Learning under latent symmetries

Subhro Ghosh
National University of Singapore

The Nobel Prize in Chemistry 2017 was awarded to Jacques Dubochet, Joachim Frank and Richard Henderson "for developing cryo-electron microscopy for the high- resolution structure determination of biomolecules in solution".

- Cryo-EM is an imaging technique for for the high-resolution structure determination of molecules.

- Cryo-EM is an imaging technique for for the high-resolution structure determination of molecules.
- Each measurement consists of a noisy image of an unknown molecule
- The molecule is rotated by an unknown rotation in $\mathrm{SO}(3)$ in each measurement.
- The task is then to reconstruct the molecule density from many such measurements.

- The reconstruction problem in Cryo-EM has received significant attention from the computational perspective.
- Statistical properties remain largely unexplored.

- The reconstruction problem in Cryo-EM has received significant attention from the computational perspective.
- Statistical properties remain largely unexplored.
- Key features as a stochastic model :
- The latent group action in each observation - in this case, a rotation
- The presence of extremely high levels of noise

The stochastic model

The orbit recovery problem

- Objective : To determine $\theta^{*} \in \mathbb{R}^{p}$

The orbit recovery problem

- Objective : To determine $\theta^{*} \in \mathbb{R}^{p}$
- Observations : $Y_{i}=G_{i} \cdot \theta^{*}+\xi_{i} ; i=1,2, \ldots, n$,

The orbit recovery problem

- Objective : To determine $\theta^{*} \in \mathbb{R}^{p}$
- Observations : $Y_{i}=G_{i} \cdot \theta^{*}+\xi_{i} ; i=1,2, \ldots, n$, where
- G_{i} are i.i.d. uniform according to Haar measure on a compact subgroup $\mathcal{G} \subset O(p)$

The orbit recovery problem

- Objective : To determine $\theta^{*} \in \mathbb{R}^{p}$
- Observations : $Y_{i}=G_{i} \cdot \theta^{*}+\xi_{i} ; i=1,2, \ldots, n$, where
- G_{i} are i.i.d. uniform according to Haar measure on a compact subgroup $\mathcal{G} \subset O(p)$
- ξ_{i} are i.i.d. standard Gaussians $\sim N_{p}\left(0, \sigma^{2} I_{p}\right)$.

The stochastic model

The orbit recovery problem

- Objective : To determine $\theta^{*} \in \mathbb{R}^{p}$
- Observations : $Y_{i}=G_{i} \cdot \theta^{*}+\xi_{i} ; i=1,2, \ldots, n$, where
- G_{i} are i.i.d. uniform according to Haar measure on a compact subgroup $\mathcal{G} \subset O(p)$
- ξ_{i} are i.i.d. standard Gaussians $\sim N_{p}\left(0, \sigma^{2} I_{p}\right)$.

Observe: We can only recover θ^{*} up to its orbit under the action of \mathcal{G}; in other words, we can only hope to find the set

$$
\mathcal{O}_{\theta^{*}}:=\left\{\theta \in \mathbb{R}^{p}: \theta=g \cdot \theta^{*} \text { for some } g \in \mathcal{G}\right\} .
$$

The stochastic model

The orbit recovery problem : special cases

- Learning a bag of numbers : $\theta^{*} \in \mathbb{R}^{p}, \mathcal{G}=S_{p} \subset O(p)$

The orbit recovery problem : special cases

- Learning a bag of numbers : $\theta^{*} \in \mathbb{R}^{p}, \mathcal{G}=S_{p} \subset O(p)$
- Learning a rigid body : $\theta^{*} \in \mathbb{R}^{k \times N}, \mathcal{G}=S O(k)$, acting diagonally on the columns of $\mathbb{R}^{k \times N}$

The orbit recovery problem : special cases

- Learning a bag of numbers : $\theta^{*} \in \mathbb{R}^{p}, \mathcal{G}=S_{p} \subset O(p)$
- Learning a rigid body : $\theta^{*} \in \mathbb{R}^{k \times N}, \mathcal{G}=S O(k)$, acting diagonally on the columns of $\mathbb{R}^{k \times N}$
- Multi Reference Alignment (MRA) : $\theta^{*} \in \mathbb{R}^{p}, \mathcal{G}=\mathbb{Z} / p \mathbb{Z}$, acting as cyclic shifts on the coordinates of \mathbb{R}^{p}

The stochastic model

The orbit recovery problem : special cases

- Learning a bag of numbers : $\theta^{*} \in \mathbb{R}^{p}, \mathcal{G}=S_{p} \subset O(p)$
- Learning a rigid body : $\theta^{*} \in \mathbb{R}^{k \times N}, \mathcal{G}=S O(k)$, acting diagonally on the columns of $\mathbb{R}^{k \times N}$
- Multi Reference Alignment (MRA) : $\theta^{*} \in \mathbb{R}^{p}, \mathcal{G}=\mathbb{Z} / p \mathbb{Z}$, acting as cyclic shifts on the coordinates of \mathbb{R}^{p}
- Spherical registration problem : Learn $f: \mathbb{S}^{2} \rightarrow \mathbb{R}$ from noisy measurements of $f\left(g^{-1} \bullet\right)$ with $g \in S O(3)$

The stochastic model

The orbit recovery problem : special cases

- Learning a bag of numbers : $\theta^{*} \in \mathbb{R}^{p}, \mathcal{G}=S_{p} \subset O(p)$
- Learning a rigid body: $\theta^{*} \in \mathbb{R}^{k \times N}, \mathcal{G}=S O(k)$, acting diagonally on the columns of $\mathbb{R}^{k \times N}$
- Multi Reference Alignment (MRA) : $\theta^{*} \in \mathbb{R}^{p}, \mathcal{G}=\mathbb{Z} / p \mathbb{Z}$, acting as cyclic shifts on the coordinates of \mathbb{R}^{p}
- Spherical registration problem : Learn $f: \mathbb{S}^{2} \rightarrow \mathbb{R}$ from noisy measurements of $f\left(g^{-1} \bullet\right)$ with $g \in S O(3)$

Other variants for cryo-EM:

- Additional linear mapping, i.e. $Y_{i}=\Pi\left(G_{i} \cdot \theta^{*}\right)+\xi_{i}$
- Heterogeneity, i.e. we have a finite set $\left\{\theta^{*}{ }_{1}, \ldots, \theta^{*}{ }_{K}\right\}$, and $Y_{i}=\Pi\left(G_{i} \cdot \theta^{*}{ }_{k(i)}\right)+\xi_{i}$ where $k(i) \sim \operatorname{Unif}([K])$.

Notions of recovery

The metric

$$
d_{\mathcal{G}}\left(\theta_{1}, \theta_{2}\right)=\min _{g \in \mathcal{G}}\left\|\theta_{1}-g \cdot \theta_{2}\right\|=\operatorname{dist}\left(\theta_{1}, \mathcal{O}_{\theta_{2}}\right)
$$

Generic signals vs worst case signals
Study the properties of this model for all possible (i.e., worst case) signals vs generic signals (i.e., leave out a set of signals of measure zero).

Natural questions

Questions

- Recovery How to perform recovery of $\mathcal{O}_{\theta^{*}}$ to a given level of accuracy ?
- Sample complexity How many observations n to we need to perform this recovery at a given accuracy level ?
- Optimality How many observations are minimally needed (information theoretic lower bound) ?
- Computational complexity How to perform recovery fast (e.g., in polynomial time in the problem parameters) ? Is there a computational-statistical gap in this model ?

Synchronization

Synchronization is a natural approach to the orbit recovery problem, trying to first "find" the $G_{i}-s$ (up to trivial symmetries), and then using them to recover $\mathcal{O}_{\theta^{*}}$.

Synchronization

Synchronization is a natural approach to the orbit recovery problem, trying to first "find" the G_{i}-s (up to trivial symmetries), and then using them to recover $\mathcal{O}_{\theta^{*}}$. Concretely, we attempt to find $\left\{H_{i}\right\}_{i=1}^{n}$ which best synchronize the observations $\left\{Y_{i}\right\}_{i=1}^{n}$, by solving the optimization problem over the group \mathcal{G} given by

$$
\min _{H_{1}, \ldots, H_{n} \in \mathcal{G}} \sum_{1 \leq i, j \leq n}\left\|H_{i}^{-1} Y_{i}-H_{j}^{-1} Y_{j}\right\|^{2}
$$

Synchronization

Synchronization is a natural approach to the orbit recovery problem, trying to first "find" the G_{i}-s (up to trivial symmetries), and then using them to recover $\mathcal{O}_{\theta^{*}}$. Concretely, we attempt to find $\left\{H_{i}\right\}_{i=1}^{n}$ which best synchronize the observations $\left\{Y_{i}\right\}_{i=1}^{n}$, by solving the optimization problem over the group \mathcal{G} given by

$$
\min _{H_{1}, \ldots, H_{n} \in \mathcal{G}} \sum_{1 \leq i, j \leq n}\left\|H_{i}^{-1} Y_{i}-H_{j}^{-1} Y_{j}\right\|^{2}
$$

Then we approximate $\mathcal{O}_{\theta^{*}}$ via

$$
\hat{\theta}:=\frac{1}{n} \sum_{i=1}^{n} \hat{H}_{i}^{-1} Y_{i}
$$

Synchronization

Synchronization is a natural approach to the orbit recovery problem, trying to first "find" the G_{i}-s (up to trivial symmetries), and then using them to recover $\mathcal{O}_{\theta^{*}}$. Concretely, we attempt to find $\left\{H_{i}\right\}_{i=1}^{n}$ which best synchronize the observations $\left\{Y_{i}\right\}_{i=1}^{n}$, by solving the optimization problem over the group \mathcal{G} given by

$$
\min _{H_{1}, \ldots, H_{n} \in \mathcal{G}} \sum_{1 \leq i, j \leq n}\left\|H_{i}^{-1} Y_{i}-H_{j}^{-1} Y_{j}\right\|^{2}
$$

Then we approximate $\mathcal{O}_{\theta^{*}}$ via

$$
\hat{\theta}:=\frac{1}{n} \sum_{i=1}^{n} \hat{H}_{i}^{-1} Y_{i}
$$

Problem

!! Synchronization works only in the low noise regime
In the high noise regime, no consistent estimation of the G_{i} is possible ! [Aguerrebere, Delbracio, Bartesaghi, Sapiro '16].

Observation

Any function of θ^{*} that is invariant under the action of the group \mathcal{G} can be estimated well using classical statistical methods

Observation

Any function of θ^{*} that is invariant under the action of the group \mathcal{G} can be estimated well using classical statistical methods

Examples

- For learning a bag of numbers $\left(\mathcal{G}=S_{p}\right)$, the classical moments $\mu_{k}=\sum_{i=1}^{p} \theta_{i}^{k}$, for $k \geq 1$

What can we estimate well ?

Observation

Any function of θ^{*} that is invariant under the action of the group \mathcal{G} can be estimated well using classical statistical methods

Examples

- For learning a bag of numbers $\left(\mathcal{G}=S_{p}\right)$, the classical moments $\mu_{k}=\sum_{i=1}^{p} \theta_{i}^{k}$, for $k \geq 1$
- For MRA $(\mathcal{G}=\mathbb{Z} / p \mathbb{Z})$, the classical moments $\sum_{i=1}^{p} \theta_{i}^{k}$, plus additional functions, such as $\sum_{i \in \mathbb{Z} / p \mathbb{Z}} \theta_{i} \theta_{i+1} \ldots$

How far can we reach with invariant functions?

Enter Invariant Theory
The theory of polynomials that are invariant under the action of a group

Invariant theory

- Let $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)$, and $\mathbb{R}[\mathbf{x}]$ be the ring of polynomials with real coefficients.
- $\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ denotes the ring of polynomials that are invariant under the action of the group \mathcal{G}, via the map $\mathbf{x} \mapsto g . \mathbf{x}$ for $g \in \mathcal{G}$.

Invariant theory

- Let $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)$, and $\mathbb{R}[\mathbf{x}]$ be the ring of polynomials with real coefficients.
- $\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ denotes the ring of polynomials that are invariant under the action of the group \mathcal{G}, via the map $\mathbf{x} \mapsto g . \mathbf{x}$ for $g \in \mathcal{G}$.
- Let $U \subseteq \mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ be a subspace of invariant polynomials that we have access to, e.g. can estimate effectively.

Question

Do the values $\left\{f\left(\theta^{*}\right): f \in U\right\}$ determine $\mathcal{O}_{\theta^{*}}$?

Invariant theory

Theorem

The full invariant ring $\mathbb{R}[\boldsymbol{x}]^{\mathcal{G}}$ identifies \mathcal{O}_{θ} for every $\theta \in \mathbb{R}^{p}$.

Invariant theory

Theorem

The full invariant ring $\mathbb{R}[\boldsymbol{x}]^{\mathcal{G}}$ identifies \mathcal{O}_{θ} for every $\theta \in \mathbb{R}^{p}$.

Definition

The Reynold's Operator $\mathcal{R}: \mathbb{R}[\mathbf{x}] \rightarrow \mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ is defined by

$$
\mathcal{R}(f):=\mathbb{E}_{g \sim \operatorname{Haar}(\mathcal{G})}[g \cdot f]
$$

Invariant theory

Theorem

The full invariant ring $\mathbb{R}[\boldsymbol{x}]^{\mathcal{G}}$ identifies \mathcal{O}_{θ} for every $\theta \in \mathbb{R}^{p}$.

Invariant theory

Theorem

The full invariant ring $\mathbb{R}[\boldsymbol{x}]^{\mathcal{G}}$ identifies \mathcal{O}_{θ} for every $\theta \in \mathbb{R}^{p}$.
Proof.

- Let \mathfrak{o}_{1} and \mathfrak{o}_{2} be two distinct (and therefore disjoint) orbits.

Invariant theory

Theorem

The full invariant ring $\mathbb{R}[\boldsymbol{x}]^{\mathcal{G}}$ identifies \mathcal{O}_{θ} for every $\theta \in \mathbb{R}^{p}$.
Proof.

- Let \mathfrak{o}_{1} and \mathfrak{o}_{2} be two distinct (and therefore disjoint) orbits.
- \mathfrak{o}_{1} and \mathfrak{o}_{2} are compact sets, via compactness of \mathcal{G}.

Invariant theory

Theorem

The full invariant ring $\mathbb{R}[\boldsymbol{x}]^{\mathcal{G}}$ identifies \mathcal{O}_{θ} for every $\theta \in \mathbb{R}^{p}$.

Proof.

- Let \mathfrak{o}_{1} and \mathfrak{o}_{2} be two distinct (and therefore disjoint) orbits.
- \mathfrak{o}_{1} and \mathfrak{o}_{2} are compact sets, via compactness of \mathcal{G}.
- By Urysohn's Lemma, there exists a continuous function $\bar{f}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ such that \bar{f} is 0 on \mathfrak{o}_{1} and 1 on \mathfrak{o}_{2}.

Invariant theory

Theorem

The full invariant ring $\mathbb{R}[\boldsymbol{x}]^{\mathcal{G}}$ identifies \mathcal{O}_{θ} for every $\theta \in \mathbb{R}^{p}$.

Proof.

- Let \mathfrak{o}_{1} and \mathfrak{o}_{2} be two distinct (and therefore disjoint) orbits.
- \mathfrak{o}_{1} and \mathfrak{o}_{2} are compact sets, via compactness of \mathcal{G}.
- By Urysohn's Lemma, there exists a continuous function $\bar{f}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ such that \bar{f} is 0 on \mathfrak{o}_{1} and 1 on \mathfrak{o}_{2}.
- By Stone-Weierstrass Theorem, we can approximate \bar{f} to arbitrary accuracy by a polynomial f on any compact subset $K \subset \mathbb{R}^{p}$ such that $\mathfrak{o}_{1} \cup \mathfrak{o}_{2} \subseteq K$

Invariant theory

Theorem

The full invariant ring $\mathbb{R}[\boldsymbol{x}]^{\mathcal{G}}$ identifies \mathcal{O}_{θ} for every $\theta \in \mathbb{R}^{p}$.

Proof.

- Let \mathfrak{o}_{1} and \mathfrak{o}_{2} be two distinct (and therefore disjoint) orbits.
- \mathfrak{o}_{1} and \mathfrak{o}_{2} are compact sets, via compactness of \mathcal{G}.
- By Urysohn's Lemma, there exists a continuous function $\bar{f}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ such that \bar{f} is 0 on \mathfrak{o}_{1} and 1 on \mathfrak{o}_{2}.
- By Stone-Weierstrass Theorem, we can approximate \bar{f} to arbitrary accuracy by a polynomial f on any compact subset $K \subset \mathbb{R}^{p}$ such that $\mathfrak{o}_{1} \cup \mathfrak{o}_{2} \subseteq K$; let $f \leq 1 / 3$ on \mathfrak{o}_{1} and $f \geq 2 / 3$ on \mathfrak{o}_{2}.

Invariant theory

Theorem

The full invariant ring $\mathbb{R}[\boldsymbol{x}]^{\mathcal{G}}$ identifies \mathcal{O}_{θ} for every $\theta \in \mathbb{R}^{p}$.

Proof.

- Let \mathfrak{o}_{1} and \mathfrak{o}_{2} be two distinct (and therefore disjoint) orbits.
- \mathfrak{o}_{1} and \mathfrak{o}_{2} are compact sets, via compactness of \mathcal{G}.
- By Urysohn's Lemma, there exists a continuous function $\bar{f}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ such that \bar{f} is 0 on \mathfrak{o}_{1} and 1 on \mathfrak{o}_{2}.
- By Stone-Weierstrass Theorem, we can approximate \bar{f} to arbitrary accuracy by a polynomial f on any compact subset $K \subset \mathbb{R}^{p}$ such that $\mathfrak{o}_{1} \cup \mathfrak{o}_{2} \subseteq K$; let $f \leq 1 / 3$ on \mathfrak{o}_{1} and $f \geq 2 / 3$ on \mathfrak{o}_{2}.
- $\mathcal{R}(f)$ is then a \mathcal{G}-invariant polynomial which satisfies $\mathcal{R}(f) \leq 1 / 3$ on \mathfrak{o}_{1} and $\mathcal{R}(f) \geq 2 / 3$ on \mathfrak{o}_{2}, thereby separating the orbits \mathfrak{o}_{1} and \mathfrak{o}_{2}.

Transcendence degrees

Algebraic independence

Polynomials $f_{1}, \ldots, f_{m} \in \mathbb{R}[\mathbf{x}]$ are algebraically independent if there does not exist any non-zero polynomial P in m variables such that $P\left(f_{1}, \ldots, f_{m}\right) \equiv 0$.

Transcendence degrees

Algebraic independence

Polynomials $f_{1}, \ldots, f_{m} \in \mathbb{R}[\mathbf{x}]$ are algebraically independent if there does not exist any non-zero polynomial P in m variables such that $P\left(f_{1}, \ldots, f_{m}\right) \equiv 0$.

Transcendence degree

For a subspace $U \subseteq \mathbb{R}[\mathbf{x}]$, the transcendence degree $\operatorname{trdeg}(U)$ is the maximum possible size of an algebraically independent subset of U.

Transcendence degrees

Algebraic independence

Polynomials $f_{1}, \ldots, f_{m} \in \mathbb{R}[\mathbf{x}]$ are algebraically independent if there does not exist any non-zero polynomial P in m variables such that $P\left(f_{1}, \ldots, f_{m}\right) \equiv 0$.

Transcendence degree

For a subspace $U \subseteq \mathbb{R}[\mathbf{x}]$, the transcendence degree $\operatorname{trdeg}(U)$ is the maximum possible size of an algebraically independent subset of U.

- Intuitively, $\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)$ is the minimal number of parameters required to describe an orbit of \mathcal{G}, and is known to be always finite.

Transcendence degrees

Algebraic independence

Polynomials $f_{1}, \ldots, f_{m} \in \mathbb{R}[\mathbf{x}]$ are algebraically independent if there does not exist any non-zero polynomial P in m variables such that $P\left(f_{1}, \ldots, f_{m}\right) \equiv 0$.

Transcendence degree

For a subspace $U \subseteq \mathbb{R}[\mathbf{x}]$, the transcendence degree $\operatorname{trdeg}(U)$ is the maximum possible size of an algebraically independent subset of U.

- Intuitively, $\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)$ is the minimal number of parameters required to describe an orbit of \mathcal{G}, and is known to be always finite. Example: If \mathcal{G} is a finite group, $\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)=p$.

Generic Recovery

Theorem (Bandeira, Blum-Smith, Kileel, Niles-Weed, Perry, Wein '23)
Let $U \subseteq \mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ be a finite dimensional subspace. If $\operatorname{trdeg}(U)=\operatorname{trdeg}\left(\mathbb{R}[x]^{\mathcal{G}}\right)$, then U identifies a generic θ^{*}.

Generic Recovery

Theorem (Bandeira, Blum-Smith, Kileel, Niles-Weed, Perry, Wein '23)

Let $U \subseteq \mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ be a finite dimensional subspace. If $\operatorname{trdeg}(U)=\operatorname{trdeg}\left(\mathbb{R}[x]^{\mathcal{G}}\right)$, then U identifies a generic θ^{*}. The converse is also true.

Generic Recovery

Theorem (Bandeira, Blum-Smith, Kileel, Niles-Weed, Perry, Wein '23)

Let $U \subseteq \mathbb{R}[x]^{\mathcal{G}}$ be a finite dimensional subspace. If $\operatorname{trdeg}(U)=\operatorname{trdeg}\left(\mathbb{R}[x]^{\mathcal{G}}\right)$, then U identifies a generic θ^{*}. The converse is also true.

Algorithm to compute transcendence degree
There is an efficient algorithm to compute $\operatorname{trdeg}(U)$ for any finite dimensional subspace $U \subseteq \mathbb{R}[\mathbf{x}]$.

Generic Recovery

Theorem (Bandeira, Blum-Smith, Kileel, Niles-Weed, Perry, Wein '23)

Let $U \subseteq \mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ be a finite dimensional subspace. If $\operatorname{trdeg}(U)=\operatorname{trdeg}\left(\mathbb{R}[x]^{\mathcal{G}}\right)$, then U identifies a generic θ^{*}. The converse is also true.

Algorithm to compute transcendence degree
There is an efficient algorithm to compute $\operatorname{trdeg}(U)$ for any finite dimensional subspace $U \subseteq \mathbb{R}[\mathbf{x}]$.

- Based on rank of Jacobian criterion for testing algebraic independence
- Based on matroid structure of algebraically independent subsets of $\mathbb{R}[\mathbf{x}]$

Moment tensors

Order k moment tensor
The order k moment tensor is defined as

$$
T_{k}(\theta):=\mathbb{E}_{g \sim \operatorname{Har}(\mathcal{G})}\left[(g \cdot \theta)^{\otimes k}\right]
$$

Moment tensors

Order k moment tensor

The order k moment tensor is defined as

$$
T_{k}(\theta):=\mathbb{E}_{g \sim \operatorname{Har}(\mathcal{G})}\left[(g \cdot \theta)^{\otimes k}\right]
$$

Moment tensors and polynomials

- Each entry of $T_{k}(\theta)$ is a polynomial in $\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ that is homogeneous of degree k.
- $T_{k}(\theta)$ contains the same information as the set of evaluations $\left\{f(\theta): f \in \mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right.$, homogeneous of degree $\left.k\right\}$.

Moment tensors

Order k moment tensor

The order k moment tensor is defined as

$$
T_{k}(\theta):=\mathbb{E}_{g \sim \operatorname{Har}(\mathcal{G})}\left[(g \cdot \theta)^{\otimes k}\right]
$$

Moment tensors and polynomials

- Each entry of $T_{k}(\theta)$ is a polynomial in $\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ that is homogeneous of degree k.
- $T_{k}(\theta)$ contains the same information as the set of evaluations $\left\{f(\theta): f \in \mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right.$, homogeneous of degree $\left.k\right\}$.
- In fact, any polynomial in $\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$ that is homogeneous of degree k is a linear combination of the entries of T_{k}.

Moment tensors and estimation

Estimating $T_{k}\left(\theta^{*}\right)$

We can estimate $T_{k}\left(\theta^{*}\right)$ from the given observations by computing

$$
\hat{T}_{k}:=\frac{1}{n} \sum_{i=1}^{n} \sum_{g \in G}\left(g \cdot Y_{i}\right)^{\otimes k}
$$

correcting for canonical bias terms coming from noise.

Moment tensors and estimation

Estimating $T_{k}\left(\theta^{*}\right)$

We can estimate $T_{k}\left(\theta^{*}\right)$ from the given observations by computing

$$
\hat{T}_{k}:=\frac{1}{n} \sum_{i=1}^{n} \sum_{g \in G}\left(g \cdot Y_{i}\right)^{\otimes k}
$$

correcting for canonical bias terms coming from noise.

Definition

Define $M_{\theta^{*}, k}:=\left\{\tau \in \mathbb{R}^{p}: T_{i}(\tau)=T_{i}\left(\theta^{*}\right) \forall 1 \leq i \leq k\right\}$.
Clearly, $\mathcal{O}_{\theta^{*}} \subseteq M_{\theta^{*}, k}$.

Moment tensors and estimation

Estimating $T_{k}\left(\theta^{*}\right)$

We can estimate $T_{k}\left(\theta^{*}\right)$ from the given observations by computing

$$
\hat{T}_{k}:=\frac{1}{n} \sum_{i=1}^{n} \sum_{g \in G}\left(g \cdot Y_{i}\right)^{\otimes k}
$$

correcting for canonical bias terms coming from noise.

Definition

Define $M_{\theta^{*}, k}:=\left\{\tau \in \mathbb{R}^{p}: T_{i}(\tau)=T_{i}\left(\theta^{*}\right) \forall 1 \leq i \leq k\right\}$.
Clearly, $\mathcal{O}_{\theta^{*}} \subseteq M_{\theta^{*}, k}$. For k large enough, $\mathcal{O}_{\theta^{*}}=M_{\theta^{*}, k}$.

Moment tensors and estimation

Estimating $T_{k}\left(\theta^{*}\right)$

We can estimate $T_{k}\left(\theta^{*}\right)$ from the given observations by computing

$$
\hat{T}_{k}:=\frac{1}{n} \sum_{i=1}^{n} \sum_{g \in G}\left(g \cdot Y_{i}\right)^{\otimes k}
$$

correcting for canonical bias terms coming from noise.

Definition

Define $M_{\theta^{*}, k}:=\left\{\tau \in \mathbb{R}^{p}: T_{i}(\tau)=T_{i}\left(\theta^{*}\right) \forall 1 \leq i \leq k\right\}$.
Clearly, $\mathcal{O}_{\theta^{*}} \subseteq M_{\theta^{*}, k}$. For k large enough, $\mathcal{O}_{\theta^{*}}=M_{\theta^{*}, k}$. Alternative estimators via Hermite polynomials.

Moment tensors and estimation

Theorem (Recovering orbits from moments, BBKNPW'23)

We have an explicit estimator $\hat{M}_{n}\left(Y_{1}, \ldots, Y_{n}\right)$ (defined via matching empirical moment tensors) such that with high probability it holds that

$$
M_{\theta^{*}, k} \subseteq \hat{M}_{n} \subseteq M_{\theta^{*}, k}^{\in}
$$

where $M_{\theta^{*}, k}^{\varepsilon}$ is the ε-fattening of the set $M_{\theta^{*}, k}$ for a given tolerance ε and $n=n(\varepsilon)$ observations.

Moment tensors and estimation

Theorem (Recovering orbits from moments, BBKNPW'23)

We have an explicit estimator $\hat{M}_{n}\left(Y_{1}, \ldots, Y_{n}\right)$ (defined via matching empirical moment tensors) such that with high probability it holds that

$$
M_{\theta^{*}, k} \subseteq \hat{M}_{n} \subseteq M_{\theta^{*}, k}^{\epsilon}
$$

where $M_{\theta^{*}, k}^{\varepsilon}$ is the ε-fattening of the set $M_{\theta^{*}, k}$ for a given tolerance ε and $n=n(\varepsilon)$ observations.

Sample complexity

$$
n=\Omega_{\theta^{*}, \varepsilon}\left(\sigma^{2 k}\right)
$$

A step-by-step procedure

- Compute $\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)$ (standard techniques depending on \mathcal{G})

A step-by-step procedure

- Compute $\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)$ (standard techniques depending on \mathcal{G})
- Starting from $j=1$, consider $U_{\leq j}:=\operatorname{Span}\left(T_{1}(\mathbf{x}), \ldots, T_{j}(\mathbf{x})\right)$

Putting everything together : general orbit recovery

A step-by-step procedure

- Compute $\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)$ (standard techniques depending on \mathcal{G})
- Starting from $j=1$, consider $U_{\leq j}:=\operatorname{Span}\left(T_{1}(\mathbf{x}), \ldots, T_{j}(\mathbf{x})\right)$
- Compute trdeg $\left(U_{\leq j}\right)$

A step-by-step procedure

- Compute $\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)$ (standard techniques depending on \mathcal{G})
- Starting from $j=1$, consider $U_{\leq j}:=\operatorname{Span}\left(T_{1}(\mathbf{x}), \ldots, T_{j}(\mathbf{x})\right)$
- Compute trdeg $\left(U_{\leq j}\right)$
- Check if $\operatorname{trdeg}\left(U_{\leq j}\right)=\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)$; if yes stop, if no increase j to $j+1$ and repeat the above steps.

A step-by-step procedure

- Compute $\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)$ (standard techniques depending on \mathcal{G})
- Starting from $j=1$, consider $U_{\leq j}:=\operatorname{Span}\left(T_{1}(\mathbf{x}), \ldots, T_{j}(\mathbf{x})\right)$
- Compute trdeg $\left(U_{\leq j}\right)$
- Check if $\operatorname{trdeg}\left(U_{\leq j}\right)=\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)$; if yes stop, if no increase j to $j+1$ and repeat the above steps. Let the final index be k, such that $\operatorname{trdeg}\left(U_{\leq k}\right)=\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)$.

A step-by-step procedure

- Compute $\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)$ (standard techniques depending on \mathcal{G})
- Starting from $j=1$, consider $U_{\leq j}:=\operatorname{Span}\left(T_{1}(\mathbf{x}), \ldots, T_{j}(\mathbf{x})\right)$
- Compute trdeg $\left(U_{\leq j}\right)$
- Check if $\operatorname{trdeg}\left(U_{\leq j}\right)=\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)$; if yes stop, if no increase j to $j+1$ and repeat the above steps. Let the final index be k, such that $\operatorname{trdeg}\left(U_{\leq k}\right)=\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)$.
- For this k, estimate $M_{\theta^{*}, k}$ (up to accuracy ε) via estimator $\hat{M}_{n}\left(Y_{1}, \ldots, Y_{n}\right)$

Putting everything together : general orbit recovery

A step-by-step procedure

- Compute $\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)$ (standard techniques depending on \mathcal{G})
- Starting from $j=1$, consider $U_{\leq j}:=\operatorname{Span}\left(T_{1}(\mathbf{x}), \ldots, T_{j}(\mathbf{x})\right)$
- Compute trdeg $\left(U_{\leq j}\right)$
- Check if $\operatorname{trdeg}\left(U_{\leq j}\right)=\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)$; if yes stop, if no increase j to $j+1$ and repeat the above steps. Let the final index be k, such that $\operatorname{trdeg}\left(U_{\leq k}\right)=\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)$.
- For this k, estimate $M_{\theta^{*}, k}$ (up to accuracy ε) via estimator $\hat{M}_{n}\left(Y_{1}, \ldots, Y_{n}\right)$
- By the choice of k, the set $M_{\theta^{*}, k}$ identifies $\mathcal{O}_{\theta^{*}}$.
- Roughly speaking, invert $\theta \mapsto\left(T_{1}(\theta), \ldots, T_{k}(\theta)\right)$ based on data.

Multi Reference Alignment (MRA)

- $\mathcal{G}=\mathbb{Z} / p \mathbb{Z}$

Multi Reference Alignment (MRA)

- $\mathcal{G}=\mathbb{Z} / p \mathbb{Z}$
- \quad - $\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)=p$
- $T_{1}(x)$ has 1 distinct entry
- $T_{2}(x)$ has $\lfloor p / 2\rfloor+1$ distinct entries
- $\left.T_{3}(x)\right)$ has $p+\lceil(p-1)(p-2) / 6\rceil$ distinct entries
- Recovery possible for generic signals from 3-rd order moment tensors

Multi Reference Alignment (MRA)

- $\mathcal{G}=\mathbb{Z} / p \mathbb{Z}$
- $\quad \operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)=p$
- $T_{1}(x)$ has 1 distinct entry
- $T_{2}(x)$ has $\lfloor p / 2\rfloor+1$ distinct entries
- $\left.T_{3}(x)\right)$ has $p+\lceil(p-1)(p-2) / 6\rceil$ distinct entries
- Recovery possible for generic signals from 3-rd order moment tensors
- Sample complexity $O\left(\sigma^{6}\right)$

Multi Reference Alignment (MRA)

- $\mathcal{G}=\mathbb{Z} / p \mathbb{Z}$
- $\quad \operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)=p$
- $T_{1}(x)$ has 1 distinct entry
- $T_{2}(x)$ has $\lfloor p / 2\rfloor+1$ distinct entries
- $\left.T_{3}(x)\right)$ has $p+\lceil(p-1)(p-2) / 6\rceil$ distinct entries
- Recovery possible for generic signals from 3-rd order moment tensors
- Sample complexity $O\left(\sigma^{6}\right)$
- But most significant regime : $\sigma \uparrow \infty$!

Multi Reference Alignment (MRA)

- $\mathcal{G}=\mathbb{Z} / p \mathbb{Z}$
- \quad - $\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)=p$
- $T_{1}(x)$ has 1 distinct entry
- $T_{2}(x)$ has $\lfloor p / 2\rfloor+1$ distinct entries
- $\left.T_{3}(x)\right)$ has $p+\lceil(p-1)(p-2) / 6\rceil$ distinct entries
- Recovery possible for generic signals from 3-rd order moment tensors
- Sample complexity $O\left(\sigma^{6}\right)$
- But most significant regime : $\sigma \uparrow \infty$! Need to improve on sample complexity in important structural settings for the signal

Multi Reference Alignment (MRA)

- $\mathcal{G}=\mathbb{Z} / p \mathbb{Z}$
- \quad - $\operatorname{trdeg}\left(\mathbb{R}[\mathbf{x}]^{\mathcal{G}}\right)=p$
- $T_{1}(x)$ has 1 distinct entry
- $T_{2}(x)$ has $\lfloor p / 2\rfloor+1$ distinct entries
- $\left.T_{3}(x)\right)$ has $p+\lceil(p-1)(p-2) / 6\rceil$ distinct entries
- Recovery possible for generic signals from 3-rd order moment tensors
- Sample complexity $O\left(\sigma^{6}\right)$
- But most significant regime : $\sigma \uparrow \infty$! Need to improve on sample complexity in important structural settings for the signal

Sample complexity of Sparse Multi Reference Alignment (MRA)

- Sparsity is the most fundamental structural feature for real-world signals
- Fundamental question: How does the sample complexity of sparse MRA scale with σ ?

Sample complexity of Sparse Multi Reference Alignment (MRA)

- Sparsity is the most fundamental structural feature for real-world signals
- Fundamental question: How does the sample complexity of sparse MRA scale with σ ?
- Without latent symmetries, the sample complexity is $O\left(\sigma^{2}\right)$
- Without sparsity, the sample complexity is $O\left(\sigma^{6}\right)$

Sample complexity of Sparse Multi Reference Alignment (MRA)

Theorem (G.-Rigollet,'23)

The sample complexity of MRA for the MLE exhibits a novel intermediate scaling of $O\left(\sigma^{4}\right)$ for generic sparse signals.

Sample complexity of Sparse Multi Reference Alignment (MRA)

Theorem (G.-Rigollet,'23)

The sample complexity of MRA for the MLE exhibits a novel intermediate scaling of $O\left(\sigma^{4}\right)$ for generic sparse signals.

- $O\left(\sigma^{4}\right)$ scaling is the best possible for generic sparse signals. (G.-Rigollet,'23)

Sample complexity of Sparse Multi Reference Alignment (MRA)

Theorem (G.-Rigollet,'23)

The sample complexity of MRA for the MLE exhibits a novel intermediate scaling of $O\left(\sigma^{4}\right)$ for generic sparse signals.

- $O\left(\sigma^{4}\right)$ scaling is the best possible for generic sparse signals. (G.-Rigollet,'23)
- Without sparsity, $O\left(\sigma^{6}\right)$ is best possible for generic signals. (G.-Rigollet,'23)

Sample complexity of Sparse Multi Reference Alignment (MRA)

Theorem (G.-Rigollet,'23)

The sample complexity of MRA for the MLE exhibits a novel intermediate scaling of $O\left(\sigma^{4}\right)$ for generic sparse signals.

- $O\left(\sigma^{4}\right)$ scaling is the best possible for generic sparse signals. (G.-Rigollet,'23)
- Without sparsity, $O\left(\sigma^{6}\right)$ is best possible for generic signals. (G.-Rigollet,'23)
- Explicit dependence on sparsity level and p. (G.-Rigollet,'23)

Sample complexity of Sparse Multi Reference Alignment (MRA)

Theorem (G.-Rigollet,'23)

The sample complexity of MRA for the MLE exhibits a novel intermediate scaling of $O\left(\sigma^{4}\right)$ for generic sparse signals.

- $O\left(\sigma^{4}\right)$ scaling is the best possible for generic sparse signals. (G.-Rigollet,'23)
- Without sparsity, $O\left(\sigma^{6}\right)$ is best possible for generic signals. (G.-Rigollet,'23)
- Explicit dependence on sparsity level and p. (G.-Rigollet,'23)

Sample complexity of Sparse Multi Reference Alignment (MRA)

Theorem (G.-Tran,'24+)

If sparsity is in Fourier space, then sample complexity is $O\left(\sigma^{6}\right)$ for generic sparse signals

Sample complexity of Sparse Multi Reference Alignment (MRA)

Theorem (G.-Tran,'24+)

If sparsity is in Fourier space, then sample complexity is $O\left(\sigma^{6}\right)$ for generic sparse signals

Theorem (G.-Mukherjee-Pan,'24+)
Minimax optimal rates of estimation for sparse MRA in dilute regime of sparsity

Sample complexity of Sparse Multi Reference Alignment (MRA)

- The restricted MLE $\hat{\theta}_{\text {MLE }}$ satisfies a central limit theorem with convergence of $\sqrt{n}\left(\hat{\theta}_{\mathrm{MLE}}-\theta^{*}\right)$ to $N\left(0, \mathcal{I}\left(\theta^{*}\right)^{-1}\right)$, where $\mathcal{I}\left(\theta^{*}\right)$ is the Fisher information matrix for the model at the true parameter value θ^{*}.

Sample complexity of Sparse Multi Reference Alignment (MRA)

- The restricted MLE $\hat{\theta}_{\text {MLE }}$ satisfies a central limit theorem with convergence of $\sqrt{n}\left(\hat{\theta}_{\mathrm{MLE}}-\theta^{*}\right)$ to $N\left(0, \mathcal{I}\left(\theta^{*}\right)^{-1}\right)$, where $\mathcal{I}\left(\theta^{*}\right)$ is the Fisher information matrix for the model at the true parameter value θ^{*}.
- Thus, $\left(\hat{\theta}_{\mathrm{MLE}}-\theta^{*}\right) \simeq \frac{1}{\sqrt{n}} \cdot \mathcal{I}\left(\theta^{*}\right)^{-1}$

Sample complexity of Sparse Multi Reference Alignment (MRA)

- The restricted MLE $\hat{\theta}_{\text {MLE }}$ satisfies a central limit theorem with convergence of $\sqrt{n}\left(\hat{\theta}_{\text {MLE }}-\theta^{*}\right)$ to $N\left(0, \mathcal{I}\left(\theta^{*}\right)^{-1}\right)$, where $\mathcal{I}\left(\theta^{*}\right)$ is the Fisher information matrix for the model at the true parameter value θ^{*}.
- Thus, $\left(\hat{\theta}_{\mathrm{MLE}}-\theta^{*}\right) \simeq \frac{1}{\sqrt{n}} \cdot \mathcal{I}\left(\theta^{*}\right)^{-1}=\frac{1}{\sqrt{n}} \cdot \nabla_{\theta}^{2}\left(D_{K L}\left(\theta \| \theta^{*}\right)\right)^{-1}$.

Sample complexity of Sparse Multi Reference Alignment (MRA)

- The restricted MLE $\hat{\theta}_{\text {MLE }}$ satisfies a central limit theorem with convergence of $\sqrt{n}\left(\hat{\theta}_{\text {MLE }}-\theta^{*}\right)$ to $N\left(0, \mathcal{I}\left(\theta^{*}\right)^{-1}\right)$, where $\mathcal{I}\left(\theta^{*}\right)$ is the Fisher information matrix for the model at the true parameter value θ^{*}.
- Thus, $\left(\hat{\theta}_{\text {MLE }}-\theta^{*}\right) \simeq \frac{1}{\sqrt{n}} \cdot \mathcal{I}\left(\theta^{*}\right)^{-1}=\frac{1}{\sqrt{n}} \cdot \nabla_{\theta}^{2}\left(D_{K L}\left(\theta \| \theta^{*}\right)\right)^{-1}$.
- If the second moment tensor mapping
$\theta \mapsto T_{2}(\theta)=\mathbb{E}_{g \sim \operatorname{Har}\left(\mathbb{Z}_{p}\right)}\left[\left(g \cdot(\theta)^{\otimes k}\right]\right.$ is suitably non-degenerate at $\theta=\theta^{*}$, then $\left(D_{K L}\left(\theta \| \theta^{*}\right)\right)^{-1}$ is $O\left(\sigma^{2}\right)$,

Sample complexity of Sparse Multi Reference Alignment (MRA)

- The restricted MLE $\hat{\theta}_{\text {MLE }}$ satisfies a central limit theorem with convergence of $\sqrt{n}\left(\hat{\theta}_{\text {MLE }}-\theta^{*}\right)$ to $N\left(0, \mathcal{I}\left(\theta^{*}\right)^{-1}\right)$, where $\mathcal{I}\left(\theta^{*}\right)$ is the Fisher information matrix for the model at the true parameter value θ^{*}.
- Thus, $\left(\hat{\theta}_{\text {MLE }}-\theta^{*}\right) \simeq \frac{1}{\sqrt{n}} \cdot \mathcal{I}\left(\theta^{*}\right)^{-1}=\frac{1}{\sqrt{n}} \cdot \nabla_{\theta}^{2}\left(D_{K L}\left(\theta \| \theta^{*}\right)\right)^{-1}$.
- If the second moment tensor mapping
$\theta \mapsto T_{2}(\theta)=\mathbb{E}_{g \sim \operatorname{Har}\left(\mathbb{Z}_{p}\right)}\left[\left(g \cdot(\theta)^{\otimes k}\right]\right.$ is suitably non-degenerate at $\theta=\theta^{*}$, then $\left(D_{K L}\left(\theta \| \theta^{*}\right)\right)^{-1}$ is $O\left(\sigma^{2}\right)$, indicating sample complexity $n \sim \sigma^{4}$.

Sample complexity of Sparse Multi Reference Alignment (MRA)

- Entries of the matrix $T_{2}(\theta)$ are the auto-correlations of the signal θ

Sample complexity of Sparse Multi Reference Alignment (MRA)

- Entries of the matrix $T_{2}(\theta)$ are the auto-correlations of the signal θ
- Non-degeneracy of $\theta \mapsto T_{2}(\theta) \longleftrightarrow$ Recovery of signal θ from its autocorrelations \longleftrightarrow Recovery of $\hat{\theta}$ from $|\hat{\theta}|$

Sample complexity of Sparse Multi Reference Alignment (MRA)

- Entries of the matrix $T_{2}(\theta)$ are the auto-correlations of the signal θ
- Non-degeneracy of $\theta \mapsto T_{2}(\theta) \longleftrightarrow$ Recovery of signal θ from its autocorrelations \longleftrightarrow Recovery of $\hat{\theta}$ from $|\hat{\theta}|$
- Crystallographic phase retrieval

Sample complexity of Sparse Multi Reference Alignment (MRA)

- Entries of the matrix $T_{2}(\theta)$ are the auto-correlations of the signal θ
- Non-degeneracy of $\theta \mapsto T_{2}(\theta) \longleftrightarrow$ Recovery of signal θ from its autocorrelations \longleftrightarrow Recovery of $\hat{\theta}$ from $|\hat{\theta}|$
- Crystallographic phase retrieval
- Support recovery from auto-correlations \longleftrightarrow Beltway problem / Turnpike problem / Partial digest problem

Sample complexity of Sparse Multi Reference Alignment (MRA)

- Entries of the matrix $T_{2}(\theta)$ are the auto-correlations of the signal θ
- Non-degeneracy of $\theta \mapsto T_{2}(\theta) \longleftrightarrow$ Recovery of signal θ from its autocorrelations \longleftrightarrow Recovery of $\hat{\theta}$ from $|\hat{\theta}|$
- Crystallographic phase retrieval
- Support recovery from auto-correlations \longleftrightarrow Beltway problem / Turnpike problem / Partial digest problem
- Non-degeneracy of $\theta \mapsto T_{2}(\theta)$ is best analysed in the Fourier space;

Sample complexity of Sparse Multi Reference Alignment (MRA)

- Entries of the matrix $T_{2}(\theta)$ are the auto-correlations of the signal θ
- Non-degeneracy of $\theta \mapsto T_{2}(\theta) \longleftrightarrow$ Recovery of signal θ from its autocorrelations \longleftrightarrow Recovery of $\hat{\theta}$ from $|\hat{\theta}|$
- Crystallographic phase retrieval
- Support recovery from auto-correlations \longleftrightarrow Beltway problem / Turnpike problem / Partial digest problem
- Non-degeneracy of $\theta \mapsto T_{2}(\theta)$ is best analysed in the Fourier space; Uniform Uncertainty Principles allow us to switch between physical and Fourier space efficiently, entailing a sparse approximation in the frequency variables.

Sample complexity of Sparse Multi Reference Alignment (MRA)

- Entries of the matrix $T_{2}(\theta)$ are the auto-correlations of the signal θ
- Non-degeneracy of $\theta \mapsto T_{2}(\theta) \longleftrightarrow$ Recovery of signal θ from its autocorrelations \longleftrightarrow Recovery of $\hat{\theta}$ from $|\hat{\theta}|$
- Crystallographic phase retrieval
- Support recovery from auto-correlations \longleftrightarrow Beltway problem / Turnpike problem / Partial digest problem
- Non-degeneracy of $\theta \mapsto T_{2}(\theta)$ is best analysed in the Fourier space; Uniform Uncertainty Principles allow us to switch between physical and Fourier space efficiently, entailing a sparse approximation in the frequency variables.

Information geometry

The likelihood of the group invariant learning problem is given by

$$
p_{\theta}(y)=\frac{1}{|\mathcal{G}|} \sum_{R \in \mathcal{G}} \frac{1}{(\sqrt{2 \pi} \sigma)^{L}} \exp \left(-\frac{\|y-R \theta\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

Information geometry

The likelihood of the group invariant learning problem is given by

$$
p_{\theta}(y)=\frac{1}{|\mathcal{G}|} \sum_{R \in \mathcal{G}} \frac{1}{(\sqrt{2 \pi} \sigma)^{L}} \exp \left(-\frac{\|y-R \theta\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

The log likelihood corresponding to the data $\left\{y_{1}, \ldots, y_{n}\right\}$ as

$$
\mathcal{L}(\theta)=\sum_{i=1}^{n} \log p_{\theta}\left(y_{i}\right)
$$

Information geometry

The likelihood of the group invariant learning problem is given by

$$
p_{\theta}(y)=\frac{1}{|\mathcal{G}|} \sum_{R \in \mathcal{G}} \frac{1}{(\sqrt{2 \pi} \sigma)^{L}} \exp \left(-\frac{\|y-R \theta\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

The log likelihood corresponding to the data $\left\{y_{1}, \ldots, y_{n}\right\}$ as

$$
\mathcal{L}(\theta)=\sum_{i=1}^{n} \log p_{\theta}\left(y_{i}\right)
$$

The population risk of the model is given by

$$
R(\theta)=-\mathbb{E}_{p_{\theta_{0}}}\left[\log p_{\theta}(Y)\right]+C
$$

Information geometry

$$
\begin{aligned}
R(\theta) & =-\int \log p_{\theta}(y) p_{\theta_{0}}(y) \mathrm{d} y+C \\
& =\int \log \left(\frac{p_{\theta_{0}}(y)}{p_{\theta}(y)} \cdot \frac{1}{p_{\theta_{0}}(y)}\right) p_{\theta_{0}}(y) \mathrm{d} y+C \\
& =D_{K L}\left(p_{\theta_{0}} \| p_{\theta}\right)-\left(\int p_{\theta_{0}}(y) \log p_{\theta_{0}}(y) \mathrm{d} y\right)+C
\end{aligned}
$$

where $D_{K L}\left(p_{\theta_{0}} \| p_{\theta}\right)$ is the Kullback-Leibler divergence between $p_{\theta_{0}}$ and p_{θ}.

Information geometry

$$
\begin{aligned}
R(\theta) & =-\int \log p_{\theta}(y) p_{\theta_{0}}(y) \mathrm{d} y+C \\
& =\int \log \left(\frac{p_{\theta_{0}}(y)}{p_{\theta}(y)} \cdot \frac{1}{p_{\theta_{0}}(y)}\right) p_{\theta_{0}}(y) \mathrm{d} y+C \\
& =D_{K L}\left(p_{\theta_{0}} \| p_{\theta}\right)-\left(\int p_{\theta_{0}}(y) \log p_{\theta_{0}}(y) \mathrm{d} y\right)+C
\end{aligned}
$$

where $D_{K L}\left(p_{\theta_{0}} \| p_{\theta}\right)$ is the Kullback-Leibler divergence between $p_{\theta_{0}}$ and p_{θ}. Since θ_{0} is fixed, as a function of θ, the population risk $R(\theta)$ equals

$$
R(\theta)=D_{K L}\left(p_{\theta_{0}} \| p_{\theta}\right)+C\left(\theta_{0}\right),
$$

where $C\left(\theta_{0}\right)$ is a function of θ_{0}.

Information geometry

The Fisher information matrix of the MRA model is given by

$$
I\left(\theta_{0}\right)=-\mathbb{E}\left[\left.\nabla_{\theta}^{2} \log p_{\theta}(Y)\right|_{\theta=\theta_{0}}\right]=\nabla_{\theta}^{2} R\left(\theta_{0}\right)
$$

where ∇_{θ}^{2} denotes the Hessian with respect to the variable θ.

Information geometry

The Fisher information matrix of the MRA model is given by

$$
I\left(\theta_{0}\right)=-\mathbb{E}\left[\left.\nabla_{\theta}^{2} \log p_{\theta}(Y)\right|_{\theta=\theta_{0}}\right]=\nabla_{\theta}^{2} R\left(\theta_{0}\right)
$$

where ∇_{θ}^{2} denotes the Hessian with respect to the variable θ.

Theorem (Abbe,Bendory, Leeb,Pereira,Sharon,Singer'18)

The MLE $\tilde{\theta}_{n}$ is an asymptotically consistent estimate for the true signal θ_{0} in the MRA model.

Information geometry

This immediately enables us to invoke standard asymptotic normality theory for MLEs (c.f. van der Vaart):

Theorem

$\sqrt{n}\left(\tilde{\theta}-\theta_{0}\right)$ is asymptotically normal with and covariance $I\left(\theta_{0}\right)^{-1}$.

Information geometry

This immediately enables us to invoke standard asymptotic normality theory for MLEs (c.f. van der Vaart):

Theorem

$\sqrt{n}\left(\tilde{\theta}-\theta_{0}\right)$ is asymptotically normal with and covariance $I\left(\theta_{0}\right)^{-1}$.
Upshot: The distance $\rho\left(\tilde{\theta}_{n}, \theta_{0}\right)$ is of the order

$$
n^{-1 / 2} \sqrt{\operatorname{Tr}\left[l(\theta)^{-1}\right]}=n^{-1 / 2} \sqrt{\operatorname{Tr}\left[\left[\nabla_{\theta \mid \theta=\theta_{0}}^{2} D_{K L}\left(p_{\theta_{0}} \| p_{\theta}\right)\right]^{-1}\right]} .
$$

Information geometry

> Theorem (Bandeira,Niles-Weed,Rigollet'20)
> Let $\theta, \varphi \in \mathbb{R}^{p}$ satisfy $3 \rho(\theta, \varphi) \leq\|\theta\| \leq \sigma$ and
> $\mathbb{E}_{\mathcal{G}}[G \theta]=\mathbb{E}_{\mathcal{G}}[G \varphi]=0$.
> Let $\Delta_{m}=\Delta_{m}(\theta, \varphi)=\mathbb{E}\left[(G \theta)^{\otimes m}\right]-\mathbb{E}\left[(G \varphi)^{\otimes m}\right]$.

Information geometry

Theorem (Bandeira,Niles-Weed,Rigollet'20)

Let $\theta, \varphi \in \mathbb{R}^{p}$ satisfy $3 \rho(\theta, \varphi) \leq\|\theta\| \leq \sigma$ and
$\mathbb{E}_{\mathcal{G}}[G \theta]=\mathbb{E}_{\mathcal{G}}[G \varphi]=0$.
Let $\Delta_{m}=\Delta_{m}(\theta, \varphi)=\mathbb{E}\left[(G \theta)^{\otimes m}\right]-\mathbb{E}\left[(G \varphi)^{\otimes m}\right]$.
For any $k \geq 1$, there exist universal constants \underline{C} and \bar{C} such that

$$
\underline{C} \sum_{m=1}^{\infty} \frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3} \sigma)^{2 m} m!} \leq D_{K L}\left(p_{\theta} \| p_{\varphi}\right)
$$

and

$$
D_{K L}\left(p_{\theta} \| p_{\varphi}\right) \leq 2 \sum_{m=1}^{k-1} \frac{\left\|\Delta_{m}\right\|^{2}}{\sigma^{2 m} m!}+\bar{C} \frac{\|\theta\|^{2 k-2} \rho(\theta, \varphi)^{2}}{\sigma^{2 k}}
$$

Information geometry

Corollary

If j is the minimum index such that $\left\|\Delta_{j}\left(\theta, \theta_{0}\right)\right\| \gtrsim \rho\left(\theta, \theta_{0}\right)$ on a neighbourhood of θ_{0}, then sample complexity scales as $\sigma^{2 j}$.

Information geometry

Corollary

If j is the minimum index such that $\left\|\Delta_{j}\left(\theta, \theta_{0}\right)\right\| \gtrsim \rho\left(\theta, \theta_{0}\right)$ on a neighbourhood of θ_{0}, then sample complexity scales as $\sigma^{2 j}$. Upshot: to improve sample complexity beyond σ^{6}, need to show non-degeneracy of $\theta \mapsto\left\|\Delta_{j}\left(\theta, \theta_{0}\right)\right\|$ on a neighbourhood of σ.

The Bernoulli Gaussian model

Definition (Generic sparse signals)
Generic support : Independent Bernoulli (s / p) sampling

The Bernoulli Gaussian model

Definition (Generic sparse signals)
Generic support: Independent Bernoulli (s / p) sampling
Generic values: Independent Gaussians

The beltway problem

Definition

A subset $S \subseteq \mathbb{Z}$ is said to be collision-free if its pairwise differences $D:=\{i-j: i, j \in D\}$ are unique.

The beltway problem

Definition

A subset $S \subseteq \mathbb{Z}$ is said to be collision-free if its pairwise differences $D:=\{i-j: i, j \in D\}$ are unique.

Question (Beltway Problem / Turnpike Problem / Partial Digest Problem (computational biology, signal processing))

What can we say about the set S from its pairwise differences D ?

The beltway problem

Definition

A subset $S \subseteq \mathbb{Z}$ is said to be collision-free if its pairwise differences $D:=\{i-j: i, j \in D\}$ are unique.

Question (Beltway Problem / Turnpike Problem / Partial Digest Problem (computational biology, signal processing))

 What can we say about the set S from its pairwise differences D ?
Conjecture (Piccard'39)

If S is collision free, D determines S uniquely up to trivial symmetries.

The beltway problem

Definition

A subset $S \subseteq \mathbb{Z}$ is said to be collision-free if its pairwise differences $D:=\{i-j: i, j \in D\}$ are unique.

Question (Beltway Problem / Turnpike Problem / Partial Digest Problem (computational biology, signal processing)) What can we say about the set S from its pairwise differences D ?

Conjecture (Piccard'39)

If S is collision free, D determines S uniquely up to trivial symmetries.

Theorem (Bekir,Golomb'04'07;Bloom'77)

Piccard's conjecture is true for $|S| \geq 7$.

The dilute regime of sparsity

- For $s=o\left(p^{1 / 4}\right)$, a generic support is collision-free with high probability

The dilute regime of sparsity

- For $s=o\left(p^{1 / 4}\right)$, a generic support is collision-free with high probability
- For small h, we have
$\Delta\left(\theta_{0}+h, \theta_{0}\right)=\mathbb{E}_{\mathcal{G}}\left[G \theta_{0} h^{*} G^{*}+G h \theta_{0}^{*} G^{*}\right]=: J$, to the leading order
- For $s=o\left(p^{1 / 4}\right)$, a generic support is collision-free with high probability
- For small h, we have
$\Delta\left(\theta_{0}+h, \theta_{0}\right)=\mathbb{E}_{\mathcal{G}}\left[G \theta_{0} h^{*} G^{*}+G h \theta_{0}^{*} G^{*}\right]=: J$, to the leading order
- (i, j) entry of J is $\frac{1}{p} \sum_{g=1}^{p}\left[\theta_{0}(i+g) h(j+g)+h(i+g) \theta_{0}(j+g)\right]$
- For $s=o\left(p^{1 / 4}\right)$, a generic support is collision-free with high probability
- For small h, we have
$\Delta\left(\theta_{0}+h, \theta_{0}\right)=\mathbb{E}_{\mathcal{G}}\left[G \theta_{0} h^{*} G^{*}+G h \theta_{0}^{*} G^{*}\right]=: J$, to the leading order
- (i, j) entry of J is $\frac{1}{p} \sum_{g=1}^{p}\left[\theta_{0}(i+g) h(j+g)+h(i+g) \theta_{0}(j+g)\right]$
- J is Toeplitz, i.e. $J_{i j}=J_{i-j}$
- For $s=o\left(p^{1 / 4}\right)$, a generic support is collision-free with high probability
- For small h, we have
$\Delta\left(\theta_{0}+h, \theta_{0}\right)=\mathbb{E}_{\mathcal{G}}\left[G \theta_{0} h^{*} G^{*}+G h \theta_{0}^{*} G^{*}\right]=: J$, to the leading order
- (i, j) entry of J is $\frac{1}{p} \sum_{g=1}^{p}\left[\theta_{0}(i+g) h(j+g)+h(i+g) \theta_{0}(j+g)\right]$
- J is Toeplitz, i.e. $J_{i j}=J_{i-j}$
- Target signal not too small on its support

The dilute regime of sparsity

- For $s=o\left(p^{1 / 4}\right)$, a generic support is collision-free with high probability
- For small h, we have
$\Delta\left(\theta_{0}+h, \theta_{0}\right)=\mathbb{E}_{\mathcal{G}}\left[G \theta_{0} h^{*} G^{*}+G h \theta_{0}^{*} G^{*}\right]=: J$, to the leading order
- (i, j) entry of J is $\frac{1}{p} \sum_{g=1}^{p}\left[\theta_{0}(i+g) h(j+g)+h(i+g) \theta_{0}(j+g)\right]$
- J is Toeplitz, i.e. $J_{i j}=J_{i-j}$
- Target signal not too small on its support $\Longrightarrow \theta_{0}, h$ have same support S

The dilute regime of sparsity

- For $s=o\left(p^{1 / 4}\right)$, a generic support is collision-free with high probability
- For small h, we have
$\Delta\left(\theta_{0}+h, \theta_{0}\right)=\mathbb{E}_{\mathcal{G}}\left[G \theta_{0} h^{*} G^{*}+G h \theta_{0}^{*} G^{*}\right]=: J$, to the leading order
- (i, j) entry of J is $\frac{1}{p} \sum_{g=1}^{p}\left[\theta_{0}(i+g) h(j+g)+h(i+g) \theta_{0}(j+g)\right]$
- J is Toeplitz, i.e. $J_{i j}=J_{i-j}$
- Target signal not too small on its support $\Longrightarrow \theta_{0}, h$ have same support S
- $J_{i j}=0$ unless both i, j belong to support $S(\Longleftrightarrow i-j \in D)$

The dilute regime of sparsity

- For $s=o\left(p^{1 / 4}\right)$, a generic support is collision-free with high probability
- For small h, we have
$\Delta\left(\theta_{0}+h, \theta_{0}\right)=\mathbb{E}_{\mathcal{G}}\left[G \theta_{0} h^{*} G^{*}+G h \theta_{0}^{*} G^{*}\right]=: J$, to the leading order
- (i, j) entry of J is $\frac{1}{p} \sum_{g=1}^{p}\left[\theta_{0}(i+g) h(j+g)+h(i+g) \theta_{0}(j+g)\right]$
- J is Toeplitz, i.e. $J_{i j}=J_{i-j}$
- Target signal not too small on its support $\Longrightarrow \theta_{0}, h$ have same support S
- $J_{i j}=0$ unless both i, j belong to support $S(\Longleftrightarrow i-j \in D)$
- S collision-free \Longrightarrow exactly one term in
$\sum_{g=1}^{p}\left[\theta_{0}(i+g) h(j+g)+h(i+g) \theta_{0}(j+g)\right]$ is non-zero \Longrightarrow
linear lower bound in h.

The moderate regime of sparsity

- polylog $(p) \lesssim s \lesssim p / \operatorname{polylog}(p)$
- Signal θ_{0} is symmetric (implies Fourier coefficients are real)

The moderate regime of sparsity

- polylog $(p) \lesssim s \lesssim p /$ polylog (p)
- Signal θ_{0} is symmetric (implies Fourier coefficients are real)
- Set $\check{h}(x)=h(-x)$, then

$$
\frac{1}{p} \sum_{g=1}^{p} \theta_{0}(i+g) h(j+g)=\frac{1}{p} \sum_{g=1}^{p} \theta_{0}(i+g) \check{h}(-j-g)=\left[\theta_{0} * \breve{h}\right](i-j) .
$$

The moderate regime of sparsity

- polylog $(p) \lesssim s \lesssim p / \operatorname{polylog}(p)$
- Signal θ_{0} is symmetric (implies Fourier coefficients are real)
- Set $\check{h}(x)=h(-x)$, then

$$
\frac{1}{p} \sum_{g=1}^{p} \theta_{0}(i+g) h(j+g)=\frac{1}{p} \sum_{g=1}^{p} \theta_{0}(i+g) \check{h}(-j-g)=\left[\theta_{0} * \breve{h}\right](i-j) .
$$

- Set $\mathcal{M}[v]:=(v(i-j))$, then

$$
\Delta\left(\theta_{0}+h, \theta_{0}\right)=\mathbb{E}_{\mathcal{G}}\left[G \theta_{0} h^{*} G^{*}+G h \theta_{0}^{*} G^{*}\right]+o(h)=\mathcal{M}\left[\theta_{0} * \breve{h}\right]+\mathcal{M}\left[\check{\theta}_{0} * h\right]+o(h)
$$

The moderate regime of sparsity

- polylog $(p) \lesssim s \lesssim p / \operatorname{polylog}(p)$
- Signal θ_{0} is symmetric (implies Fourier coefficients are real)
- Set $\check{h}(x)=h(-x)$, then

$$
\frac{1}{p} \sum_{g=1}^{p} \theta_{0}(i+g) h(j+g)=\frac{1}{p} \sum_{g=1}^{p} \theta_{0}(i+g) \check{h}(-j-g)=\left[\theta_{0} * \breve{h}\right](i-j) .
$$

- Set $\mathcal{M}[v]:=(v(i-j))$, then

$$
\Delta\left(\theta_{0}+h, \theta_{0}\right)=\mathbb{E}_{\mathcal{G}}\left[G \theta_{0} h^{*} G^{*}+G h \theta_{0}^{*} G^{*}\right]+o(h)=\mathcal{M}\left[\theta_{0} * \breve{h}\right]+\mathcal{M}\left[\check{\theta}_{0} * h\right]+o(h)
$$

- Discrete Fourier analysis and Parseval's Theorem:

$$
\left\|\mathcal{M}\left(\theta_{0} * \breve{h}\right)\right\|_{F}=\sqrt{p}\left\|\theta_{0} * \check{h}\right\|_{2}=\sqrt{p} \cdot \frac{1}{\sqrt{p}} \cdot\left\|\widehat{\theta_{0} * \breve{h}}\right\|_{2}=\left\|\hat{\theta}_{0} \cdot \stackrel{h}{h}\right\|_{2}=\left\|\hat{\theta}_{0} \cdot \overline{\hat{h}}\right\|_{2}
$$

The moderate regime of sparsity

- All said and done :

$$
\left\|\Delta\left(\theta_{0}+h, \theta_{0}\right)\right\|^{2}=\sum_{\xi \in \mathbb{Z} / p \mathbb{Z}}\left|\hat{\theta_{0}}(\xi)\right|^{2}|\hat{h}(\xi)|^{2}
$$

The moderate regime of sparsity

- All said and done :
$\left\|\Delta\left(\theta_{0}+h, \theta_{0}\right)\right\|^{2}=\sum_{\xi \in \mathbb{Z} / p \mathbb{Z}}\left|\hat{\theta}_{0}(\xi)\right|^{2}|\hat{h}(\xi)|^{2}$
- Naive bound : lower bound $\min _{\xi \in \mathbb{Z} / p \mathbb{Z}}\left|\hat{\theta_{0}}(\xi)\right|$... too crude
- All said and done :
$\left\|\Delta\left(\theta_{0}+h, \theta_{0}\right)\right\|^{2}=\sum_{\xi \in \mathbb{Z} / p \mathbb{Z}}\left|\hat{\theta}_{0}(\xi)\right|^{2}|\hat{h}(\xi)|^{2}$
- Naive bound : lower bound $\min _{\xi \in \mathbb{Z} / p \mathbb{Z}}\left|\hat{\theta_{0}}(\xi)\right|$... too crude
- Want to leverage sparsity
- All said and done :
$\left\|\Delta\left(\theta_{0}+h, \theta_{0}\right)\right\|^{2}=\sum_{\xi \in \mathbb{Z} / p \mathbb{Z}}\left|\hat{\theta_{0}}(\xi)\right|^{2}|\hat{h}(\xi)|^{2}$
- Naive bound : lower bound $\min _{\xi \in \mathbb{Z} / p \mathbb{Z}}\left|\hat{\theta_{0}}(\xi)\right|$... too crude
- Want to leverage sparsity which is in physical coordinates
- All said and done :
$\left\|\Delta\left(\theta_{0}+h, \theta_{0}\right)\right\|^{2}=\sum_{\xi \in \mathbb{Z} / p \mathbb{Z}}\left|\hat{\theta}_{0}(\xi)\right|^{2}|\hat{h}(\xi)|^{2}$
- Naive bound : lower bound $\min _{\xi \in \mathbb{Z} / p \mathbb{Z}}\left|\hat{\theta_{0}}(\xi)\right|$... too crude
- Want to leverage sparsity which is in physical coordinates but analysis is in Fourier coordinates
- All said and done :
$\left\|\Delta\left(\theta_{0}+h, \theta_{0}\right)\right\|^{2}=\sum_{\xi \in \mathbb{Z} / p \mathbb{Z}}\left|\hat{\theta}_{0}(\xi)\right|^{2}|\hat{h}(\xi)|^{2}$
- Naive bound : lower bound $\min _{\xi \in \mathbb{Z} / p \mathbb{Z}}\left|\hat{\theta_{0}}(\xi)\right|$... too crude
- Want to leverage sparsity which is in physical coordinates but analysis is in Fourier coordinates
- Need: a bridge between physical and Fourier coordinates that

The moderate regime of sparsity

- All said and done :
$\left\|\Delta\left(\theta_{0}+h, \theta_{0}\right)\right\|^{2}=\sum_{\xi \in \mathbb{Z} / p \mathbb{Z}}\left|\hat{\theta}_{0}(\xi)\right|^{2}|\hat{h}(\xi)|^{2}$
- Naive bound : lower bound $\min _{\xi \in \mathbb{Z} / p \mathbb{Z}}\left|\hat{\theta}_{0}(\xi)\right|$... too crude
- Want to leverage sparsity which is in physical coordinates but analysis is in Fourier coordinates
- Need: a bridge between physical and Fourier coordinates that
- (a) doesn't lose much information

The moderate regime of sparsity

- All said and done :
$\left\|\Delta\left(\theta_{0}+h, \theta_{0}\right)\right\|^{2}=\sum_{\xi \in \mathbb{Z} / p \mathbb{Z}}\left|\hat{\theta}_{0}(\xi)\right|^{2}|\hat{h}(\xi)|^{2}$
- Naive bound : lower bound $\min _{\xi \in \mathbb{Z} / p \mathbb{Z}}\left|\hat{\theta_{0}}(\xi)\right|$... too crude
- Want to leverage sparsity which is in physical coordinates but analysis is in Fourier coordinates
- Need: a bridge between physical and Fourier coordinates that
- (a) doesn't lose much information
- (b) transfers sparsity to Fourier coordinates (e..g, so that $\min _{\xi \in \Lambda}\left|\hat{\theta}_{0}(\xi)\right|$ is not too small)

The moderate regime of sparsity

- All said and done :
$\left\|\Delta\left(\theta_{0}+h, \theta_{0}\right)\right\|^{2}=\sum_{\xi \in \mathbb{Z} / p \mathbb{Z}}\left|\hat{\theta}_{0}(\xi)\right|^{2}|\hat{h}(\xi)|^{2}$
- Naive bound : lower bound $\min _{\xi \in \mathbb{Z} / p \mathbb{Z}}\left|\hat{\theta_{0}}(\xi)\right|$... too crude
- Want to leverage sparsity which is in physical coordinates but analysis is in Fourier coordinates
- Need: a bridge between physical and Fourier coordinates that
- (a) doesn't lose much information
- (b) transfers sparsity to Fourier coordinates (e..g, so that $\min _{\xi \in \Lambda}\left|\hat{\theta}_{0}(\xi)\right|$ is not too small)

The moderate regime of sparsity

- Need: a bridge between physical and Fourier coordinates that
- (a) doesn't lose much information
- (b) transfers sparsity to Fourier coordinates (e..g, so that $\min _{\xi \in \Lambda}\left|\hat{\theta}_{0}(\xi)\right|$ is not too small)
- Need: a bridge between physical and Fourier coordinates that
- (a) doesn't lose much information
- (b) transfers sparsity to Fourier coordinates (e..g, so that $\min _{\xi \in \Lambda}\left|\hat{\theta}_{0}(\xi)\right|$ is not too small)
- Solution: Uniform Uncertainty Principle (UUP) : random set of frequencies Λ of size $s \log p$ suffices for (a) with high probability
- Need: a bridge between physical and Fourier coordinates that
- (a) doesn't lose much information
- (b) transfers sparsity to Fourier coordinates (e..g, so that $\min _{\xi \in \Lambda}\left|\hat{\theta}_{0}(\xi)\right|$ is not too small)
- Solution: Uniform Uncertainty Principle (UUP) : random set of frequencies Λ of size $s \log p$ suffices for (a) with high probability
- But for (b), min of $\hat{\theta_{0}}$ over a random set of frequencies Λ is still very small with high probability (in Λ

The moderate regime of sparsity

- Need: a bridge between physical and Fourier coordinates that
- (a) doesn't lose much information
- (b) transfers sparsity to Fourier coordinates (e..g, so that $\min _{\xi \in \Lambda}\left|\hat{\theta}_{0}(\xi)\right|$ is not too small)
- Solution: Uniform Uncertainty Principle (UUP) : random set of frequencies Λ of size $s \log p$ suffices for (a) with high probability
- But for (b), min of $\hat{\theta_{0}}$ over a random set of frequencies Λ is still very small with high probability (in Λ
- Show that this high probability is strictly smaller than 1
- Application of probabilistic method to show existence of good set Λ of frequencies satisfying both (a) and (b) where the probability of finding good set $\rightarrow 0$ with system size

Information geometry : the upper bound

- Density $p_{\zeta}(y)$ given by

$$
\mathbb{E}_{\mathcal{G}}\left[\frac{1}{\sigma^{d}} \mathrm{~g}\left(\sigma^{-1}(y-G \zeta)\right)\right]=\frac{1}{\sigma^{d}} \mathrm{~g}\left(\sigma^{-1} y\right) \exp \left(-\|\zeta\|^{2} / 2\right) \mathbb{E}_{\mathcal{G}}\left[\exp \left(y^{\top} G \zeta / \sigma^{2}\right)\right]
$$

Information geometry : the upper bound

- Density $p_{\zeta}(y)$ given by

$$
\mathbb{E}_{\mathcal{G}}\left[\frac{1}{\sigma^{d}} \mathrm{~g}\left(\sigma^{-1}(y-G \zeta)\right)\right]=\frac{1}{\sigma^{d}} \mathrm{~g}\left(\sigma^{-1} y\right) \exp \left(-\|\zeta\|^{2} / 2\right) \mathbb{E}_{\mathcal{G}}\left[\exp \left(y^{\top} G \zeta / \sigma^{2}\right)\right]
$$

- By Jensen, $p_{\theta}(y) \geq \frac{1}{\sigma^{a}} g\left(\sigma^{-1} y\right) \exp \left(-\|\zeta\|^{2} / 2\right)$ since $\mathbb{E}_{\mathcal{G}}[G \theta]=0$

Information geometry : the upper bound

- Density $p_{\zeta}(y)$ given by

$$
\mathbb{E}_{\mathcal{G}}\left[\frac{1}{\sigma^{d}} \mathrm{~g}\left(\sigma^{-1}(y-G \zeta)\right)\right]=\frac{1}{\sigma^{d}} \mathrm{~g}\left(\sigma^{-1} y\right) \exp \left(-\|\zeta\|^{2} / 2\right) \mathbb{E}_{\mathcal{G}}\left[\exp \left(y^{\top} G \zeta / \sigma^{2}\right)\right]
$$

- By Jensen, $p_{\theta}(y) \geq \frac{1}{\sigma^{d}} \mathrm{~g}\left(\sigma^{-1} y\right) \exp \left(-\|\zeta\|^{2} / 2\right)$ since $\mathbb{E}_{\mathcal{G}}[G \theta]=0$
- $D_{K L}\left(p_{\theta} \| p_{\varphi}\right) \leq \chi^{2}(\theta, \varphi)=\int \frac{\left(p_{\theta}(y)-p_{\varphi}(y)\right)^{2}}{p_{\theta}(y)} \mathrm{d} y$

Information geometry : the upper bound

- Density $p_{\zeta}(y)$ given by

$$
\mathbb{E}_{\mathcal{G}}\left[\frac{1}{\sigma^{d}} \mathrm{~g}\left(\sigma^{-1}(y-G \zeta)\right)\right]=\frac{1}{\sigma^{d}} \mathrm{~g}\left(\sigma^{-1} y\right) \exp \left(-\|\zeta\|^{2} / 2\right) \mathbb{E}_{\mathcal{G}}\left[\exp \left(y^{\top} G \zeta / \sigma^{2}\right)\right]
$$

- By Jensen, $p_{\theta}(y) \geq \frac{1}{\sigma^{d}} g\left(\sigma^{-1} y\right) \exp \left(-\|\zeta\|^{2} / 2\right)$ since $\mathbb{E}_{\mathcal{G}}[G \theta]=0$
- $D_{K L}\left(p_{\theta} \| p_{\varphi}\right) \leq \chi^{2}(\theta, \varphi)=\int \frac{\left(p_{\theta}(y)-p_{\varphi}(y)\right)^{2}}{p_{\theta}(y)} \mathrm{d} y$
- Using $y=G \theta+\sigma \xi$, we can simplify to $\chi^{2}(\theta, \varphi)$ bounded above by $2 \mathbb{E}_{\mathcal{G}}\left[\exp \left(\left(G^{\prime} \theta\right)^{\top} G \theta / \sigma^{2}\right)-2 \exp \left(\left(G^{\prime} \varphi\right)^{\top} G \theta / \sigma^{2}\right)+\exp \left(\left(G^{\prime} \varphi\right)^{\top} G \varphi / \sigma^{2}\right)\right]$

Information geometry : the upper bound

- Density $p_{\zeta}(y)$ given by

$$
\mathbb{E}_{\mathcal{G}}\left[\frac{1}{\sigma^{d}} \mathrm{~g}\left(\sigma^{-1}(y-G \zeta)\right)\right]=\frac{1}{\sigma^{d}} \mathrm{~g}\left(\sigma^{-1} y\right) \exp \left(-\|\zeta\|^{2} / 2\right) \mathbb{E}_{\mathcal{G}}\left[\exp \left(y^{\top} G \zeta / \sigma^{2}\right)\right]
$$

- By Jensen, $p_{\theta}(y) \geq \frac{1}{\sigma^{a}} g\left(\sigma^{-1} y\right) \exp \left(-\|\zeta\|^{2} / 2\right)$ since $\mathbb{E}_{\mathcal{G}}[G \theta]=0$
- $D_{K L}\left(p_{\theta} \| p_{\varphi}\right) \leq \chi^{2}(\theta, \varphi)=\int \frac{\left(p_{\theta}(y)-p_{\varphi}(y)\right)^{2}}{p_{\theta}(y)} \mathrm{d} y$
- Using $y=G \theta+\sigma \xi$, we can simplify to $\chi^{2}(\theta, \varphi)$ bounded above by

$$
2 \mathbb{E}_{\mathcal{G}}\left[\exp \left(\left(G^{\prime} \theta\right)^{\top} G \theta / \sigma^{2}\right)-2 \exp \left(\left(G^{\prime} \varphi\right)^{\top} G \theta / \sigma^{2}\right)+\exp \left(\left(G^{\prime} \varphi\right)^{\top} G \varphi / \sigma^{2}\right)\right]
$$

- Expand exponentials to get the upper bound

$$
\sum_{m \geq 0} \frac{2}{\sigma^{2 m} m!} \mathbb{E}\left[\left(\left(G^{\prime} \theta\right)^{\top} G \theta\right)^{m}-2\left(\left(G^{\prime} \varphi\right)^{\top} G \theta\right)^{m}+\left(\left(G^{\prime} \varphi\right)^{\top} G \varphi\right)^{m}\right]
$$

Information geometry : the upper bound

- Density $p_{\zeta}(y)$ given by

$$
\mathbb{E}_{\mathcal{G}}\left[\frac{1}{\sigma^{d}} \mathrm{~g}\left(\sigma^{-1}(y-G \zeta)\right)\right]=\frac{1}{\sigma^{d}} \mathrm{~g}\left(\sigma^{-1} y\right) \exp \left(-\|\zeta\|^{2} / 2\right) \mathbb{E}_{\mathcal{G}}\left[\exp \left(y^{\top} G \zeta / \sigma^{2}\right)\right]
$$

- By Jensen, $p_{\theta}(y) \geq \frac{1}{\sigma^{a}} g\left(\sigma^{-1} y\right) \exp \left(-\|\zeta\|^{2} / 2\right)$ since $\mathbb{E}_{\mathcal{G}}[G \theta]=0$
- $D_{K L}\left(p_{\theta} \| p_{\varphi}\right) \leq \chi^{2}(\theta, \varphi)=\int \frac{\left(p_{\theta}(y)-p_{\varphi}(y)\right)^{2}}{p_{\theta}(y)} \mathrm{d} y$
- Using $y=G \theta+\sigma \xi$, we can simplify to $\chi^{2}(\theta, \varphi)$ bounded above by

$$
2 \mathbb{E}_{\mathcal{G}}\left[\exp \left(\left(G^{\prime} \theta\right)^{\top} G \theta / \sigma^{2}\right)-2 \exp \left(\left(G^{\prime} \varphi\right)^{\top} G \theta / \sigma^{2}\right)+\exp \left(\left(G^{\prime} \varphi\right)^{\top} G \varphi / \sigma^{2}\right)\right]
$$

- Expand exponentials to get the upper bound

$$
\begin{aligned}
& \sum_{m \geq 0} \frac{2}{\sigma^{2 m} m!} \mathbb{E}\left[\left(\left(G^{\prime} \theta\right)^{\top} G \theta\right)^{m}-2\left(\left(G^{\prime} \varphi\right)^{\top} G \theta\right)^{m}+\left(\left(G^{\prime} \varphi\right)^{\top} G \varphi\right)^{m}\right] \\
& =\sum_{m \geq 0} \frac{2}{\sigma^{2 m} m!}\left\|\mathbb{E}\left[(G \theta)^{\otimes m}\right]\right\|^{2}-2\left\langle\mathbb{E}\left[(G \theta)^{\otimes m}\right], \mathbb{E}\left[(G \varphi)^{\otimes m}\right]\right\rangle+\left\|\mathbb{E}\left[(G \varphi)^{\otimes m}\right]\right\|^{2}
\end{aligned}
$$

Information geometry : the upper bound

- Density $p_{\zeta}(y)$ given by

$$
\mathbb{E}_{\mathcal{G}}\left[\frac{1}{\sigma^{d}} \mathrm{~g}\left(\sigma^{-1}(y-G \zeta)\right)\right]=\frac{1}{\sigma^{d}} \mathrm{~g}\left(\sigma^{-1} y\right) \exp \left(-\|\zeta\|^{2} / 2\right) \mathbb{E}_{\mathcal{G}}\left[\exp \left(y^{\top} G \zeta / \sigma^{2}\right)\right]
$$

- By Jensen, $p_{\theta}(y) \geq \frac{1}{\sigma^{a}} g\left(\sigma^{-1} y\right) \exp \left(-\|\zeta\|^{2} / 2\right)$ since $\mathbb{E}_{\mathcal{G}}[G \theta]=0$
- $D_{K L}\left(p_{\theta} \| p_{\varphi}\right) \leq \chi^{2}(\theta, \varphi)=\int \frac{\left(p_{\theta}(y)-p_{\varphi}(y)\right)^{2}}{p_{\theta}(y)} \mathrm{d} y$
- Using $y=G \theta+\sigma \xi$, we can simplify to $\chi^{2}(\theta, \varphi)$ bounded above by

$$
2 \mathbb{E}_{\mathcal{G}}\left[\exp \left(\left(G^{\prime} \theta\right)^{\top} G \theta / \sigma^{2}\right)-2 \exp \left(\left(G^{\prime} \varphi\right)^{\top} G \theta / \sigma^{2}\right)+\exp \left(\left(G^{\prime} \varphi\right)^{\top} G \varphi / \sigma^{2}\right)\right]
$$

- Expand exponentials to get the upper bound

$$
\begin{aligned}
& \sum_{m \geq 0} \frac{2}{\sigma^{2 m} m!} \mathbb{E}\left[\left(\left(G^{\prime} \theta\right)^{\top} G \theta\right)^{m}-2\left(\left(G^{\prime} \varphi\right)^{\top} G \theta\right)^{m}+\left(\left(G^{\prime} \varphi\right)^{\top} G \varphi\right)^{m}\right] \\
& =\sum_{m \geq 0} \frac{2}{\sigma^{2 m} m!}\left\|\mathbb{E}\left[(G \theta)^{\otimes m}\right]\right\|^{2}-2\left\langle\mathbb{E}\left[(G \theta)^{\otimes m}\right], \mathbb{E}\left[(G \varphi)^{\otimes m}\right]\right\rangle+\left\|\mathbb{E}\left[(G \varphi)^{\otimes m}\right]\right\|^{2} \\
& =\sum_{m \geq 0} \frac{2}{\sigma^{2 m} m!}\left\|\Delta_{m}\right\|^{2}
\end{aligned}
$$

Information geometry : the upper bound

- Density $p_{\zeta}(y)$ given by

$$
\mathbb{E}_{\mathcal{G}}\left[\frac{1}{\sigma^{d}} \mathrm{~g}\left(\sigma^{-1}(y-G \zeta)\right)\right]=\frac{1}{\sigma^{d}} \mathrm{~g}\left(\sigma^{-1} y\right) \exp \left(-\|\zeta\|^{2} / 2\right) \mathbb{E}_{\mathcal{G}}\left[\exp \left(y^{\top} G \zeta / \sigma^{2}\right)\right]
$$

- By Jensen, $p_{\theta}(y) \geq \frac{1}{\sigma^{d}} \mathrm{~g}\left(\sigma^{-1} y\right) \exp \left(-\|\zeta\|^{2} / 2\right)$ since $\mathbb{E}_{\mathcal{G}}[G \theta]=0$
- $D_{K L}\left(p_{\theta} \| p_{\varphi}\right) \leq \chi^{2}(\theta, \varphi)=\int \frac{\left(p_{\theta}(y)-p_{\varphi}(y)\right)^{2}}{p_{\theta}(y)} \mathrm{d} y$
- Using $y=G \theta+\sigma \xi$, we can simplify to $\chi^{2}(\theta, \varphi)$ bounded above by

$$
2 \mathbb{E}_{\mathcal{G}}\left[\exp \left(\left(G^{\prime} \theta\right)^{\top} G \theta / \sigma^{2}\right)-2 \exp \left(\left(G^{\prime} \varphi\right)^{\top} G \theta / \sigma^{2}\right)+\exp \left(\left(G^{\prime} \varphi\right)^{\top} G \varphi / \sigma^{2}\right)\right]
$$

- Expand exponentials to get the upper bound

$$
\begin{aligned}
& \sum_{m \geq 0} \frac{2}{\sigma^{2 m} m!} \mathbb{E}\left[\left(\left(G^{\prime} \theta\right)^{\top} G \theta\right)^{m}-2\left(\left(G^{\prime} \varphi\right)^{\top} G \theta\right)^{m}+\left(\left(G^{\prime} \varphi\right)^{\top} G \varphi\right)^{m}\right] \\
& =\sum_{m \geq 0} \frac{2}{\sigma^{2 m} m!}\left\|\mathbb{E}\left[(G \theta)^{\otimes m}\right]\right\|^{2}-2\left\langle\mathbb{E}\left[(G \theta)^{\otimes m}\right], \mathbb{E}\left[(G \varphi)^{\otimes m}\right]\right\rangle+\left\|\mathbb{E}\left[(G \varphi)^{\otimes m}\right]\right\|^{2} \\
& =\sum_{m \geq 0} \frac{2}{\sigma^{2 m} m!}\left\|\Delta_{m}\right\|^{2} \leq 2 \sum_{m=1}^{k-1} \frac{\left\|\Delta_{m}\right\|^{2}}{\sigma^{2 m} m!}+C \cdot \frac{\|\theta\|^{2 k-2} \cdot \rho(\theta, \varphi)^{2}}{\sigma^{2 k}}
\end{aligned}
$$

Information geometry : the lower bound

Lemma

Let P_{0} and P_{1} be any two distributions on a space \mathcal{X}. If there exists a measurable function $T: \mathcal{X} \rightarrow \mathbb{R}$ such that $\left(\mathbb{E}_{0}[T(X)]-\mathbb{E}_{1}[T(X)]\right)^{2}=\mu^{2}$ and $\max \left\{\operatorname{var}_{1}(T(X)), \operatorname{var}_{0}(T(X))\right\} \leq \sigma^{2}$, then

$$
D_{K L}\left(\mathrm{P}_{0} \| \mathrm{P}_{1}\right) \geq \frac{\mu^{2}}{4 \sigma^{2}+\mu^{2}}
$$

Information geometry : the lower bound

Lemma

Let P_{0} and P_{1} be any two distributions on a space \mathcal{X}. If there exists a measurable function $T: \mathcal{X} \rightarrow \mathbb{R}$ such that $\left(\mathbb{E}_{0}[T(X)]-\mathbb{E}_{1}[T(X)]\right)^{2}=\mu^{2}$ and $\max \left\{\operatorname{var}_{1}(T(X)), \operatorname{var}_{0}(T(X))\right\} \leq \sigma^{2}$, then

$$
D_{K L}\left(\mathrm{P}_{0} \| \mathrm{P}_{1}\right) \geq \frac{\mu^{2}}{4 \sigma^{2}+\mu^{2}}
$$

Corollary

If $\sigma^{2} \leq a \cdot \mu$ and $\mu \leq b$ in above, then $D_{K L}\left(\mathrm{P}_{0} \| \mathrm{P}_{1}\right) \geq \mu /(4 a+b)$.

Information geometry : the lower bound

Lemma

Let P_{0} and P_{1} be any two distributions on a space \mathcal{X}. If there exists a measurable function $T: \mathcal{X} \rightarrow \mathbb{R}$ such that $\left(\mathbb{E}_{0}[T(X)]-\mathbb{E}_{1}[T(X)]\right)^{2}=\mu^{2}$ and $\max \left\{\operatorname{var}_{1}(T(X)), \operatorname{var}_{0}(T(X))\right\} \leq \sigma^{2}$, then

$$
D_{K L}\left(\mathrm{P}_{0} \| \mathrm{P}_{1}\right) \geq \frac{\mu^{2}}{4 \sigma^{2}+\mu^{2}}
$$

Corollary

If $\sigma^{2} \leq a \cdot \mu$ and $\mu \leq b$ in above, then $D_{K L}\left(\mathrm{P}_{0} \| \mathrm{P}_{1}\right) \geq \mu /(4 a+b)$.
Our goal : To use the Lemma and the Corollary to obtain lower bound on $D_{K L}\left(p_{\theta} \| p_{\varphi}\right)$.

Information geometry : the lower bound

Lemma

Let P_{0} and P_{1} be any two distributions on a space \mathcal{X}. If there exists a measurable function $T: \mathcal{X} \rightarrow \mathbb{R}$ such that $\left(\mathbb{E}_{0}[T(X)]-\mathbb{E}_{1}[T(X)]\right)^{2}=\mu^{2}$ and $\max \left\{\operatorname{var}_{1}(T(X)), \operatorname{var}_{0}(T(X))\right\} \leq \sigma^{2}$, then

$$
D_{K L}\left(\mathrm{P}_{0} \| \mathrm{P}_{1}\right) \geq \frac{\mu^{2}}{4 \sigma^{2}+\mu^{2}}
$$

Corollary

If $\sigma^{2} \leq a \cdot \mu$ and $\mu \leq b$ in above, then $D_{K L}\left(\mathrm{P}_{0} \| \mathrm{P}_{1}\right) \geq \mu /(4 a+b)$.
Our goal : To use the Lemma and the Corollary to obtain lower bound on $D_{K L}\left(p_{\theta} \| p_{\varphi}\right)$.
Need: Suitable statistic T, variance bounds ...

Analysis on Gaussian space

- Let γ be standard Gaussian on \mathbb{R}

Analysis on Gaussian space

- Let γ be standard Gaussian on \mathbb{R}
- Hermite polynomials in 1 dimension:
- For $k \geq 0$, the function $h_{k}(x)$ is a degree- k polynomial.

Analysis on Gaussian space

- Let γ be standard Gaussian on \mathbb{R}
- Hermite polynomials in 1 dimension:
- For $k \geq 0$, the function $h_{k}(x)$ is a degree- k polynomial.
- $\left\{h_{k}\right\}_{k \geq 0}$ form an orthogonal basis of of $L_{2}(\gamma)$

Analysis on Gaussian space

- Let γ be standard Gaussian on \mathbb{R}
- Hermite polynomials in 1 dimension:
- For $k \geq 0$, the function $h_{k}(x)$ is a degree- k polynomial.
- $\left\{h_{k}\right\}_{k \geq 0}$ form an orthogonal basis of of $L_{2}(\gamma)$
- $\left\|h_{k}\right\|_{\gamma}^{2}=k$!

Analysis on Gaussian space

- Let γ be standard Gaussian on \mathbb{R}
- Hermite polynomials in 1 dimension:
- For $k \geq 0$, the function $h_{k}(x)$ is a degree- k polynomial.
- $\left\{h_{k}\right\}_{k \geq 0}$ form an orthogonal basis of of $L_{2}(\gamma)$
- $\left\|h_{k}\right\|_{\gamma}^{2}=k$!
- If $Y \sim \mathcal{N}(\mu, 1)$, then $\mathbb{E}\left[h_{k}(Y)\right]=\mu^{k}$

Analysis on Gaussian space

- Let γ be standard Gaussian on \mathbb{R}
- Hermite polynomials in 1 dimension:
- For $k \geq 0$, the function $h_{k}(x)$ is a degree- k polynomial.
- $\left\{h_{k}\right\}_{k \geq 0}$ form an orthogonal basis of of $L_{2}(\gamma)$
- $\left\|h_{k}\right\|_{\gamma}^{2}=k$!
- If $Y \sim \mathcal{N}(\mu, 1)$, then $\mathbb{E}\left[h_{k}(Y)\right]=\mu^{k}$
- If $Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\mathbb{E}\left[\sigma^{k} h_{k}\left(\sigma^{-1} Y\right)\right]=\mu^{k}$
- Hermite polynomials in p dimensions :

Analysis on Gaussian space

- Let γ be standard Gaussian on \mathbb{R}
- Hermite polynomials in 1 dimension:
- For $k \geq 0$, the function $h_{k}(x)$ is a degree- k polynomial.
- $\left\{h_{k}\right\}_{k \geq 0}$ form an orthogonal basis of of $L_{2}(\gamma)$
- $\left\|h_{k}\right\|_{\gamma}^{2}=k$!
- If $Y \sim \mathcal{N}(\mu, 1)$, then $\mathbb{E}\left[h_{k}(Y)\right]=\mu^{k}$
- If $Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\mathbb{E}\left[\sigma^{k} h_{k}\left(\sigma^{-1} Y\right)\right]=\mu^{k}$
- Hermite polynomials in p dimensions :
- Given a multi-index $\alpha \in \mathbb{N}^{p}$, define the multivariate Hermite polynomial h_{α} by $h_{\alpha}\left(x_{1}, \ldots, x_{p}\right)=\prod_{i=1}^{p} h_{\alpha_{i}}\left(x_{i}\right)$

Analysis on Gaussian space

- Let γ be standard Gaussian on \mathbb{R}
- Hermite polynomials in 1 dimension:
- For $k \geq 0$, the function $h_{k}(x)$ is a degree- k polynomial.
- $\left\{h_{k}\right\}_{k \geq 0}$ form an orthogonal basis of of $L_{2}(\gamma)$
- $\left\|h_{k}\right\|_{\gamma}^{2}=k$!
- If $Y \sim \mathcal{N}(\mu, 1)$, then $\mathbb{E}\left[h_{k}(Y)\right]=\mu^{k}$
- If $Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\mathbb{E}\left[\sigma^{k} h_{k}\left(\sigma^{-1} Y\right)\right]=\mu^{k}$
- Hermite polynomials in p dimensions :
- Given a multi-index $\alpha \in \mathbb{N}^{p}$, define the multivariate Hermite polynomial h_{α} by $h_{\alpha}\left(x_{1}, \ldots, x_{p}\right)=\prod_{i=1}^{p} h_{\alpha_{i}}\left(x_{i}\right)$
- The multivariate Hermite polynomials form an orthonormal basis for the space $\mathbb{R}\left[x_{1}, \ldots, x_{p}\right]$ of p-variate polynomial functions with respect to the inner product over $L_{2}\left(\gamma^{\otimes p}\right)$.

Analysis on Gaussian space

- Let γ be standard Gaussian on \mathbb{R}
- Hermite polynomials in 1 dimension:
- For $k \geq 0$, the function $h_{k}(x)$ is a degree- k polynomial.
- $\left\{h_{k}\right\}_{k \geq 0}$ form an orthogonal basis of of $L_{2}(\gamma)$
- $\left\|h_{k}\right\|_{\gamma}^{2}=k$!
- If $Y \sim \mathcal{N}(\mu, 1)$, then $\mathbb{E}\left[h_{k}(Y)\right]=\mu^{k}$
- If $Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\mathbb{E}\left[\sigma^{k} h_{k}\left(\sigma^{-1} Y\right)\right]=\mu^{k}$
- Hermite polynomials in p dimensions :
- Given a multi-index $\alpha \in \mathbb{N}^{p}$, define the multivariate Hermite polynomial h_{α} by $h_{\alpha}\left(x_{1}, \ldots, x_{p}\right)=\prod_{i=1}^{p} h_{\alpha_{i}}\left(x_{i}\right)$
- The multivariate Hermite polynomials form an orthonormal basis for the space $\mathbb{R}\left[x_{1}, \ldots, x_{p}\right]$ of p-variate polynomial functions with respect to the inner product over $L_{2}\left(\gamma^{\otimes p}\right)$.
- In summary, for $Y \sim N_{p}\left(\mu, \sigma^{2} I_{p}\right)$ and $\alpha \in \mathbb{N}^{p}$, we have $\mathbb{E}\left[\sigma^{\|\alpha\|_{1}} h_{\alpha}\left(\sigma^{-1} Y\right)\right]=\prod_{i=1}^{p} \mu_{i}^{\alpha_{i}}$.

The lower bound : constructing the statistic

- Define $H_{m}(X)$ (for $X \in \mathbb{R}^{p}$) to be the order m symmetric tensor given by $\left(H_{m}(X)\right)_{i_{1}, \ldots, i_{m}}=\sigma^{m} h_{\alpha}\left(\sigma^{-1}(X)\right)$. where $\alpha \in \mathbb{N}^{p}$ is defined by $\alpha_{j}=\left|\left\{k: i_{k}=j\right\}\right|$, for $1 \leq j \leq p$.
- Define $H_{m}(X)$ (for $X \in \mathbb{R}^{p}$) to be the order m symmetric tensor given by $\left(H_{m}(X)\right)_{i_{1}, \ldots, i_{m}}=\sigma^{m} h_{\alpha}\left(\sigma^{-1}(X)\right)$. where $\alpha \in \mathbb{N}^{p}$ is defined by $\alpha_{j}=\left|\left\{k: i_{k}=j\right\}\right|$, for $1 \leq j \leq p$.
- Upshot: if $Y \sim N_{p}\left(\mu, \sigma^{2} I_{p}\right)$, then
$\left(\mathbb{E}\left[H_{m}(Y)\right]\right)_{i_{1}, \ldots, i_{m}}=\prod_{j=1}^{p} \mu_{j}^{\alpha_{j}}$
- Define $H_{m}(X)$ (for $X \in \mathbb{R}^{p}$) to be the order m symmetric tensor given by $\left(H_{m}(X)\right)_{i_{1}, \ldots, i_{m}}=\sigma^{m} h_{\alpha}\left(\sigma^{-1}(X)\right)$. where $\alpha \in \mathbb{N}^{p}$ is defined by $\alpha_{j}=\left|\left\{k: i_{k}=j\right\}\right|$, for $1 \leq j \leq p$.
- Upshot: if $Y \sim N_{p}\left(\mu, \sigma^{2} I_{p}\right)$, then
$\left(\mathbb{E}\left[H_{m}(Y)\right]\right)_{i_{1}, \ldots, i_{m}}=\prod_{j=1}^{p} \mu_{j}^{\alpha_{j}}=\prod_{k=1}^{m} \mu_{i_{k}}$

The lower bound : constructing the statistic

- Define $H_{m}(X)$ (for $X \in \mathbb{R}^{p}$) to be the order m symmetric tensor given by $\left(H_{m}(X)\right)_{i_{1}, \ldots, i_{m}}=\sigma^{m} h_{\alpha}\left(\sigma^{-1}(X)\right)$. where $\alpha \in \mathbb{N}^{p}$ is defined by $\alpha_{j}=\left|\left\{k: i_{k}=j\right\}\right|$, for $1 \leq j \leq p$.
- Upshot: if $Y \sim N_{p}\left(\mu, \sigma^{2} I_{p}\right)$, then $\left(\mathbb{E}\left[H_{m}(Y)\right]\right)_{i_{1}, \ldots, i_{m}}=\prod_{j=1}^{p} \mu_{j}^{\alpha_{j}}=\prod_{k=1}^{m} \mu_{i_{k}}$
- In summary, $\mathbb{E}\left[H_{m}(Y)\right]=\mu^{\otimes m}$

The lower bound : constructing the statistic

- Define $H_{m}(X)$ (for $X \in \mathbb{R}^{p}$) to be the order m symmetric tensor given by $\left(H_{m}(X)\right)_{i_{1}, \ldots, i_{m}}=\sigma^{m} h_{\alpha}\left(\sigma^{-1}(X)\right)$. where $\alpha \in \mathbb{N}^{p}$ is defined by $\alpha_{j}=\left|\left\{k: i_{k}=j\right\}\right|$, for $1 \leq j \leq p$.
- Upshot: if $Y \sim N_{p}\left(\mu, \sigma^{2} I_{p}\right)$, then $\left(\mathbb{E}\left[H_{m}(Y)\right]\right)_{i_{1}, \ldots, i_{m}}=\prod_{j=1}^{p} \mu_{j}^{\alpha_{j}}=\prod_{k=1}^{m} \mu_{i_{k}}$
- In summary, $\mathbb{E}\left[H_{m}(Y)\right]=\mu^{\otimes m}$ (can be used to construct unbiased estimators for $T_{k}(\theta)$)

The lower bound : constructing the statistic

- For $k \geq 1$, define the degree- k multivariate polynomial on $y=\left(y_{1}, \ldots, y_{p}\right)$ as:

$$
t(y)=\sum_{m=1}^{k} \frac{\left\langle\Delta_{m}, H_{m}(y)\right\rangle}{(\sqrt{3} \sigma)^{2 m} m!}
$$

The lower bound : constructing the statistic

- For $k \geq 1$, define the degree- k multivariate polynomial on $y=\left(y_{1}, \ldots, y_{p}\right)$ as:

$$
t(y)=\sum_{m=1}^{k} \frac{\left\langle\Delta_{m}, H_{m}(y)\right\rangle}{(\sqrt{3} \sigma)^{2 m} m!}
$$

- If $Y \sim \mathrm{P}_{\zeta}$, then

$$
\mathbb{E}[t(Y)]=\mathbb{E}\left[\sum_{m=1}^{k} \frac{\left\langle\Delta_{m}, \mathbb{E}\left[H_{m}(Y) \mid G\right]\right\rangle}{(\sqrt{3} \sigma)^{2 m} m!}\right]=\sum_{m=1}^{k} \frac{\left\langle\Delta_{m}, \mathbb{E}\left[(G \zeta)^{\otimes m}\right]\right\rangle}{(\sqrt{3} \sigma)^{2 m} m!}
$$

- For $k \geq 1$, define the degree- k multivariate polynomial on $y=\left(y_{1}, \ldots, y_{p}\right)$ as:

$$
t(y)=\sum_{m=1}^{k} \frac{\left\langle\Delta_{m}, H_{m}(y)\right\rangle}{(\sqrt{3} \sigma)^{2 m} m!}
$$

- If $Y \sim \mathrm{P}_{\zeta}$, then

$$
\mathbb{E}[t(Y)]=\mathbb{E}\left[\sum_{m=1}^{k} \frac{\left\langle\Delta_{m}, \mathbb{E}\left[H_{m}(Y) \mid G\right]\right\rangle}{(\sqrt{3} \sigma)^{2 m} m!}\right]=\sum_{m=1}^{k} \frac{\left\langle\Delta_{m}, \mathbb{E}\left[(G \zeta)^{\otimes m}\right]\right\rangle}{(\sqrt{3} \sigma)^{2 m} m!}
$$

- $\Longrightarrow \mathbb{E}_{\mathbb{P}_{\theta}}[t(Y)]-\mathbb{E}_{P_{\varphi}}[t(Y)]$

$$
=\sum_{m=1}^{k} \frac{\left\langle\Delta_{m},\left(\mathbb{E}\left[(G \theta)^{\otimes m}\right]-\mathbb{E}\left[(G \varphi)^{\otimes m}\right]\right)\right\rangle}{(\sqrt{3} \sigma)^{2 m} m!}=\sum_{m=1}^{k} \frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3} \sigma)^{2 m} m!}
$$

The lower bound : controlling the variance

- For $Y \sim P_{\zeta}$, want $\operatorname{Var}[t(Y)] \leq e^{\|\zeta\|^{2} / \sigma^{2}} \cdot \sum_{m=1}^{k} \frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3} \sigma)^{2 m} m!}$

The lower bound : controlling the variance

- For $Y \sim P_{\zeta}$, want $\operatorname{Var}[t(Y)] \leq e^{\|\zeta\|^{2} / \sigma^{2}} \cdot \sum_{m=1}^{k} \frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3} \sigma)^{2 m} m!}$
- If $Z \sim P_{0}$, then

$$
\mathbb{E}\left[t(Y)^{2}\right] \leq \mathbb{E}\left[t(Z)^{2} \cdot \frac{\mathrm{~d} P_{\zeta}}{\mathrm{d} P_{0}}\right] \leq\left(\mathbb{E}\left[t(Z)^{4}\right]\right)^{1 / 2}\left(\chi^{2}\left(P_{\zeta}, P_{0}\right)+1\right)^{1 / 2}
$$

The lower bound : controlling the variance

- For $Y \sim P_{\zeta}$, want $\operatorname{Var}[t(Y)] \leq e^{\|\zeta\|^{2} / \sigma^{2}} \cdot \sum_{m=1}^{k} \frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3} \sigma)^{2 m} m!}$
- If $Z \sim P_{0}$, then
$\mathbb{E}\left[t(Y)^{2}\right] \leq \mathbb{E}\left[t(Z)^{2} \cdot \frac{\mathrm{~d} P_{\zeta}}{\mathrm{d} P_{0}}\right] \leq\left(\mathbb{E}\left[t(Z)^{4}\right]\right)^{1 / 2}\left(\chi^{2}\left(P_{\zeta}, P_{0}\right)+1\right)^{1 / 2}$
- $\chi^{2}\left(P_{\zeta}, P_{0}\right)+1 \leq e^{\|\zeta\|^{2} / \sigma^{2}}$ (direct computation)

Controlling the variance : Gaussian hypercontractivity

- For $Z \sim P_{0}$, want $\mathbb{E}\left[t(Z)^{4}\right]^{1 / 2} \leq \sum_{m=1}^{k} \frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3})^{2 m} \sigma^{2 m} m}$

Controlling the variance : Gaussian hypercontractivity

- For $Z \sim P_{0}$, want $\mathbb{E}\left[t(Z)^{4}\right]^{1 / 2} \leq \sum_{m=1}^{k} \frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3})^{2 m} \sigma^{2 m} m!}$
- Gaussian noise operator \& Ornstein-Uhlenbeck process :

$$
\left[U_{\rho} f\right](x)=\mathbb{E}_{g \sim N(0, l)}\left[f\left(\rho x+\sqrt{1-\rho^{2}} g\right)\right]
$$

Controlling the variance : Gaussian hypercontractivity

- For $Z \sim P_{0}$, want $\mathbb{E}\left[t(Z)^{4}\right]^{1 / 2} \leq \sum_{m=1}^{k} \frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3})^{2 m} \sigma^{2 m} m}$
- Gaussian noise operator \& Ornstein-Uhlenbeck process :

$$
\left[U_{\rho} f\right](x)=\mathbb{E}_{g \sim N(0, l)}\left[f\left(\rho x+\sqrt{1-\rho^{2}} g\right)\right]
$$

- Gaussian Hypercontractivity : For
$1 \leq p \leq q \leq \infty,\left\|U_{\rho} f\right\|_{q} \leq\|f\|_{p} \forall 0 \leq \rho \leq \sqrt{\frac{p-1}{q-1}}$ in Gaussian space

Controlling the variance : Gaussian hypercontractivity

- For $Z \sim P_{0}$, want $\mathbb{E}\left[t(Z)^{4}\right]^{1 / 2} \leq \sum_{m=1}^{k} \frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3})^{2 m} \sigma^{2 m} m}$
- Gaussian noise operator \& Ornstein-Uhlenbeck process :

$$
\left[U_{\rho} f\right](x)=\mathbb{E}_{g \sim N(0, l)}\left[f\left(\rho x+\sqrt{1-\rho^{2}} g\right)\right]
$$

- Gaussian Hypercontractivity : For
$1 \leq p \leq q \leq \infty,\left\|U_{\rho} f\right\|_{q} \leq\|f\|_{p} \forall 0 \leq \rho \leq \sqrt{\frac{p-1}{q-1}}$ in Gaussian space
- $U_{\rho} h_{k}=\rho^{k} h_{k}$ (in 1D);

Controlling the variance : Gaussian hypercontractivity

- For $Z \sim P_{0}$, want $\mathbb{E}\left[t(Z)^{4}\right]^{1 / 2} \leq \sum_{m=1}^{k} \frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3})^{2 m} \sigma^{2 m} m}$
- Gaussian noise operator \& Ornstein-Uhlenbeck process :

$$
\left[U_{\rho} f\right](x)=\mathbb{E}_{g \sim N(0, l)}\left[f\left(\rho x+\sqrt{1-\rho^{2}} g\right)\right]
$$

- Gaussian Hypercontractivity: For
$1 \leq p \leq q \leq \infty,\left\|U_{\rho} f\right\|_{q} \leq\|f\|_{p} \forall 0 \leq \rho \leq \sqrt{\frac{p-1}{q-1}}$ in Gaussian space
- $U_{\rho} h_{k}=\rho^{k} h_{k}$ (in 1D); $U_{\rho} h_{\alpha}=\rho^{\|\alpha\|_{1}} h_{\alpha}$ (in general)

Controlling the variance : Gaussian hypercontractivity

- For $Z \sim P_{0}$, want $\mathbb{E}\left[t(Z)^{4}\right]^{1 / 2} \leq \sum_{m=1}^{k} \frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3})^{2 m} \sigma^{2 m} m}$
- Gaussian noise operator \& Ornstein-Uhlenbeck process :

$$
\left[U_{\rho} f\right](x)=\mathbb{E}_{g \sim N(0, l)}\left[f\left(\rho x+\sqrt{1-\rho^{2}} g\right)\right]
$$

- Gaussian Hypercontractivity: For
$1 \leq p \leq q \leq \infty,\left\|U_{\rho} f\right\|_{q} \leq\|f\|_{p} \forall 0 \leq \rho \leq \sqrt{\frac{p-1}{q-1}}$ in Gaussian space
- $U_{\rho} h_{k}=\rho^{k} h_{k}$ (in 1D); $U_{\rho} h_{\alpha}=\rho^{\|\alpha\|_{1}} h_{\alpha}$ (in general)
- Define polynomial $\tilde{t}(y)=\sum_{m=1}^{k} \frac{\left\langle\Delta_{m}, H_{m}(y)\right\rangle}{(\sqrt{3})^{m} \sigma^{2 m} m!}$

Controlling the variance : Gaussian hypercontractivity

- For $Z \sim P_{0}$, want $\mathbb{E}\left[t(Z)^{4}\right]^{1 / 2} \leq \sum_{m=1}^{k} \frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3})^{2 m} \sigma^{2 m} m}$
- Gaussian noise operator \& Ornstein-Uhlenbeck process :

$$
\left[U_{\rho} f\right](x)=\mathbb{E}_{g \sim N(0, l)}\left[f\left(\rho x+\sqrt{1-\rho^{2}} g\right)\right]
$$

- Gaussian Hypercontractivity: For
$1 \leq p \leq q \leq \infty,\left\|U_{\rho} f\right\|_{q} \leq\|f\|_{p} \forall 0 \leq \rho \leq \sqrt{\frac{p-1}{q-1}}$ in Gaussian space
- $U_{\rho} h_{k}=\rho^{k} h_{k}$ (in 1D); $U_{\rho} h_{\alpha}=\rho^{\|\alpha\|_{1}} h_{\alpha}$ (in general)
- Define polynomial $\tilde{t}(y)=\sum_{m=1}^{k} \frac{\left\langle\Delta_{m}, H_{m}(y)\right\rangle}{(\sqrt{3})^{m} \sigma^{2 m} m!}$
- Observe that $t=U_{1 / \sqrt{3}} \tilde{t}$ as functions

Controlling the variance : Gaussian hypercontractivity

- For $Z \sim P_{0}$, want $\mathbb{E}\left[t(Z)^{4}\right]^{1 / 2} \leq \sum_{m=1}^{k} \frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3})^{2 m} \sigma^{2 m} m}$
- Gaussian noise operator \& Ornstein-Uhlenbeck process :

$$
\left[U_{\rho} f\right](x)=\mathbb{E}_{g \sim N(0, l)}\left[f\left(\rho x+\sqrt{1-\rho^{2}} g\right)\right]
$$

- Gaussian Hypercontractivity : For
$1 \leq p \leq q \leq \infty,\left\|U_{\rho} f\right\|_{q} \leq\|f\|_{p} \forall 0 \leq \rho \leq \sqrt{\frac{p-1}{q-1}}$ in Gaussian space
- $U_{\rho} h_{k}=\rho^{k} h_{k}$ (in 1D); $U_{\rho} h_{\alpha}=\rho^{\|\alpha\|_{1}} h_{\alpha}$ (in general)
- Define polynomial $\tilde{t}(y)=\sum_{m=1}^{k} \frac{\left\langle\Delta_{m}, H_{m}(y)\right\rangle}{(\sqrt{3})^{m} \sigma^{2 m} m!}$
- Observe that $t=U_{1 / \sqrt{3}} \tilde{t}$ as functions
- Gaussian Hypercontractivity : in Gaussian space, we have $\|t\|_{4} \leq\|\tilde{t}\|_{2}$

Controlling the variance : Gaussian hypercontractivity

- For $Z \sim P_{0}$, want $\mathbb{E}\left[t(Z)^{4}\right]^{1 / 2} \leq \sum_{m=1}^{k} \frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3})^{2 m} \sigma^{2 m} m}$
- Gaussian noise operator \& Ornstein-Uhlenbeck process :

$$
\left[U_{\rho} f\right](x)=\mathbb{E}_{g \sim N(0, l)}\left[f\left(\rho x+\sqrt{1-\rho^{2}} g\right)\right]
$$

- Gaussian Hypercontractivity : For
$1 \leq p \leq q \leq \infty,\left\|U_{\rho} f\right\|_{q} \leq\|f\|_{p} \forall 0 \leq \rho \leq \sqrt{\frac{p-1}{q-1}}$ in Gaussian space
- $U_{\rho} h_{k}=\rho^{k} h_{k}$ (in 1D); $U_{\rho} h_{\alpha}=\rho^{\|\alpha\|_{1}} h_{\alpha}$ (in general)
- Define polynomial $\tilde{t}(y)=\sum_{m=1}^{k} \frac{\left\langle\Delta_{m}, H_{m}(y)\right\rangle}{(\sqrt{3})^{m} \sigma^{2 m} m!}$
- Observe that $t=U_{1 / \sqrt{3}} \tilde{t}$ as functions
- Gaussian Hypercontractivity : in Gaussian space, we have $\|t\|_{4} \leq\|\tilde{t}\|_{2} \Longleftrightarrow \mathbb{E}\left[t(Z)^{4}\right]^{1 / 4} \leq \mathbb{E}\left[t(Z)^{2}\right]^{1 / 2}$

Controlling the variance : Gaussian hypercontractivity

- For $Z \sim P_{0}$, want $\mathbb{E}\left[t(Z)^{4}\right]^{1 / 2} \leq \sum_{m=1}^{k} \frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3})^{2 m} \sigma^{2 m} m}$
- Gaussian noise operator \& Ornstein-Uhlenbeck process :

$$
\left[U_{\rho} f\right](x)=\mathbb{E}_{g \sim N(0, l)}\left[f\left(\rho x+\sqrt{1-\rho^{2}} g\right)\right]
$$

- Gaussian Hypercontractivity: For
$1 \leq p \leq q \leq \infty,\left\|U_{\rho} f\right\|_{q} \leq\|f\|_{p} \forall 0 \leq \rho \leq \sqrt{\frac{p-1}{q-1}}$ in Gaussian space
- $U_{\rho} h_{k}=\rho^{k} h_{k}$ (in 1D); $U_{\rho} h_{\alpha}=\rho^{\|\alpha\|_{1}} h_{\alpha}$ (in general)
- Define polynomial $\tilde{t}(y)=\sum_{m=1}^{k} \frac{\left\langle\Delta_{m}, H_{m}(y)\right\rangle}{(\sqrt{3})^{m} \sigma^{2 m} m!}$
- Observe that $t=U_{1 / \sqrt{3}} \tilde{t}$ as functions
- Gaussian Hypercontractivity : in Gaussian space, we have

$$
\|t\|_{4} \leq\|\tilde{t}\|_{2} \Longleftrightarrow \mathbb{E}\left[t(Z)^{4}\right]^{1 / 4} \leq \mathbb{E}\left[t(Z)^{2}\right]^{1 / 2}
$$

- Explicit computation: $\mathbb{E}\left[t(Z)^{2}\right]=\sum_{m=1}^{k} \frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3})^{2 m} \sigma^{2 m} m}$

References

- "Sparse Multi-Reference Alignment: Phase Retrieval, Uniform Uncertainty Principles and the Beltway Problem." G. and Rigollet, Foundations of Computational Mathematics (2023).
- "Dictionary Learning under Symmetries via Group Representations.", G., Low, Soh, Feng and Tan, arXiv preprint arXiv:2305.19557.
- "Minimax-optimal estimation for sparse multi-reference alignment with collision-free signals.", G., Mukherjee and Pan, arXiv preprint arXiv:2312.07839.
- "Likelihood landscape and maximum likelihood estimation for the discrete orbit recovery model." Fan, Sun, Wang and Wu, Communications on Pure and Applied Mathematics (2020).
- "Estimation under group actions: recovering orbits from invariants." Bandeira, Blum-Smith, Kileel, Perry, Weed and Wein, Applied and Computational Harmonic Analysis (2023)
- "The sample complexity of multireference alignment." Perry, Weed, Bandeira, Rigollet and Singer, SIAM Journal on Mathematics of Data Science (2019).
- "Optimal rates of estimation for multi-reference alignment." Bandeira, Niles-Weed and Rigollet, Mathematical Statistics and Learning (2020).

