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ROGERS-RAMANUJAN IDENTITIES IN STATISTICAL
MECHANICS

GEOFFREY B CAMPBELL

ABSTRACT. We describe the story of the Rogers-Ramanujan identities; being
known for 85 years and having about 130 pure mathematics proofs, suddenly en-
tering physics when Rodney Baxter solved the Hard Hexagon Model in Statistical
Mechanics in 1980. We next cover the accompanying proofs by George E Andrews
of other related Baxter identities arisen of Rogers-Ramanujan type, leading into
a new flourishing partnership of Physics and Mathematics. Our narrative goes
into the subsequent 44 years, explaining the progress in physics and mathematical
analysis. Finally we show some related crossovers with regard to the Elliptic g-
gamma function and some Vector Partition generating functional equations; the
latter of which may be new. The present paper is essentially chapter 11 of the
author’s 32 chapter book [23] to appear in June 2024.



In 1894 Leonard J. Rogers discovered

The Rogers—Ramanujan identities are

o0 'n,z
q 1 2 3 4 5 6 -
G(q) = = =14q+q¢ +q +2q" +2¢° + 3q° + --- (sequence A003114 in the OEIS)
.nz_o (9 ($¢°)0(d*;6°) 0
and
o0 qn2+n 1 ]
H(qg) = Z = =14+ +¢ +q¢*+ ¢ +2¢° + - - - (sequence A003106 in the OEIS).

(@9 (%8°)x(?®6%)

Here, (a; q)» denotes the g-Pochhammer symbol.

In mathematics, the Rogers—-Ramanujan identities are two identities related to basic hypergeometric series and integer partitions.
The identities were first discovered and proved by Leonard James Rogers (1894), and were subsequently rediscovered (without a
proof) by Srinivasa Ramanujan some time before 1913. Ramanujan had no proof, but rediscovered Rogers's paper in 1917, and they

then published a joint new proof (Rogers & Ramanujan 1919). Issai Schur (1917) independently rediscovered and proved the
identities.



Think About It...

“In 1980, Baxter found his beautiful solution to the hard-hexagon
model of statistical mechanics.
urally divided into six regimes that depend on values taken by vari-
ous parameters associated with the model. Then n truly astounding
fashion 1t turns out that eight Rogers-Ramanujan type 1dentities, all

essentially known to Rogers (]

33,

54

His treatment of this model 1s nat-

1), are the fundamental keys for

finding infinite product representatlons of the related statistical me-
chanics partition functions in regimes I, III, and IV.”

- George E. Andrews, Proceedings of the National Academy of Sci-

ences, 1981



the model. For a lattice of N sites, the grand-partition function is

(1.1) Z(z) =) z"g(n,N)

n=0

where g(n, N) is the allowed number of ways of placing n particles on the lattice,
and the sum is over all possible values of n. (Since no more than % of the sites can
be occupied, n takes values from 0 to %)

A typical arrangement of particles (black circles) on the triangular lattice,
such that no two particles are together or adjacent. The six faces round each particle
are shaded: they form non-overlapping (ie. "hard") hexagons.

FIGURE 1. The particle arrangement for the Hard Hexagon Model.



The three sub-lattices of the triangular lattice: sub-lattice 1 consists of all sites
of type 1, and similarly for sub-lattices 2 and 3. Adjacent sites lie on different sub-
lattices. a close-packed arrangement of particles (black circles) is shown: all sites
of one sub-lattice (in this case sub-lattice 1) are occupied, the rest are empty. (See

figure [2)

The three sub-lattices of the triangular lattice:
sub-lattice 1 consists of all sites of type 1,
and similarly for sub-lattices 2 and 3.

FIGURE 2. Baxter’s three sub-lattices of the triangular lattice.



1.2. What Baxter found in 1980. So, continuing our discussion of equation (1.1]),
we want to calculate Z, or rather the partition-function per site of the infinite lattice

(1.2) k= lim Z~

N—oo
as a function of the positive real variable z. This z 1s known as the ’activity’. This
problem can be put into what 1s called ‘spin’-type language by associating with each
site 7 a variable o;. However, mstead of the usual approach 1n statistical mechanics
models of letting o; take values 1 and —1, we take the values 0 and 1: if the site
(lattice point) i1s empty, then o; = 0; if it 1s full then o; = 1. Thus o; i1s the number
of particles at site 7: the ‘occupation number’. Then (I.1) can be written as

(1.3) Z = Z z(01+02+...40N) H(l — 0,0;),
o i,]

where the product is over all edges (i,7) of the triangular lattice, and the sum 1s
over all values (0 and 1) of all the occupation numbers o1, 09, ..., oN.



The shock to Number Theory of Baxter’s work

Clearly, from the mathematical ‘non-physicist’ perspective, that this schematic
diagram could lead to enumeration of well defined types of integer partitions was
(back in 1980 at least) seen as a major departure from the more typical Ferrers
Graphs, Durfee Squares and Plane Partition cube stack representations adopted in
the literature by Andrews and others over the contemporary mathematical land-
scapes. As a mathematician already versed in the ideas of our earlier chapters, it
becomes natural to ask how say, Bijection equivalences, g-series partition generat-
ing functions, and such, may become the same world as the statistical mechanics
models involving assigned values of spin charges along a vertex or edge of a lattice
of a certain structure, shape and form. We put such questions aside for now, as we
want to present Baxter’s extraordinary findings here. However, these questions of
equivalences of theories and analyses are worthy of deeper understanding it seems.



7.3 SUCCESSIVE DURFEE SQUARES

We extend the idea of a Durfee Square of a partition, to having successive Durfee
Squares in a partition.

Consider for example the partition 3 =7+54+4+4+3+3+3+2+1+1 of
Ferrers graph

having successive Durfee squares of sides 4,3,1,1,1.

So, adopting this generalization from one Durfee Square to many successive Durfee
Squares, we can then find the generating function for partitions that have at most
k successive Durfee Squares. For an account of the below process see Andrews and
Eriksson [29]. Recall that we saw earlier that if £ =1 then
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k successive Durfee Squares. For an account of the below process see Andrews and
Eriksson [29]. Recall that we saw earlier that if £ =1 then

sn(g) =Y ¢ [ ’;] .
=0 q

So for general k, we take account of k possible squares j} > j3 > j3 > ... > j2
and we see how the portions of the partition to the right side of each Durfee Square
contribute to the partition in this form. Hence the generating function for partitions
with at most &k successive Durfee Squares, si ,,(g) is given by
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We next take n — oo, so the generating function for all partitions with at most &
successive Durfee Squares is
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This enables us to state the

Theorem 7.2 (see Andrews [16]) The number of partitions of n, each with at most
k successive Durfee Squares, equals the number of partitions of n into parts not con-
gruent to 0, £(k+ 1) (mod2k +3). The generating function encoding this is
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(7.3.1)

The case of theorem 7.2 with k=1 is the first Rogers-Ramanujan identity. This
remarkable proof was given by Bressoud and Zeilberger in [75] and a generalized
approach using bijections by these authors is given in the next section.



In seeking to calculate the free energy in the hard hexagon model as depicted in
figure 1, Baxter was led to consider a range of logical options or Regimes, which are
here depicted as Baxter described in 1980.

The three sub-lattices of the triangular lattice: sub-lattice 1 consists of all sites
of type 1, and similarly for sub-lattices 2 and 3. Adjacent sites lie on different sub-
lattices. a close-packed arrangement of particles (black circles) is shown: all sites
of one sub-lattice (in this case sub-lattice 1) are occupied, the rest are empty. (See
figure 2)

The three sub-lattices of the triangular lattice:
sub-lattice 1 consists of all sites of type 1,
and similarly for sub-lattices 2 and 3.

FIGURE 2. Baxter’s three sub-lattices of the triangular lattice.



1.2. What Baxter found in 1980. So, continuing our discussion of equation (1.1),
we want to calculate Z, or rather the partition-function per site of the infinite lattice

(1.2) k= lim ZW

N =00

as a function of the positive real variable z. This z is known as the ’activity’. This
problem can be put into what is called ‘spin’-type language by associating with each
site ¢ a variable o;. However, instead of the usual approach in statistical mechanics
models of letting o; take values 1 and —1, we take the values 0 and 1: if the site
(lattice point) is empty, then o; = 0; if it is full then o; = 1. Thus o; is the number
of particles at site i: the ‘occupation number’. Then (1.1) can be written as

(13) 7 — Z Z(al+02+...+aN) H(l . U-iaj),
o 1,7

where the product is over all edges (i, ) of the triangular lattice, and the sum is
over all values (0 and 1) of all the occupation numbers oy, 0y, ..., o §.

We expect this model to undergo a phase transition from an homogeneous fluid
state at low activity z to an inhomogeneous solid state at high activity z. To see this,
divide the lattice into three sub-lattices 1, 2, 3, so that no two sites of the same type



are adjacent. Then there are three possible close-packed configurations of particles
on the lattice: either all sites of type 1 are occupied, or all sites of type 2, or all
sites of type 3. Suppose we fix the boundary sites as in the first possibility, i.e. all
boundary sites of type 1 are full, and all other boundary sites are empty. Then for
an infinite lattice the second and third possibilities give a negligible contribution
to the sum-over-states in (1.3). Clearly, sites on different sub-lattices are no longer
equivalent. Let p, be the local density at a site of type r, given by,

(14) pr = <Ul> £ Z—l Zo_lz(al+02+...+mv) H(]_ o Uz‘O'j),
o 1,

where [ is a site of type r.

When z is infinite, the system is close-packed with all sites of type 1 occupied, so
p1,= 1, po = p3 = 0. We can expand each p, in inverse powers of z by considering
successive perturbations of the close-packed state. For a site [ deep inside a large
lattice, this gives

(1.5) pr = 1—=271—52"2-34273-2672"% - 203727° —...
p2 = p3=2"2+92"24+802"1+9652"° +...
The system is therefore not homogeneous, since py, ps, p3, are not all equal. This

contrasts with the low-activity situation: starting from the state with all sites empty
and successively introducing particles, we obtain



(1.6) pL=pa =p3 =2 —T2° — 582° — 5192 + 48562° — . ..

To all orders in this expansion it is true that p; = p2 = ps.
The system is therefore inhomogeneous for sufficiently large z, and homogeneous

for sufficiently small z if the series converge. There must be a critical value z., of
z above which the system ceases to be homogeneous. Since the homogeneous phase
is typical of a fluid, and the ordered inhomogeneous phase is typical of a solid, the
model can be said to undergo a fluid to solid transition at z = z..



1.3. Baxter’s 1980 numerical preliminaries. Baxter then applied the Corner
Transfer Matrix approach to the matrix eigenvalues a4, . .., a;g, for the hard hexagon
model with z = 1. The values were approximate, being calculated from finite
truncations of the triangular lattice analogue of the matrix equation related to this.
The eigenvalues occur in groups of comparable magnitude, and it is sensible to
include all members of a group. For this reason the truncations used were 2 x 2,
3x3,5x5,7x7and 10 x 10. Each a; was given for successively larger truncations,
and clearly each tended rapidly to a limit. This limit is its exact value for the
infinite-dimensional corner transfer matrix. Refer to Baxter [12, Chapter 13| for
how the Corner Transfer Matrix context applies.

Baxter was able to determine the required coefficients up to 30 terms of the power
series exact solution. Equipped with knowledge from his famous eight-vertex model
exact solution from a few years earlier, Baxter was able to put the hard hexagon
proposed solution expansion into the form

(1.7) z2=—z H(l —g )%,



THE SIX REGIMES

LA>A,, g*<0,-a/5<u<0,
IL0<A<A, ¢>0,-a/5<u<0,
II: —-A.<A<0,¢*>0, O0<u<al5,
IV:A<-A,, ¢*'<0, O<u<al5,

Vi

u=2n/5 u=0

V:A> A, g*<0, nalS<u<2nl5,

- VI:I0<A<A, ¢*>0, al5<u<2nls.

The six regimes in the (L, M) plane, as listed at right. Shaded areas are unphysical, since

z=(1-e L) Q—eM/el*M—el —eM)yand A =z"(1—zel*M) for A=A
gives z therein to be negative. Regimes I, IIl, V are disordered, Il and VI have triangular
ordering, IV has square ordering. The system is critical on the (I, IT), (IIL, IV) and (V, VI)

boundaries, where |A| = A, the values of # on the (L, M) axes are indicated.

FIGURE 3. Baxter’s six Regimes for the Hard Hexagon Model. The
six regimes in the (L, M) plane. Shaded areas are not physical.
Regimes I, III and V are disordered, and regimes II and VI have
triangular ordering, while Regime IV has square ordering.



With this in mind he discovered that
C1,Co,....C9 = H,—5H,—5H,5,0,5,—5,-5,5,0,
5,—5,—5.5,0,5,—-5,-5,5,0,
(1.8) 5,—5,—5,5,0,5,—-5,—5,5.

Baxter then was able to infer that

» o (HY

where
(1.10) G(z) = H (1 — 2 4)1(1—:105" 1)’
(1.11) Hz) = ] 1

1 — pon— 3)(1 — pon— 2)

n—l

The mathematical partition theorist will will recognise the products G(x) and
H(z) as from the Rogers-Ramanujan identities.



So, Baxter followed through this Corner Transfer Matrix approach to calculate
the coefficients and determine a range of identities for each of the Hard Hexagon
Regime types of allowable spin configurations. What he derived, is what Andrews
subsequently was able to prove on his visit to Baxter in Australia the following year.
So, we have set the scene for Andrews proofs in 1981.

1.4. What Andrews found in 1981. So, after Baxter’s solution to the Hard
Hexagon Model in 1980, the opening to a new world of research in both theoretical



physics and partition-theoretic mathematics was about to happen. George E. An-
drews visited Baxter in 1981, and proved the identities arisen from the Regimes of
Baxter’s Hard Hexagon exact solutions.

In a landmark paper, Andrews [3] goes on then to say that Baxter found the
following identities occurring for the six regimes, conspicuously missing (but later
returning to) the more complicated Regime II, as follows:

Regime I

oC qn 1 ‘
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(1.13)

Regime III

(1.14) f: ¢" 7 I(g" ¢%¢":q")
“— (9)n(2;9%) ()
') 3n(n41)
(1 15) Z q 3 - H(q2=q81q10;q10)_
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Regime IV

00 n(n+1) H 1 4 16: 20
(1.16) Z (005" EI OII(g%, ¢'%; g ).
n=0 2n+1 Q)oo
(1.17) Y (e, ¢, ¢"% ¢O)MI(e%, 4% ¢%)
n—=0 (Q)‘zn (Q)oc ;
(1.18) i q" |
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q
1.19
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These use the standard notation of Slater [3§],

(1.20) ot f[a )
(1.21) (@)oo = (80)o0 = ] (1~ 02);

3=0



“For about the first 85 years after their discovery interest in these iden-
tities and their generalizations was confined to mathematicians. Many
ingenious proofs and relations applying combinatorics, basic hyperge-
ometric functions and Lie algebras were discovered by MacMahon,
Rogers, Schur, Ramanujan, Watson, Bailey, Slater, Gordon, Gollnitz,
Andrews, Bressoud, Lepowsky and Wilson; so by 1980 there were over
130 isolated identities and several infinite families of identities known.

The entry of these identities into physics occurred in the early 1980s
when Baxter [11], Andrews, Baxter and Forrester (see [3] and [27]),
and the Kyoto group [24] encountered (6.1) and various generalizations
in the computation of order parameters of certain lattice models of
statistical mechanics.

A further glimpse of the relation to physics is seen in the develop-
ment of conformal field theory by Belavin, Polyakov and Zamolod-
chikov [14] and the form of computation of characters of represen-
tations of Virasoro algebra by Kac [28], Feigin and Fuchs [25] and
Rocha-Caridi [32]. The occurrence of (6.1) in this context led Kac
[29] to suggest that every modular invariant representation of Vira-
soro should produce a Rogers-Ramanujan type identity.”

- Alexander Berkovich and Barry M. McCoy, State University of
New York, 1998



