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I - Motivation

Transport out of equilibrium in quantum and classical systems

time correlations in integrable models

intégrable ⇒ analytic results? difference with nonintegrable?

interesting quantity:

Spin correlations.

Charge transport.
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vertex

The vertex:

lµ,µ′(u)= µ µ′,

σ

σ′

Baxter considered positive Boltzman weights, the matrix lµσ,µ′σ′ (in
the arrow direction) be unitary or stochastic.
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Baxter transfer Matrix

Lµ,µ′(u)= µ µ′
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Figure: Baxter monodromy

eight-vertex model: σ = ±1 physical space, µ = ±1 auxiliary space.

Closed transfer Matrix:

T (u) =
∑
m

Lµµ(u)

Rodney Baxter Used the Yang-Baxter equation to define commuting
transfer matrices as a function of the spectral parameter.



cylinder partition function
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Stochasticity can be preserved by the transfer matrix but not
unitarity (as far as I know).

Nevertheless, Hamiltonian can be obtained and T (u) can be viewed
as the generating function of conserved qantities of a real time
evolution, analogous to a Lax matrix.



Transfer map: Skyanin, Drinfeld

Instead of a matrix, the vertex represents a map

lµ,µ′(u)= µ µ′,

σ

σ′

Figure: vertex

µ, σ → µ′, σ′

The vertices cal be combined into a transfer propagator. Cyclicity
requires µ = µ′ at the two ends of the chain



Discrete time evolution boxball: Takahashi and
Satsuma

Time evolution upwards analogous to a cellular automata:
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The carrier has n balls with l ≥ n ≥ 0, where l is its capacity. It
scans the configuration of balls from left to right and picks up a ball
if it can when there is one, leaving a ball when there is none.



Example of Discrete time evolution boxball

Cyclicity. One must make sure that after the last step, the load of
the carrier coincides with its initial load.

The model is integrable:
Solitons made of k consecutive balls are conserved in number.
propagators with different capacity (l) commute.

Solitons travel ballistically with an effective speed vk which can be
exactly evaluated (GHD). The only necessary ingredients are the
bare speed v0

j = min(j , l), and the scattering length of two solitons
of size j and k :

∆k,l = 2min(k , l)

Time correlations can be evaluated.



correlation, Kuniba, Misguich, V.P.



Toda chain

Toda Hamiltonian:

H =
N∑

k=1

p2k
2

+ eqk+1−qk

d2qj
dt2

= eqj+1−qj − eqj−qj−1

Integrability results from a lax matrix constructed from a vertex
matrix:

li (u) =

(
u + pi −eqi
e−qi 0

)
set pi = Xi , e

qi = xi



Discrete time evolution Toda chain, Suris

The vertex map , time goes up:

si ,Si si+1,Si+1

xi ,Xi

x̄i , X̄i

Figure: Time evolution

The carrier has DST(discrete self trapping) variables S , s. It passes
through the Toda configurations and updates the Toda variables
xi ,Xi .

Cyclicity. One must make sure that after the last step, SN+1 = S1
and sN+1 = s1



Discrete time evolution Toda chain

How to define the vertex map?

use lax matrices: for Toda

l(u) =

(
u + X −x

1
x 0

)

for DST

r(u) =

(
u + Ss −s

S −1

)
It is necessary that both l(u) r(u) have the same Poisson bracket
(Skyanin algebra).

Solve for Darboux transform:

li (u)ri (u − τ) = ri+1(u − τ )̄li (u)
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Discrete time evolution Toda

Obtain the solution (Suris, Sklyanin):

Xj = −τ +
xj
x̄j

+
sj+1

xj

X̄j = −τ +
xj
x̄j

+ x̄jSj

sj = x̄j , Sj+1 =
1

xj

τ is the time step. In the τ to zero limit we recover the Toda
equations of motion.

Global map preserves the conserved quantities and is symplectic. To
show canonicity construct generating function of canonical transform
classical analogue of Baxter Q matrix.

F (xi , x̄i , τ) = −τ
∑
i

(ln xi − ln x̄i ) +
xi
x̄i
− x̄i+1

xi



Landau Lifshitz

dS

dt
= S × d2S

ds2

where S(s) is a unit vector S2
1 + S2

2 + S2
3 = 1.

Classical equation of motion for XXX spin chain.

Local induction approximation for a filament in a superfluid. The
filament is parametrized by its curvilinear abscissa M(s), dM

ds = S , its
motion is then:

dM

dt
=

dM

ds
× d2M

ds2
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time evolution Banica, De la Hoz, Vega ...



Discrete time evolution Landau Lifshitz

How to define the vertex?

use lax matrices of XXX chain (6 vertex model)

l(u) = u + S.σ =

(
u + S3 S−

S+ u + S3

)

Solve for Darboux transform:

l(u,Vi )l(u − τ,Si ) = l(u − τ,Vi+1)l(u, S̄i )

This time auxiliary space has the same lax matrix as for the
dynamical variables.
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Discrete time evolution Landau Lifshitz

Obtain the solution :

S̄j =
1

σ2 + τ 2
(τ 2Sj + σ2Vj − τSj ∧ Vj)

Vj+1 =
1

σ2 + τ 2
(τ 2Vj + σ2Sj − τVj ∧ Sj)

τ is the time step.

Vi Vi+1

Si

S̄i



transport

[Marco Znidaric PRL, 2011], Tomaz Prosen

Transport of spin current in XXZ chain
Infinite temperature transport:

Ballistic for ∆ < 1

Anomalous for ∆ = 1

Diffusive for ∆ < 1

Infinite temperature transport Brownian filament at time zero.
[Ziga Krajnick, Tomaz Prosen PRL, 2019]



Spin correlations in Landau Lifshitz (Simulation by
G. Misguich)
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Thank you Rodney, you have given us so much


