i).$$

The population risk of the model is given by

$$R(\theta) = -\mathbb{E}_{\rho_{\theta_0}}[\log p_{\theta}(Y)] + C,$$

$$\begin{split} \mathcal{R}(\theta) &= -\int \log p_{\theta}(y) p_{\theta_0}(y) \mathrm{d}y + C \\ &= \int \log \left(\frac{p_{\theta_0}(y)}{p_{\theta}(y)} \cdot \frac{1}{p_{\theta_0}(y)} \right) p_{\theta_0}(y) \mathrm{d}y + C \\ &= D_{\mathcal{K}L}(p_{\theta_0}||p_{\theta}) - \left(\int p_{\theta_0}(y) \log p_{\theta_0}(y) \mathrm{d}y \right) + C \end{split}$$

where $D_{KL}(p_{\theta_0}||p_{\theta})$ is the Kullback-Leibler divergence between p_{θ_0} and p_{θ} .

$$egin{aligned} \mathcal{R}(heta) &= -\int \log p_{ heta}(y) p_{ heta_0}(y) \mathrm{d}y + \mathcal{C} \ &= \int \log \left(rac{p_{ heta_0}(y)}{p_{ heta}(y)} \cdot rac{1}{p_{ heta_0}(y)}
ight) p_{ heta_0}(y) \mathrm{d}y + \mathcal{C} \ &= \mathcal{D}_{\mathcal{KL}}(p_{ heta_0} || p_{ heta}) - \left(\int p_{ heta_0}(y) \log p_{ heta_0}(y) \mathrm{d}y
ight) + \mathcal{C} \end{aligned}$$

where $D_{KL}(p_{\theta_0}||p_{\theta})$ is the Kullback-Leibler divergence between p_{θ_0} and p_{θ} . Since θ_0 is fixed, as a function of θ , the population risk $R(\theta)$ equals

$$R(heta) = D_{KL}(p_{ heta_0}||p_{ heta}) + C(heta_0),$$

where $C(\theta_0)$ is a function of θ_0 .

The Fisher information matrix of the MRA model is given by

$$I(heta_0) = -\mathbb{E}[
abla^2_{ heta}\log p_{ heta}(Y)|_{ heta= heta_0}] =
abla^2_{ heta}R(heta_0),$$

where ∇_{θ}^2 denotes the Hessian with respect to the variable θ .

The Fisher information matrix of the MRA model is given by

$$I(heta_0) = -\mathbb{E}[
abla^2_{ heta} \log p_{ heta}(Y) \Big|_{ heta = heta_0}] =
abla^2_{ heta} R(heta_0),$$

where ∇_{θ}^2 denotes the Hessian with respect to the variable θ .

Theorem (Abbe,Bendory,Leeb,Pereira,Sharon,Singer'18)

The MLE $\tilde{\theta}_n$ is an asymptotically consistent estimate for the true signal θ_0 in the MRA model.

This immediately enables us to invoke standard asymptotic normality theory for MLEs (c.f. van der Vaart):

Theorem

 $\sqrt{n}(\tilde{\theta} - \theta_0)$ is asymptotically normal with and covariance $l(\theta_0)^{-1}$.

This immediately enables us to invoke standard asymptotic normality theory for MLEs (c.f. van der Vaart):

Theorem

 $\sqrt{n}(\tilde{\theta} - \theta_0)$ is asymptotically normal with and covariance $l(\theta_0)^{-1}$.

Upshot: The distance $\rho(\tilde{\theta}_n, \theta_0)$ is of the order

$$n^{-1/2}\sqrt{\mathrm{Tr}\left[I(\theta)^{-1}\right]} = n^{-1/2}\sqrt{\mathrm{Tr}\left[\left[\nabla^{2}_{\theta|\theta=\theta_{0}}D_{\mathsf{KL}}(p_{\theta_{0}}||p_{\theta})\right]^{-1}\right]}$$

Theorem (Bandeira, Niles-Weed, Rigollet'20)

Let $\theta, \varphi \in \mathbb{R}^{p}$ satisfy $3\rho(\theta, \varphi) \leq ||\theta|| \leq \sigma$ and $\mathbb{E}_{\mathcal{G}}[G\theta] = \mathbb{E}_{\mathcal{G}}[G\varphi] = 0.$ Let $\Delta_{m} = \Delta_{m}(\theta, \varphi) = \mathbb{E}[(G\theta)^{\otimes m}] - \mathbb{E}[(G\varphi)^{\otimes m}].$

Theorem (Bandeira, Niles-Weed, Rigollet'20)

Let
$$\theta, \varphi \in \mathbb{R}^{p}$$
 satisfy $3\rho(\theta, \varphi) \leq ||\theta|| \leq \sigma$ and
 $\mathbb{E}_{\mathcal{G}}[G\theta] = \mathbb{E}_{\mathcal{G}}[G\varphi] = 0.$
Let $\Delta_{m} = \Delta_{m}(\theta, \varphi) = \mathbb{E}[(G\theta)^{\otimes m}] - \mathbb{E}[(G\varphi)^{\otimes m}].$
For any $k \geq 1$, there exist universal constants \underline{C} and \overline{C} such that

$$\underline{C}\sum_{m=1}^{\infty}\frac{\|\Delta_m\|^2}{(\sqrt{3}\sigma)^{2m}m!} \leq D_{KL}(p_{\theta}||p_{\varphi})$$

and

$$D_{\mathsf{KL}}(p_{\theta}||p_{\varphi}) \leq 2\sum_{m=1}^{k-1} \frac{\|\Delta_m\|^2}{\sigma^{2m}m!} + \overline{C} \frac{\|\theta\|^{2k-2}\rho(\theta,\varphi)^2}{\sigma^{2k}}.$$

Corollary

If j is the minimum index such that $\|\Delta_j(\theta, \theta_0)\| \gtrsim \rho(\theta, \theta_0)$ on a neighbourhood of θ_0 , then sample complexity scales as σ^{2j} .

Corollary

If j is the minimum index such that $\|\Delta_j(\theta, \theta_0)\| \gtrsim \rho(\theta, \theta_0)$ on a neighbourhood of θ_0 , then sample complexity scales as σ^{2j} . Upshot: to improve sample complexity beyond σ^6 , need to show non-degeneracy of $\theta \mapsto \|\Delta_j(\theta, \theta_0)\|$ on a neighbourhood of σ .

Definition (Generic sparse signals)

Generic support : Independent Bernoulli (s/p) sampling

Definition (Generic sparse signals)

Generic support : Independent Bernoulli (s/p) sampling Generic values : Independent Gaussians

Definition

A subset $S \subseteq \mathbb{Z}$ is said to be collision-free if its pairwise differences $D := \{i - j : i, j \in D\}$ are unique.

Definition

A subset $S \subseteq \mathbb{Z}$ is said to be collision-free if its pairwise differences $D := \{i - j : i, j \in D\}$ are unique.

Question (Beltway Problem / Turnpike Problem / Partial Digest Problem (computational biology, signal processing))

What can we say about the set S from its pairwise differences D?

Definition

A subset $S \subseteq \mathbb{Z}$ is said to be collision-free if its pairwise differences $D := \{i - j : i, j \in D\}$ are unique.

Question (Beltway Problem / Turnpike Problem / Partial Digest Problem (computational biology, signal processing))

What can we say about the set S from its pairwise differences D?

Conjecture (Piccard'39)

If S is collision free, D determines S uniquely up to trivial symmetries.

Definition

A subset $S \subseteq \mathbb{Z}$ is said to be collision-free if its pairwise differences $D := \{i - j : i, j \in D\}$ are unique.

Question (Beltway Problem / Turnpike Problem / Partial Digest Problem (computational biology, signal processing))

What can we say about the set S from its pairwise differences D?

Conjecture (Piccard'39)

If S is collision free, D determines S uniquely up to trivial symmetries.

Theorem (Bekir,Golomb'04'07;Bloom'77)

Piccard's conjecture is true for $|S| \ge 7$.

The *dilute* regime of sparsity

 For s = o(p^{1/4}), a generic support is collision-free with high probability
- For s = o(p^{1/4}), a generic support is collision-free with high probability
- For small h, we have $\Delta(\theta_0 + h, \theta_0) = \mathbb{E}_{\mathcal{G}}[G\theta_0 h^* G^* + Gh\theta_0^* G^*] =: J, \text{ to the leading order}$

- For s = o(p^{1/4}), a generic support is collision-free with high probability
- For small h, we have $\Delta(\theta_0 + h, \theta_0) = \mathbb{E}_{\mathcal{G}}[G\theta_0 h^* G^* + Gh\theta_0^* G^*] =: J, \text{ to the leading order}$

•
$$(i,j)$$
 entry of J is $\frac{1}{\rho} \sum_{g=1}^{\rho} [\theta_0(i+g)h(j+g) + h(i+g)\theta_0(j+g)]$

- For s = o(p^{1/4}), a generic support is collision-free with high probability
- For small h, we have $\Delta(\theta_0 + h, \theta_0) = \mathbb{E}_{\mathcal{G}}[G\theta_0 h^* G^* + Gh\theta_0^* G^*] =: J, \text{ to the leading order}$
- (i,j) entry of J is $\frac{1}{p} \sum_{g=1}^{p} [\theta_0(i+g)h(j+g) + h(i+g)\theta_0(j+g)]$
- J is Toeplitz, i.e. $J_{ij} = J_{i-j}$

- For s = o(p^{1/4}), a generic support is collision-free with high probability
- For small h, we have $\Delta(\theta_0 + h, \theta_0) = \mathbb{E}_{\mathcal{G}}[G\theta_0 h^* G^* + Gh\theta_0^* G^*] =: J, \text{ to the leading order}$
- (i,j) entry of J is $\frac{1}{p} \sum_{g=1}^{p} [\theta_0(i+g)h(j+g) + h(i+g)\theta_0(j+g)]$

• J is Toeplitz, i.e.
$$J_{ij} = J_{i-j}$$

• Target signal not too small on its support

- For s = o(p^{1/4}), a generic support is collision-free with high probability
- For small h, we have $\Delta(\theta_0 + h, \theta_0) = \mathbb{E}_{\mathcal{G}}[G\theta_0 h^* G^* + Gh\theta_0^* G^*] =: J, \text{ to the leading order}$
- (i,j) entry of J is $\frac{1}{p} \sum_{g=1}^{p} [\theta_0(i+g)h(j+g) + h(i+g)\theta_0(j+g)]$

• J is Toeplitz, i.e.
$$J_{ij} = J_{i-j}$$

• Target signal not too small on its support $\implies \theta_0, h$ have same support S

- For s = o(p^{1/4}), a generic support is collision-free with high probability
- For small h, we have $\Delta(\theta_0 + h, \theta_0) = \mathbb{E}_{\mathcal{G}}[G\theta_0 h^* G^* + Gh\theta_0^* G^*] =: J, \text{ to the leading order}$
- (i,j) entry of J is $\frac{1}{p} \sum_{g=1}^{p} [\theta_0(i+g)h(j+g) + h(i+g)\theta_0(j+g)]$

•
$$J$$
 is Toeplitz, i.e. $J_{ij} = J_{i-j}$

- Target signal not too small on its support $\implies \theta_0, h$ have same support S
- $J_{ij} = 0$ unless both i, j belong to support $S \ (\iff i j \in D \)$

- For s = o(p^{1/4}), a generic support is collision-free with high probability
- For small h, we have $\Delta(\theta_0 + h, \theta_0) = \mathbb{E}_{\mathcal{G}}[G\theta_0 h^* G^* + Gh\theta_0^* G^*] =: J, \text{ to the leading order}$
- (i,j) entry of J is $\frac{1}{p} \sum_{g=1}^{p} [\theta_0(i+g)h(j+g) + h(i+g)\theta_0(j+g)]$

•
$$J$$
 is Toeplitz, i.e. $J_{ij} = J_{i-j}$

- Target signal not too small on its support $\implies \theta_0, h$ have same support S
- $J_{ij} = 0$ unless both i, j belong to support $S \ (\iff i j \in D \)$
- S collision-free \implies exactly one term in $\sum_{g=1}^{p} [\theta_0(i+g)h(j+g) + h(i+g)\theta_0(j+g)]$ is non-zero \implies linear lower bound in h.

- $\operatorname{polylog}(p) \lesssim s \lesssim p/\operatorname{polylog}(p)$
- Signal θ_0 is symmetric (implies Fourier coefficients are real)

- $\operatorname{polylog}(p) \lesssim s \lesssim p/\operatorname{polylog}(p)$
- Signal θ_0 is symmetric (implies Fourier coefficients are real)
- Set $\check{h}(x) = h(-x)$, then

$$\frac{1}{p}\sum_{g=1}^{p}\theta_{0}(i+g)h(j+g) = \frac{1}{p}\sum_{g=1}^{p}\theta_{0}(i+g)\check{h}(-j-g) = [\theta_{0}*\check{h}](i-j).$$

- $\operatorname{polylog}(p) \lesssim s \lesssim p/\operatorname{polylog}(p)$
- Signal θ_0 is symmetric (implies Fourier coefficients are real)
- Set $\check{h}(x) = h(-x)$, then

$$\frac{1}{p}\sum_{g=1}^{p}\theta_{0}(i+g)h(j+g) = \frac{1}{p}\sum_{g=1}^{p}\theta_{0}(i+g)\check{h}(-j-g) = [\theta_{0}*\check{h}](i-j).$$

• Set
$$\mathcal{M}[v] := (v(i-j))$$
, then

 $\Delta(\theta_0+h,\theta_0) = \mathbb{E}_{\mathcal{G}}[G\theta_0h^*G^*+Gh\theta_0^*G^*] + o(h) = \mathcal{M}[\theta_0*\check{h}] + \mathcal{M}[\check{\theta_0}*h] + o(h)$

- $\operatorname{polylog}(p) \lesssim s \lesssim p/\operatorname{polylog}(p)$
- Signal θ_0 is symmetric (implies Fourier coefficients are real)
- Set $\check{h}(x) = h(-x)$, then

$$\frac{1}{p}\sum_{g=1}^{p}\theta_{0}(i+g)h(j+g) = \frac{1}{p}\sum_{g=1}^{p}\theta_{0}(i+g)\check{h}(-j-g) = [\theta_{0}*\check{h}](i-j).$$

• Set
$$\mathcal{M}[v] := (v(i-j))$$
, then

$$\Delta(\theta_0 + h, \theta_0) = \mathbb{E}_{\mathcal{G}}[G\theta_0 h^* G^* + Gh\theta_0^* G^*] + o(h) = \mathcal{M}[\theta_0 * \check{h}] + \mathcal{M}[\check{\theta}_0 * h] + o(h)$$

• Discrete Fourier analysis and Parseval's Theorem:

$$\|\mathcal{M}(\theta_0 * \check{h})\|_F = \sqrt{p} \|\theta_0 * \check{h}\|_2 = \sqrt{p} \cdot \frac{1}{\sqrt{p}} \cdot \|\widehat{\theta_0 * \check{h}}\|_2 = \|\widehat{\theta_0} \cdot \widehat{\check{h}}\|_2 = \|\widehat{\theta_0} \cdot \overline{\hat{h}}\|_2$$

• All said and done : $\|\Delta(\theta_0 + h, \theta_0)\|^2 = \sum_{\xi \in \mathbb{Z}/p\mathbb{Z}} |\hat{\theta_0}(\xi)|^2 |\hat{h}(\xi)|^2$

- All said and done : $\|\Delta(\theta_0 + h, \theta_0)\|^2 = \sum_{\xi \in \mathbb{Z}/p\mathbb{Z}} |\hat{\theta_0}(\xi)|^2 |\hat{h}(\xi)|^2$
- Naive bound : lower bound $\min_{\xi \in \mathbb{Z}/p\mathbb{Z}} |\hat{\theta_0}(\xi)|$... too crude

- All said and done : $\|\Delta(\theta_0 + h, \theta_0)\|^2 = \sum_{\xi \in \mathbb{Z}/p\mathbb{Z}} |\hat{\theta_0}(\xi)|^2 |\hat{h}(\xi)|^2$
- Naive bound : lower bound $\min_{\xi \in \mathbb{Z}/p\mathbb{Z}} |\hat{\theta_0}(\xi)|$... too crude
- Want to leverage sparsity

- All said and done : $\|\Delta(\theta_0 + h, \theta_0)\|^2 = \sum_{\xi \in \mathbb{Z}/p\mathbb{Z}} |\hat{\theta_0}(\xi)|^2 |\hat{h}(\xi)|^2$
- Naive bound : lower bound $\min_{\xi \in \mathbb{Z}/p\mathbb{Z}} |\hat{\theta_0}(\xi)|$... too crude
- Want to leverage sparsity which is in physical coordinates

- All said and done : $\|\Delta(\theta_0 + h, \theta_0)\|^2 = \sum_{\xi \in \mathbb{Z}/p\mathbb{Z}} |\hat{\theta_0}(\xi)|^2 |\hat{h}(\xi)|^2$
- Naive bound : lower bound $\min_{\xi \in \mathbb{Z}/p\mathbb{Z}} |\hat{\theta_0}(\xi)|$... too crude
- Want to leverage sparsity which is in physical coordinates but analysis is in Fourier coordinates

- All said and done : $\|\Delta(\theta_0 + h, \theta_0)\|^2 = \sum_{\xi \in \mathbb{Z}/p\mathbb{Z}} |\hat{\theta_0}(\xi)|^2 |\hat{h}(\xi)|^2$
- Naive bound : lower bound $\min_{\xi \in \mathbb{Z}/p\mathbb{Z}} |\hat{\theta_0}(\xi)|$... too crude
- Want to leverage sparsity which is in physical coordinates but analysis is in Fourier coordinates
- Need: a bridge between physical and Fourier coordinates that

- All said and done : $\|\Delta(\theta_0 + h, \theta_0)\|^2 = \sum_{\xi \in \mathbb{Z}/p\mathbb{Z}} |\hat{\theta_0}(\xi)|^2 |\hat{h}(\xi)|^2$
- Naive bound : lower bound $\min_{\xi \in \mathbb{Z}/p\mathbb{Z}} |\hat{\theta_0}(\xi)|$... too crude
- Want to leverage sparsity which is in physical coordinates but analysis is in Fourier coordinates
- Need: a bridge between physical and Fourier coordinates that
 - (a) doesn't lose much information

- All said and done : $\|\Delta(\theta_0 + h, \theta_0)\|^2 = \sum_{\xi \in \mathbb{Z}/p\mathbb{Z}} |\hat{\theta_0}(\xi)|^2 |\hat{h}(\xi)|^2$
- Naive bound : lower bound $\min_{\xi \in \mathbb{Z}/p\mathbb{Z}} |\hat{\theta_0}(\xi)|$... too crude
- Want to leverage sparsity which is in physical coordinates but analysis is in Fourier coordinates
- Need: a bridge between physical and Fourier coordinates that
 - (a) doesn't lose much information
 - (b) transfers sparsity to Fourier coordinates (e..g, so that min_{ξ∈Λ} |θ̂₀(ξ)| is not too small)

- All said and done : $\|\Delta(\theta_0 + h, \theta_0)\|^2 = \sum_{\xi \in \mathbb{Z}/p\mathbb{Z}} |\hat{\theta_0}(\xi)|^2 |\hat{h}(\xi)|^2$
- Naive bound : lower bound $\min_{\xi \in \mathbb{Z}/p\mathbb{Z}} |\hat{\theta_0}(\xi)|$... too crude
- Want to leverage sparsity which is in physical coordinates but analysis is in Fourier coordinates
- Need: a bridge between physical and Fourier coordinates that
 - (a) doesn't lose much information
 - (b) transfers sparsity to Fourier coordinates (e..g, so that min_{ξ∈Λ} |θ̂₀(ξ)| is not too small)

- Need: a bridge between physical and Fourier coordinates that
 - (a) doesn't lose much information
 - (b) transfers sparsity to Fourier coordinates (e..g, so that min_{ξ∈Λ} |θ̂₀(ξ)| is not too small)

- Need: a bridge between physical and Fourier coordinates that
 - (a) doesn't lose much information
 - (b) transfers sparsity to Fourier coordinates (e..g, so that min_{ξ∈Λ} |θ̂₀(ξ)| is not too small)
- Solution: Uniform Uncertainty Principle (UUP) : random set of frequencies Λ of size s log p suffices for (a) with high probability

- Need: a bridge between physical and Fourier coordinates that
 - (a) doesn't lose much information
 - (b) transfers sparsity to Fourier coordinates (e..g, so that min_{ξ∈Λ} |θ̂₀(ξ)| is not too small)
- Solution: Uniform Uncertainty Principle (UUP) : random set of frequencies Λ of size s log p suffices for (a) with high probability
- But for (b), min of $\hat{\theta_0}$ over a random set of frequencies Λ is still very small with high probability (in Λ

- Need: a bridge between physical and Fourier coordinates that
 - (a) doesn't lose much information
 - (b) transfers sparsity to Fourier coordinates (e..g, so that min_{ξ∈Λ} |θ̂₀(ξ)| is not too small)
- Solution: Uniform Uncertainty Principle (UUP) : random set of frequencies Λ of size s log p suffices for (a) with high probability
- But for (b), min of $\hat{\theta_0}$ over a random set of frequencies Λ is still very small with high probability (in Λ
- Show that this high probability is strictly smaller than 1
- Application of probabilistic method to show existence of good set Λ of frequencies satisfying both (a) and (b) where the probability of finding good set → 0 with system size

$$\mathbb{E}_{\mathcal{G}}\left[\frac{1}{\sigma^{d}}\mathsf{g}(\sigma^{-1}(y-G\zeta))\right] = \frac{1}{\sigma^{d}}\mathsf{g}(\sigma^{-1}y)\exp(-\|\zeta\|^{2}/2)\mathbb{E}_{\mathcal{G}}\left[\exp(y^{\top}G\zeta/\sigma^{2})\right]$$

• Density $p_{\zeta}(y)$ given by

$$\mathbb{E}_{\mathcal{G}}\left[\frac{1}{\sigma^{d}}\mathsf{g}(\sigma^{-1}(y-G\zeta))\right] = \frac{1}{\sigma^{d}}\mathsf{g}(\sigma^{-1}y)\exp(-\|\zeta\|^{2}/2)\mathbb{E}_{\mathcal{G}}\left[\exp(y^{\top}G\zeta/\sigma^{2})\right]$$

• By Jensen, $p_{\theta}(y) \geq \frac{1}{\sigma^d} g(\sigma^{-1}y) \exp(-\|\zeta\|^2/2)$ since $\mathbb{E}_{\mathcal{G}}[G\theta] = 0$

$$\mathbb{E}_{\mathcal{G}}\left[\frac{1}{\sigma^{d}}\mathsf{g}(\sigma^{-1}(y-G\zeta))\right] = \frac{1}{\sigma^{d}}\mathsf{g}(\sigma^{-1}y)\exp(-\|\zeta\|^{2}/2)\mathbb{E}_{\mathcal{G}}\left[\exp(y^{\top}G\zeta/\sigma^{2})\right]$$

- By Jensen, $p_{\theta}(y) \geq \frac{1}{\sigma^d} g(\sigma^{-1}y) \exp(-\|\zeta\|^2/2)$ since $\mathbb{E}_{\mathcal{G}}[G\theta] = 0$
- $D_{\mathcal{K}L}(p_{\theta}||p_{\varphi}) \leq \chi^{2}(\theta,\varphi) = \int \frac{\left(p_{\theta}(y) p_{\varphi}(y)\right)^{2}}{p_{\theta}(y)} dy$

$$\mathbb{E}_{\mathcal{G}}\left[\frac{1}{\sigma^{d}}\mathsf{g}(\sigma^{-1}(y-G\zeta))\right] = \frac{1}{\sigma^{d}}\mathsf{g}(\sigma^{-1}y)\exp(-\|\zeta\|^{2}/2)\mathbb{E}_{\mathcal{G}}\left[\exp(y^{\top}G\zeta/\sigma^{2})\right]$$

- By Jensen, $p_{\theta}(y) \geq \frac{1}{\sigma^d} g(\sigma^{-1}y) \exp(-\|\zeta\|^2/2)$ since $\mathbb{E}_{\mathcal{G}}[G\theta] = 0$
- $D_{KL}(p_{\theta}||p_{\varphi}) \leq \chi^{2}(\theta,\varphi) = \int \frac{\left(p_{\theta}(y) p_{\varphi}(y)\right)^{2}}{p_{\theta}(y)} \mathrm{d}y$
- Using $y = G\theta + \sigma\xi$, we can simplify to $\chi^2(\theta, \varphi)$ bounded above by

$$2\mathbb{E}_{\mathcal{G}}\left[\exp(\left(G'\theta\right)^{\top}G\theta/\sigma^{2})-2\exp(\left(G'\varphi\right)^{\top}G\theta/\sigma^{2})+\exp(\left(G'\varphi\right)^{\top}G\varphi/\sigma^{2})\right]$$

$$\mathbb{E}_{\mathcal{G}}\left[\frac{1}{\sigma^{d}}\mathsf{g}(\sigma^{-1}(y-G\zeta))\right] = \frac{1}{\sigma^{d}}\mathsf{g}(\sigma^{-1}y)\exp(-\|\zeta\|^{2}/2)\mathbb{E}_{\mathcal{G}}\left[\exp(y^{\top}G\zeta/\sigma^{2})\right]$$

- By Jensen, $p_{\theta}(y) \geq \frac{1}{\sigma^d} g(\sigma^{-1}y) \exp(-\|\zeta\|^2/2)$ since $\mathbb{E}_{\mathcal{G}}[G\theta] = 0$
- $D_{KL}(p_{\theta}||p_{\varphi}) \leq \chi^{2}(\theta,\varphi) = \int \frac{\left(p_{\theta}(y) p_{\varphi}(y)\right)^{2}}{p_{\theta}(y)} \mathrm{d}y$
- Using $y = G\theta + \sigma\xi$, we can simplify to $\chi^2(\theta, \varphi)$ bounded above by $2\mathbb{E}_{\mathcal{G}}\left[\exp((G'\theta)^\top G\theta/\sigma^2) - 2\exp((G'\varphi)^\top G\theta/\sigma^2) + \exp((G'\varphi)^\top G\varphi/\sigma^2)\right]$
- Expand exponentials to get the upper bound

$$\sum_{m\geq 0} \frac{2}{\sigma^{2m}m!} \mathbb{E}\left[\left(\left(G'\theta\right)^{\top} G\theta\right)^{m} - 2\left(\left(G'\varphi\right)^{\top} G\theta\right)^{m} + \left(\left(G'\varphi\right)^{\top} G\varphi\right)^{m}\right]$$

$$\mathbb{E}_{\mathcal{G}}\left[\frac{1}{\sigma^{d}}\mathsf{g}(\sigma^{-1}(y-G\zeta))\right] = \frac{1}{\sigma^{d}}\mathsf{g}(\sigma^{-1}y)\exp(-\|\zeta\|^{2}/2)\mathbb{E}_{\mathcal{G}}\left[\exp(y^{\top}G\zeta/\sigma^{2})\right]$$

- By Jensen, $p_{\theta}(y) \geq \frac{1}{\sigma^d} g(\sigma^{-1}y) \exp(-\|\zeta\|^2/2)$ since $\mathbb{E}_{\mathcal{G}}[G\theta] = 0$
- $D_{KL}(p_{\theta}||p_{\varphi}) \leq \chi^{2}(\theta,\varphi) = \int \frac{\left(p_{\theta}(y) p_{\varphi}(y)\right)^{2}}{p_{\theta}(y)} \mathrm{d}y$
- Using $y = G\theta + \sigma\xi$, we can simplify to $\chi^2(\theta, \varphi)$ bounded above by $2\mathbb{E}_{\mathcal{G}}\left[\exp((G'\theta)^\top G\theta/\sigma^2) - 2\exp((G'\varphi)^\top G\theta/\sigma^2) + \exp((G'\varphi)^\top G\varphi/\sigma^2)\right]$
- Expand exponentials to get the upper bound

$$\sum_{m\geq 0} \frac{2}{\sigma^{2m}m!} \mathbb{E}\left[\left(\left(G'\theta\right)^{\top} G\theta\right)^{m} - 2\left(\left(G'\varphi\right)^{\top} G\theta\right)^{m} + \left(\left(G'\varphi\right)^{\top} G\varphi\right)^{m}\right] \\ = \sum_{m\geq 0} \frac{2}{\sigma^{2m}m!} \left\|\mathbb{E}\left[\left(G\theta\right)^{\otimes m}\right]\right\|^{2} - 2\left\langle\mathbb{E}\left[\left(G\theta\right)^{\otimes m}\right], \mathbb{E}\left[\left(G\varphi\right)^{\otimes m}\right]\right\rangle + \left\|\mathbb{E}\left[\left(G\varphi\right)^{\otimes m}\right]\right\|^{2}\right\}$$

$$\mathbb{E}_{\mathcal{G}}\left[\frac{1}{\sigma^{d}}\mathsf{g}(\sigma^{-1}(y-G\zeta))\right] = \frac{1}{\sigma^{d}}\mathsf{g}(\sigma^{-1}y)\exp(-\|\zeta\|^{2}/2)\mathbb{E}_{\mathcal{G}}\left[\exp(y^{\top}G\zeta/\sigma^{2})\right]$$

- By Jensen, $p_{\theta}(y) \geq \frac{1}{\sigma^d} g(\sigma^{-1} y) \exp(-\|\zeta\|^2/2)$ since $\mathbb{E}_{\mathcal{G}}[G\theta] = 0$
- $D_{KL}(p_{\theta}||p_{\varphi}) \leq \chi^{2}(\theta,\varphi) = \int \frac{\left(p_{\theta}(y) p_{\varphi}(y)\right)^{2}}{p_{\theta}(y)} \mathrm{d}y$
- Using $y = G\theta + \sigma\xi$, we can simplify to $\chi^2(\theta, \varphi)$ bounded above by $2\mathbb{E}_{\mathcal{G}}\left[\exp((G'\theta)^\top G\theta/\sigma^2) - 2\exp((G'\varphi)^\top G\theta/\sigma^2) + \exp((G'\varphi)^\top G\varphi/\sigma^2)\right]$
- Expand exponentials to get the upper bound

$$\sum_{m\geq 0} \frac{2}{\sigma^{2m}m!} \mathbb{E}\left[\left(\left(G'\theta\right)^{\top} G\theta\right)^{m} - 2\left(\left(G'\varphi\right)^{\top} G\theta\right)^{m} + \left(\left(G'\varphi\right)^{\top} G\varphi\right)^{m}\right]\right]$$
$$= \sum_{m\geq 0} \frac{2}{\sigma^{2m}m!} \left\|\mathbb{E}\left[\left(G\theta\right)^{\otimes m}\right]\right\|^{2} - 2\left\langle\mathbb{E}\left[\left(G\theta\right)^{\otimes m}\right], \mathbb{E}\left[\left(G\varphi\right)^{\otimes m}\right]\right\rangle + \left\|\mathbb{E}\left[\left(G\varphi\right)^{\otimes m}\right]\right\|^{2}\right]$$
$$= \sum_{m\geq 0} \frac{2}{\sigma^{2m}m!} \left\|\Delta_{m}\right\|^{2}$$

• Density $p_{\zeta}(y)$ given by

$$\mathbb{E}_{\mathcal{G}}\left[\frac{1}{\sigma^{d}}\mathsf{g}(\sigma^{-1}(y-G\zeta))\right] = \frac{1}{\sigma^{d}}\mathsf{g}(\sigma^{-1}y)\exp(-\|\zeta\|^{2}/2)\mathbb{E}_{\mathcal{G}}\left[\exp(y^{\top}G\zeta/\sigma^{2})\right]$$

- By Jensen, $p_{\theta}(y) \geq \frac{1}{\sigma^d} g(\sigma^{-1} y) \exp(-\|\zeta\|^2/2)$ since $\mathbb{E}_{\mathcal{G}}[G\theta] = 0$
- $D_{KL}(p_{\theta}||p_{\varphi}) \leq \chi^{2}(\theta,\varphi) = \int \frac{\left(p_{\theta}(y) p_{\varphi}(y)\right)^{2}}{p_{\theta}(y)} \mathrm{d}y$
- Using $y = G\theta + \sigma\xi$, we can simplify to $\chi^2(\theta, \varphi)$ bounded above by $2\mathbb{E}_{\mathcal{G}}\left[\exp((G'\theta)^\top G\theta/\sigma^2) - 2\exp((G'\varphi)^\top G\theta/\sigma^2) + \exp((G'\varphi)^\top G\varphi/\sigma^2)\right]$
- Expand exponentials to get the upper bound

$$\sum_{m\geq 0} \frac{2}{\sigma^{2m}m!} \mathbb{E}\left[\left(\left(G'\theta\right)^{\top} G\theta\right)^{m} - 2\left(\left(G'\varphi\right)^{\top} G\theta\right)^{m} + \left(\left(G'\varphi\right)^{\top} G\varphi\right)^{m}\right]$$
$$= \sum_{m\geq 0} \frac{2}{\sigma^{2m}m!} \left\|\mathbb{E}\left[\left(G\theta\right)^{\otimes m}\right]\right\|^{2} - 2\left\langle\mathbb{E}\left[\left(G\theta\right)^{\otimes m}\right], \mathbb{E}\left[\left(G\varphi\right)^{\otimes m}\right]\right\rangle + \left\|\mathbb{E}\left[\left(G\varphi\right)^{\otimes m}\right]\right\|^{2}$$
$$= \sum_{m\geq 0} \frac{2}{\sigma^{2m}m!} \left\|\Delta_{m}\right\|^{2} \le 2\sum_{m=1}^{k-1} \frac{\left\|\Delta_{m}\right\|^{2}}{\sigma^{2m}m!} + C \cdot \frac{\left\|\theta\right\|^{2k-2} \cdot \rho(\theta,\varphi)^{2}}{\sigma^{2k}}$$

39 / 46

Let P_0 and P_1 be any two distributions on a space \mathcal{X} . If there exists a measurable function $T : \mathcal{X} \to \mathbb{R}$ such that $(\mathbb{E}_0[T(X)] - \mathbb{E}_1[T(X)])^2 = \mu^2$ and $\max \{ \operatorname{var}_1(T(X)), \operatorname{var}_0(T(X)) \} \leq \sigma^2$, then $D_{KL}(P_0 || P_1) \geq \frac{\mu^2}{4\sigma^2 + \mu^2}$

Let P_0 and P_1 be any two distributions on a space \mathcal{X} . If there exists a measurable function $T : \mathcal{X} \to \mathbb{R}$ such that $(\mathbb{E}_0[T(\mathcal{X})] - \mathbb{E}_1[T(\mathcal{X})])^2 = \mu^2$ and $\max \{ \operatorname{var}_1(T(\mathcal{X})), \operatorname{var}_0(T(\mathcal{X})) \} \leq \sigma^2$, then

$$D_{\mathcal{KL}}\left(\mathrm{P}_{0}\|\mathrm{P}_{1}
ight)\geqrac{\mu^{2}}{4\sigma^{2}+\mu^{2}}$$

Corollary

If $\sigma^2 \leq a \cdot \mu$ and $\mu \leq b$ in above, then $D_{KL}(P_0 \| P_1) \geq \mu/(4a + b)$.

Let P_0 and P_1 be any two distributions on a space \mathcal{X} . If there exists a measurable function $T : \mathcal{X} \to \mathbb{R}$ such that $(\mathbb{E}_0[T(\mathcal{X})] - \mathbb{E}_1[T(\mathcal{X})])^2 = \mu^2$ and $\max \{ \operatorname{var}_1(T(\mathcal{X})), \operatorname{var}_0(T(\mathcal{X})) \} \leq \sigma^2$, then

$$D_{\mathcal{KL}}\left(\mathrm{P}_{0}\|\mathrm{P}_{1}
ight)\geqrac{\mu^{2}}{4\sigma^{2}+\mu^{2}}$$

Corollary

If $\sigma^2 \leq a \cdot \mu$ and $\mu \leq b$ in above, then $D_{KL}(P_0 \| P_1) \geq \mu/(4a + b)$.

Our goal : To use the Lemma and the Corollary to obtain lower bound on $D_{KL}(p_{\theta} || p_{\varphi})$.

Let P_0 and P_1 be any two distributions on a space \mathcal{X} . If there exists a measurable function $T : \mathcal{X} \to \mathbb{R}$ such that $(\mathbb{E}_0[T(\mathcal{X})] - \mathbb{E}_1[T(\mathcal{X})])^2 = \mu^2$ and $\max \{ \operatorname{var}_1(T(\mathcal{X})), \operatorname{var}_0(T(\mathcal{X})) \} \leq \sigma^2$, then

$$D_{\mathcal{KL}}\left(\mathrm{P}_{0}\|\mathrm{P}_{1}
ight)\geqrac{\mu^{2}}{4\sigma^{2}+\mu^{2}}$$

Corollary

If $\sigma^2 \leq a \cdot \mu$ and $\mu \leq b$ in above, then $D_{KL}(P_0 \| P_1) \geq \mu/(4a + b)$.

Our goal : To use the Lemma and the Corollary to obtain lower bound on $D_{KL}(p_{\theta} || p_{\varphi})$. Need : Suitable statistic *T*, variance bounds ...
• Let γ be standard Gaussian on $\mathbb R$

- Let γ be standard Gaussian on $\mathbb R$
- Hermite polynomials in 1 dimension:
 - For $k \ge 0$, the function $h_k(x)$ is a degree- k polynomial.

- Let γ be standard Gaussian on $\mathbb R$
- Hermite polynomials in 1 dimension:
 - For $k \ge 0$, the function $h_k(x)$ is a degree- k polynomial.
 - $\{h_k\}_{k\geq 0}$ form an orthogonal basis of of $L_2(\gamma)$

- Let γ be standard Gaussian on $\mathbb R$
- Hermite polynomials in 1 dimension:
 - For $k \ge 0$, the function $h_k(x)$ is a degree- k polynomial.
 - ${h_k}_{k\geq 0}$ form an orthogonal basis of of $L_2(\gamma)$

•
$$\|h_k\|_{\gamma}^2 = k!$$

- Let γ be standard Gaussian on $\mathbb R$
- Hermite polynomials in 1 dimension:
 - For $k \ge 0$, the function $h_k(x)$ is a degree- k polynomial.
 - ${h_k}_{k\geq 0}$ form an orthogonal basis of of $L_2(\gamma)$
 - $||h_k||_{\gamma}^2 = k!$
 - If $Y \sim \mathcal{N}(\mu, 1)$, then $\mathbb{E}\left[h_k(Y)\right] = \mu^k$

- Let γ be standard Gaussian on $\mathbb R$
- Hermite polynomials in 1 dimension:
 - For $k \ge 0$, the function $h_k(x)$ is a degree- k polynomial.
 - ${h_k}_{k\geq 0}$ form an orthogonal basis of of $L_2(\gamma)$
 - $\|h_k\|_{\gamma}^2 = k!$
 - If $Y \sim \mathcal{N}(\mu, 1)$, then $\mathbb{E}[h_k(Y)] = \mu^k$
 - If $Y \sim \mathcal{N}(\mu, \sigma^2)$, then $\mathbb{E}\left[\sigma^k h_k(\sigma^{-1}Y)\right] = \mu^k$
- Hermite polynomials in *p* dimensions :

- Let γ be standard Gaussian on $\mathbb R$
- Hermite polynomials in 1 dimension:
 - For $k \ge 0$, the function $h_k(x)$ is a degree- k polynomial.
 - ${h_k}_{k\geq 0}$ form an orthogonal basis of of $L_2(\gamma)$
 - $\|h_k\|_{\gamma}^2 = k!$
 - If $Y \sim \mathcal{N}(\mu, 1)$, then $\mathbb{E}[h_k(Y)] = \mu^k$
 - If $Y \sim \mathcal{N}(\mu, \sigma^2)$, then $\mathbb{E}\left[\sigma^k h_k(\sigma^{-1}Y)\right] = \mu^k$
- Hermite polynomials in *p* dimensions :
 - Given a multi-index α ∈ N^p, define the multivariate Hermite polynomial h_α by h_α (x₁,...,x_p) = Π^p_{i=1} h_{αi} (x_i)

- Let γ be standard Gaussian on $\mathbb R$
- Hermite polynomials in 1 dimension:
 - For $k \ge 0$, the function $h_k(x)$ is a degree- k polynomial.
 - ${h_k}_{k\geq 0}$ form an orthogonal basis of of $L_2(\gamma)$
 - $\|h_k\|_{\gamma}^2 = k!$
 - If $Y \sim \mathcal{N}(\mu, 1)$, then $\mathbb{E}[h_k(Y)] = \mu^k$
 - If $Y \sim \mathcal{N}(\mu, \sigma^2)$, then $\mathbb{E}\left[\sigma^k h_k(\sigma^{-1}Y)\right] = \mu^k$

• Hermite polynomials in *p* dimensions :

- Given a multi-index $\alpha \in \mathbb{N}^p$, define the multivariate Hermite polynomial h_{α} by $h_{\alpha}(x_1, \ldots, x_p) = \prod_{i=1}^p h_{\alpha_i}(x_i)$
- The multivariate Hermite polynomials form an orthonormal basis for the space $\mathbb{R}[x_1, \ldots, x_p]$ of *p*-variate polynomial functions with respect to the inner product over $L_2(\gamma^{\otimes p})$.

- Let γ be standard Gaussian on $\mathbb R$
- Hermite polynomials in 1 dimension:
 - For $k \ge 0$, the function $h_k(x)$ is a degree- k polynomial.
 - ${h_k}_{k>0}$ form an orthogonal basis of of $L_2(\gamma)$
 - $\|h_k\|_{\gamma}^2 = k!$
 - If $Y \sim \mathcal{N}(\mu, 1)$, then $\mathbb{E}[h_k(Y)] = \mu^k$
 - If $Y \sim \mathcal{N}(\mu, \sigma^2)$, then $\mathbb{E}\left[\sigma^k h_k(\sigma^{-1}Y)\right] = \mu^k$

• Hermite polynomials in *p* dimensions :

- Given a multi-index α ∈ N^p, define the multivariate Hermite polynomial h_α by h_α (x₁,...,x_p) = Π^p_{i=1} h_{αi} (x_i)
- The multivariate Hermite polynomials form an orthonormal basis for the space $\mathbb{R}[x_1, \ldots, x_p]$ of *p*-variate polynomial functions with respect to the inner product over $L_2(\gamma^{\otimes p})$.

• In summary, for
$$Y \sim N_p(\mu, \sigma^2 I_p)$$
 and $\alpha \in \mathbb{N}^p$, we have $\mathbb{E}\left[\sigma^{\|\alpha\|_1}h_\alpha(\sigma^{-1}Y)\right] = \prod_{i=1}^p \mu_i^{\alpha_i}.$

Define H_m(X) (for X ∈ ℝ^p) to be the order m symmetric tensor given by (H_m(X))_{i1},...,i_m = σ^mh_α(σ⁻¹(X)). where α ∈ ℕ^p is defined by α_j = |{k : i_k = j}|, for 1 ≤ j ≤ p.

• Upshot: if
$$Y \sim N_p(\mu, \sigma^2 I_p)$$
, then $(\mathbb{E}[H_m(Y)])_{i_1,...,i_m} = \prod_{j=1}^p \mu_j^{\alpha_j}$

• Upshot: if
$$Y \sim N_p(\mu, \sigma^2 I_p)$$
, then
 $(\mathbb{E}[H_m(Y)])_{i_1,...,i_m} = \prod_{j=1}^p \mu_j^{\alpha_j} = \prod_{k=1}^m \mu_{i_k}$

• Upshot: if
$$Y \sim N_p(\mu, \sigma^2 I_p)$$
, then
 $(\mathbb{E}[H_m(Y)])_{i_1,...,i_m} = \prod_{j=1}^p \mu_j^{\alpha_j} = \prod_{k=1}^m \mu_{i_k}$

• In summary, $\mathbb{E}[H_m(Y)] = \mu^{\otimes m}$

• Upshot: if
$$Y \sim N_p(\mu, \sigma^2 I_p)$$
, then
 $(\mathbb{E}[H_m(Y)])_{i_1,...,i_m} = \prod_{j=1}^p \mu_j^{\alpha_j} = \prod_{k=1}^m \mu_{i_k}$

In summary, 𝔼[𝑘_m(𝒴)] = μ^{⊗m} (can be used to construct unbiased estimators for 𝑘_k(θ))

The lower bound : constructing the statistic

• For $k \ge 1$, define the degree-k multivariate polynomial on $y = (y_1, \dots, y_p)$ as:

$$t(y) = \sum_{m=1}^{k} \frac{\langle \Delta_m, H_m(y) \rangle}{(\sqrt{3}\sigma)^{2m} m!}$$

The lower bound : constructing the statistic

For k ≥ 1, define the degree-k multivariate polynomial on y = (y₁,..., y_p) as:

$$t(y) = \sum_{m=1}^{k} \frac{\langle \Delta_m, H_m(y) \rangle}{(\sqrt{3}\sigma)^{2m} m!}$$

• If $Y \sim P_{\zeta}$, then

$$\mathbb{E}[t(Y)] = \mathbb{E}\left[\sum_{m=1}^{k} \frac{\langle \Delta_m, \mathbb{E}\left[H_m(Y) \mid G\right]\rangle}{(\sqrt{3}\sigma)^{2m}m!}\right] = \sum_{m=1}^{k} \frac{\langle \Delta_m, \mathbb{E}\left[(G\zeta)^{\otimes m}\right]\rangle}{(\sqrt{3}\sigma)^{2m}m!}$$

The lower bound : constructing the statistic

• For $k \ge 1$, define the degree-k multivariate polynomial on $y = (y_1, \dots, y_p)$ as:

$$t(y) = \sum_{m=1}^{k} \frac{\langle \Delta_m, H_m(y) \rangle}{(\sqrt{3}\sigma)^{2m} m!}$$

• If $Y \sim P_{\zeta}$, then

$$\mathbb{E}[t(Y)] = \mathbb{E}\left[\sum_{m=1}^{k} \frac{\langle \Delta_m, \mathbb{E}\left[H_m(Y) \mid \mathcal{G}\right]\rangle}{(\sqrt{3}\sigma)^{2m}m!}\right] = \sum_{m=1}^{k} \frac{\langle \Delta_m, \mathbb{E}\left[(\mathcal{G}\zeta)^{\otimes m}\right]\rangle}{(\sqrt{3}\sigma)^{2m}m!}$$

•
$$\Longrightarrow \mathbb{E}_{\mathbb{P}_{\theta}}[t(\mathcal{Y})] - \mathbb{E}_{\mathcal{P}_{\varphi}}[t(\mathcal{Y})]$$

= $\sum_{m=1}^{k} \frac{\langle \Delta_{m}, \left(\mathbb{E}\left[(G\theta)^{\otimes m}\right] - \mathbb{E}\left[(G\varphi)^{\otimes m}\right]\right)\rangle}{(\sqrt{3}\sigma)^{2m}m!} = \sum_{m=1}^{k} \frac{\|\Delta_{m}\|^{2}}{(\sqrt{3}\sigma)^{2m}m!}$

The lower bound : controlling the variance

• For
$$Y \sim P_{\zeta}$$
, want $\operatorname{Var}[t(Y)] \leq e^{\|\zeta\|^2/\sigma^2} \cdot \sum_{m=1}^k \frac{\|\Delta_m\|^2}{(\sqrt{3}\sigma)^{2m}m!}$

The lower bound : controlling the variance

• For $Y \sim P_{\zeta}$, want $\operatorname{Var}[t(Y)] \leq e^{\|\zeta\|^2/\sigma^2} \cdot \sum_{m=1}^{k} \frac{\|\Delta_m\|^2}{(\sqrt{3}\sigma)^{2m}m!}$ • If $Z \sim P_0$, then

$$\mathbb{E}[t(Y)^2] \leq \mathbb{E}\left[t(Z)^2 \cdot \frac{\mathrm{d}P_{\zeta}}{\mathrm{d}P_0}\right] \leq (\mathbb{E}[t(Z)^4])^{1/2} (\chi^2(P_{\zeta}, P_0) + 1)^{1/2}$$

The lower bound : controlling the variance

• For $Y \sim P_{\zeta}$, want $\operatorname{Var}[t(Y)] \leq e^{\|\zeta\|^2/\sigma^2} \cdot \sum_{m=1}^{k} \frac{\|\Delta_m\|^2}{(\sqrt{3}\sigma)^{2m}m!}$ • If $Z \sim P_0$, then

$$\mathbb{E}[t(Y)^2] \leq \mathbb{E}\left[t(Z)^2 \cdot \frac{\mathrm{d}P_{\zeta}}{\mathrm{d}P_0}\right] \leq (\mathbb{E}[t(Z)^4])^{1/2} (\chi^2(P_{\zeta}, P_0) + 1)^{1/2}$$

•
$$\chi^2(P_\zeta, P_0) + 1 \le e^{\|\zeta\|^2/\sigma^2}$$
 (direct computation)

• For
$$Z\sim P_0$$
, want $\mathbb{E}[t(Z)^4]^{1/2}\leq \sum_{m=1}^k rac{\|\Delta_m\|^2}{(\sqrt{3})^{2m}\sigma^{2m}m!}$

• For
$$Z \sim P_0$$
, want $\mathbb{E}[t(Z)^4]^{1/2} \leq \sum_{m=1}^k \frac{\|\Delta_m\|^2}{(\sqrt{3})^{2m} \sigma^{2m} m!}$

• Gaussian noise operator & Ornstein-Uhlenbeck process : $[U_{\rho}f](x) = \mathbb{E}_{g \sim N(0, f)} \left[f(\rho x + \sqrt{1 - \rho^2} g) \right]$

• For
$$Z \sim P_0$$
, want $\mathbb{E}[t(Z)^4]^{1/2} \leq \sum_{m=1}^k \frac{\|\Delta_m\|^2}{(\sqrt{3})^{2m} \sigma^{2m} m!}$

- Gaussian noise operator & Ornstein-Uhlenbeck process : $[U_{\rho}f](x) = \mathbb{E}_{g \sim N(0,f)} \left[f \left(\rho x + \sqrt{1 - \rho^2} g \right) \right]$
- Gaussian Hypercontractivity : For $1 \le p \le q \le \infty, \|U_{\rho}f\|_q \le \|f\|_p \forall \ 0 \le \rho \le \sqrt{\frac{p-1}{q-1}}$ in Gaussian space

• For
$$Z \sim P_0$$
, want $\mathbb{E}[t(Z)^4]^{1/2} \leq \sum_{m=1}^k \frac{\|\Delta_m\|^2}{(\sqrt{3})^{2m} \sigma^{2m} m!}$

- Gaussian noise operator & Ornstein-Uhlenbeck process : $[U_{\rho}f](x) = \mathbb{E}_{g \sim N(0,f)} \left[f(\rho x + \sqrt{1 - \rho^2} g) \right]$
- Gaussian Hypercontractivity : For $1 \le p \le q \le \infty, \|U_{\rho}f\|_q \le \|f\|_p \forall \ 0 \le \rho \le \sqrt{\frac{p-1}{q-1}}$ in Gaussian space
- $U_{\rho}h_{k} = \rho^{k}h_{k}$ (in 1D);

• For
$$Z \sim P_0$$
, want $\mathbb{E}[t(Z)^4]^{1/2} \leq \sum_{m=1}^k \frac{\|\Delta_m\|^2}{(\sqrt{3})^{2m} \sigma^{2m} m!}$

- Gaussian noise operator & Ornstein-Uhlenbeck process : $[U_{\rho}f](x) = \mathbb{E}_{g \sim N(0,f)} \left[f \left(\rho x + \sqrt{1 - \rho^2} g \right) \right]$
- Gaussian Hypercontractivity : For $1 \le p \le q \le \infty, \|U_{\rho}f\|_q \le \|f\|_p \forall \ 0 \le \rho \le \sqrt{\frac{p-1}{q-1}}$ in Gaussian space
- $U_{\rho}h_k = \rho^k h_k$ (in 1D); $U_{\rho}h_{\alpha} = \rho^{\|\alpha\|_1}h_{\alpha}$ (in general)

• For
$$Z \sim P_0$$
, want $\mathbb{E}[t(Z)^4]^{1/2} \leq \sum_{m=1}^k \frac{\|\Delta_m\|^2}{(\sqrt{3})^{2m} \sigma^{2m} m!}$

- Gaussian noise operator & Ornstein-Uhlenbeck process : $[U_{\rho}f](x) = \mathbb{E}_{g \sim N(0,f)} \left[f \left(\rho x + \sqrt{1 - \rho^2} g \right) \right]$
- Gaussian Hypercontractivity : For $1 \le p \le q \le \infty, \|U_{\rho}f\|_q \le \|f\|_p \forall \ 0 \le \rho \le \sqrt{\frac{p-1}{q-1}}$ in Gaussian space
- $U_{\rho}h_{k} = \rho^{k}h_{k}$ (in 1D); $U_{\rho}h_{\alpha} = \rho^{\|\alpha\|_{1}}h_{\alpha}$ (in general)
- Define polynomial $\tilde{t}(y) = \sum_{m=1}^{k} \frac{\langle \Delta_m, H_m(y) \rangle}{(\sqrt{3})^m \sigma^{2m} m!}$

• For
$$Z \sim P_0$$
, want $\mathbb{E}[t(Z)^4]^{1/2} \leq \sum_{m=1}^k \frac{\|\Delta_m\|^2}{(\sqrt{3})^{2m} \sigma^{2m} m!}$

- Gaussian noise operator & Ornstein-Uhlenbeck process : $[U_{\rho}f](x) = \mathbb{E}_{g \sim N(0,f)} \left[f(\rho x + \sqrt{1 - \rho^2} g) \right]$
- Gaussian Hypercontractivity : For $1 \le p \le q \le \infty, \|U_{\rho}f\|_q \le \|f\|_p \forall \ 0 \le \rho \le \sqrt{\frac{p-1}{q-1}}$ in Gaussian space
- $U_{\rho}h_{k} = \rho^{k}h_{k}$ (in 1D); $U_{\rho}h_{\alpha} = \rho^{\|\alpha\|_{1}}h_{\alpha}$ (in general)
- Define polynomial $\tilde{t}(y) = \sum_{m=1}^{k} \frac{\langle \Delta_m, H_m(y) \rangle}{(\sqrt{3})^m \sigma^{2m} m!}$
- Observe that $t = U_{1/\sqrt{3}} \tilde{t}$ as functions

• For
$$Z \sim P_0$$
, want $\mathbb{E}[t(Z)^4]^{1/2} \leq \sum_{m=1}^k rac{\|\Delta_m\|^2}{(\sqrt{3})^{2m} \sigma^{2m} m!}$

- Gaussian noise operator & Ornstein-Uhlenbeck process : $[U_{\rho}f](x) = \mathbb{E}_{g \sim N(0,f)} \left[f(\rho x + \sqrt{1 - \rho^2} g) \right]$
- Gaussian Hypercontractivity : For $1 \le p \le q \le \infty, \|U_{\rho}f\|_q \le \|f\|_p \forall \ 0 \le \rho \le \sqrt{\frac{p-1}{q-1}}$ in Gaussian space
- $U_{\rho}h_{k} = \rho^{k}h_{k}$ (in 1D); $U_{\rho}h_{\alpha} = \rho^{\|\alpha\|_{1}}h_{\alpha}$ (in general)
- Define polynomial $\tilde{t}(y) = \sum_{m=1}^{k} \frac{\langle \Delta_m, H_m(y) \rangle}{(\sqrt{3})^m \sigma^{2m} m!}$
- Observe that $t = U_{1/\sqrt{3}}\tilde{t}$ as functions
- Gaussian Hypercontractivity : in Gaussian space, we have $\|t\|_4 \leq \|\tilde{t}\|_2$

• For
$$Z \sim P_0$$
, want $\mathbb{E}[t(Z)^4]^{1/2} \leq \sum_{m=1}^k \frac{\|\Delta_m\|^2}{(\sqrt{3})^{2m} \sigma^{2m} m!}$

- Gaussian noise operator & Ornstein-Uhlenbeck process : $[U_{\rho}f](x) = \mathbb{E}_{g \sim N(0,f)} \left[f(\rho x + \sqrt{1 - \rho^2} g) \right]$
- Gaussian Hypercontractivity : For $1 \le p \le q \le \infty, \|U_{\rho}f\|_q \le \|f\|_p \forall \ 0 \le \rho \le \sqrt{\frac{p-1}{q-1}}$ in Gaussian space
- $U_{\rho}h_{k} = \rho^{k}h_{k}$ (in 1D); $U_{\rho}h_{\alpha} = \rho^{\|\alpha\|_{1}}h_{\alpha}$ (in general)
- Define polynomial $\tilde{t}(y) = \sum_{m=1}^{k} \frac{\langle \Delta_m, H_m(y) \rangle}{(\sqrt{3})^m \sigma^{2m} m!}$
- Observe that $t = U_{1/\sqrt{3}}\tilde{t}$ as functions
- Gaussian Hypercontractivity : in Gaussian space, we have $||t||_4 \le ||\tilde{t}||_2 \iff \mathbb{E}[t(Z)^4]^{1/4} \le \mathbb{E}[t(Z)^2]^{1/2}$

• For
$$Z \sim P_0$$
, want $\mathbb{E}[t(Z)^4]^{1/2} \leq \sum_{m=1}^k \frac{\|\Delta_m\|^2}{(\sqrt{3})^{2m} \sigma^{2m} m!}$

- Gaussian noise operator & Ornstein-Uhlenbeck process : $[U_{\rho}f](x) = \mathbb{E}_{g \sim N(0,f)} \left[f(\rho x + \sqrt{1 - \rho^2} g) \right]$
- Gaussian Hypercontractivity : For $1 \le p \le q \le \infty, \|U_{\rho}f\|_q \le \|f\|_p \forall \ 0 \le \rho \le \sqrt{\frac{p-1}{q-1}}$ in Gaussian space
- $U_{\rho}h_{k} = \rho^{k}h_{k}$ (in 1D); $U_{\rho}h_{\alpha} = \rho^{\|\alpha\|_{1}}h_{\alpha}$ (in general)
- Define polynomial $\tilde{t}(y) = \sum_{m=1}^{k} \frac{\langle \Delta_m, H_m(y) \rangle}{(\sqrt{3})^m \sigma^{2m} m!}$
- Observe that $t = U_{1/\sqrt{3}}\tilde{t}$ as functions
- Gaussian Hypercontractivity : in Gaussian space, we have $||t||_4 \le ||\tilde{t}||_2 \iff \mathbb{E}[t(Z)^4]^{1/4} \le \mathbb{E}[t(Z)^2]^{1/2}$

• Explicit computation : $\mathbb{E}[t(Z)^2] = \sum_{m=1}^k \frac{\|\Delta_m\|^2}{(\sqrt{3})^{2m} \sigma^{2m} m!}$

References

• "Sparse Multi-Reference Alignment: Phase Retrieval, Uniform Uncertainty Principles and the Beltway Problem." G. and Rigollet, Foundations of Computational Mathematics (2023).

• "Dictionary Learning under Symmetries via Group Representations.", G., Low, Soh, Feng and Tan, arXiv preprint arXiv:2305.19557.

• "Minimax-optimal estimation for sparse multi-reference alignment with collision-free signals.", G., Mukherjee and Pan, arXiv preprint arXiv:2312.07839.

• "Likelihood landscape and maximum likelihood estimation for the discrete orbit recovery model." Fan, Sun, Wang and Wu, Communications on Pure and Applied Mathematics (2020).

• "Estimation under group actions: recovering orbits from invariants." Bandeira, Blum-Smith, Kileel, Perry, Weed and Wein, Applied and Computational Harmonic Analysis (2023)

• "The sample complexity of multireference alignment." Perry, Weed, Bandeira, Rigollet and Singer, SIAM Journal on Mathematics of Data Science (2019).

• "Optimal rates of estimation for multi-reference alignment." Bandeira, Niles-Weed and Rigollet, Mathematical Statistics and Learning (2020).