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Hyperbolic plane
2D manifold with uniform negative curvature.
The sphere is a 2D manifold with uniform positive curvature.
Sphere can be mapped conformally to the (complex) plane by:

w = eiφ tan θ
2

likewise the hyperbolic plane can be mapped to the plane by

w = eiφ tanh r
2

where r is the distance to the origin.

Somewhat counterintuitively, the finite sphere is mapped onto the
infinite plane, while the infinite hyperbolic plane is mapped on a
finite disk.



In 3D embedding, and conformal projection
the sphere is defined as

x2 + y2 + z2 = 1

with metric

ds2 = dx2 + dy2 + dz2

θ

Sphere projected on plane
(is conformal map)

w = eiφ tan θ
2

and the hyperbolic plane as

x2 + y2 − z2 = −1

with metric

ds2 = dx2 + dy2 − dz2

r

Likewise for hyperbolic plane

w = eiφ tanh r
2



In the hyperplane, the area of a disk with radius r is
2π(cosh(r)− 1)
This grows (eventually) much faster than in the plane: 2πr2

Thinking of e.g. the random walk, this has many more ways to
escape than in the euclidean plane.

Consider a discrete random walk with a growth constant, a weight
for the probability to take a next step, rather than terminate.

When this weight is less than the inverse of the number of
possibilities, the walk remains finite, and when it is more, it
continues indefinitely.



Percolation in the Euclidean plane
Uniform Poisson process sprinkling disks in the plane
percolation density p: Density of Poisson process × area of disks

Disks a and b are connected if they
(i) a and b overlap or
(ii) ∃ c, connected to a to b.

∃pc :

{
p ≤ pc 6 ∃ infinite cluster
p > pc ∃! infinite cluster

Largest cluster in domain of area A had on average N(A) disks.
Then for large A

p < pc : N(A) = O(1)

p = pc : N(A) = O(A43/48)
p > pc : N(A) = O(A)



Percolation on the lattice:
the ’particles’ have fixed positions on the vertices.

but the connection to neighbors is random (bond percolation)

Or the presence of a particle on a site is random (site percolation)

The exponent takes this value
43

48
in the continuum, irrespective of

the size or shape of the particles,

and also on the lattice, irrespective of the choice of lattice
and of the choice between bond and site percolation.



Percolation in the hyperbolic plane
Two transitions:

∃p1, p2 :


p < p1 6 ∃ infinite cluster

p1 < p < p2 ∃ infinitely many infinite clusters
p > p2 ∃! infinite cluster

Suppose that again the central cluster in disk of area A
N(A) ∝ Aψ

Tobias Müller followed the abover procedure in the hyperplane,
and proved that for large A this is indeed the case and that

p < p1 : ψ(p) = 0
p1 < p < p2 : ψ(p) increases continuously from 0 to 1

p > p2 : ψ(p) = 1

This attracted me to the subject.



It reminded me of the excitement we felt in the early 1970’s when
we learned of Baxter’s solution of the 8-vertex model.

Just when had learned to accept the concept of universality:
(critical exponents do not depend on the details of the interaction.)

Now we had a counter example.

Some panic in the community motivated a search to save the
concept of universality.

Eventually universality was saved, but limited:
In exceptional cases all critical exponents depend on only one
parameter.



Why do we believe universality?

I Because we observe it.

I Because the theory of the Renormalization Group predicts it.

If there is a
Renormalization
transformation.

The critical behavior on
a whole critical manifold
is controled by a
fixed point.
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All emerging length scales are driven by the same correlation
length. RG scales it, and when it is infinite, the system is scale free.



In the hyperbolic plane Renormalization is problematic:
Besides the correlation length, there is an intrinsic scale: the radius
of curvature Rc .

Three scales are important:
Rp the microscopic scale, e.g. the radius of the particles.
Rc the radius of curvature
Rd the radius of the domain

When Rp � Rc a field theory as continuum limit is natural,
perhaps at criticality a CFT.

We work in the limit Rp ≈ Rc � Rd .

This permits the use of regular lattices, which in the hyperbolic
plane have a lattice distance of the order of Rc .
But before we tried a lattice we worked in the continuum and redid
what Müller did.



Can we estimate ψ(p)?
Indeed we can.

It is a relatively boring
function

The central cluster, is better
than the largest one.

ψ

p

It is an exponent, so we could expect it to be universal,
i.e. independent om microscopic details?

But the very definition of p depends on microscopic detail.
(e.g. replace disks by line segments)

But suppose we have two exponents: ψ1(p) and ψ2(p),
then we can eliminate p and find ψ2(ψ1).
And this function could be universal.



First attempt at another exponent: the perimeter length of the
central cluster.
Let the perimeter length of the central cluster: L ∝ Aψ2

Unfortunately, ψ2(p > p1) ≈ 1.

In retrospect not surprising: A disk-like cluster has perimeter
L = sinh r , and area A = cosh r − 1, so L = O(A), i.e. exponent 1.
This is the same as for a stick-like cluster.
The exponent of a fractal cluster should be in between that of the
disk and the stick.

Second attempt: Radius of gyration Rg (spatial extent)
Not immediately obvious how to define and calculate.
We managed.
Again in the critical regime Rg virtually independent of p.
The cluster gets more massive, but also more compact.



A successful attempt for an alternative exponent, is the size of the
central dual cluster.

The corresponding exponent, say ψd , must decrease from 1 to 0,
as ψ increases from 0 to 1.

This is not difficult to define dual clusters in the continuum, but
very difficult to measure. Therefore we switched to regular lattices
to work with.



We define regular lattice to have equivalent vertices, faces and
edges, i.e. each pair of vertices (or faces or edges) can be mapped
into each other by an element of the lattice symmetry group.

That leaves two numbers to specify:
the number of edges around each face,
say f and the number of edges incident
on a vertex, say v.

Pairs (f , v) ∈ {(4, 4), (3, 6), (6, 3)}
give the square, triangular and hexag-
onal lattice respectively.

The pairs (f , v) ∈ {(3, 3), (3, 4), (3, 5), (4, 3), (5, 3)} give the
platonic solids, the tetrahedron, octahedron, icosahedron, cube,
dodecahedron respectively. (the “4v/(2v − vf + 2f )-hedron”)





Just like in the
Euclidean plane,
interchanging
f ↔ v turns the
lattice into its dual



ψ is the exponent
relating the size of
the central cluster
to the arrea of the
disk.

The corresponding
exponent of the
dual cluster, ψd ,
decreases from 1
to 0, as exponent
ψ increases from 0
to 1.
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The colored lines represent respectively the (3,7), (7,3), (5,5),
(3,8), (8,3), (6,6), (3,9), (9,3) lattice.
The exponent for the Euclidean plane, marked by o is clearly not
on the line.



To improve the data we use a numerical approach to the Corner
Transfer Matrix (another famous invention of Baxter).
In particular the Corner Transfer Matrix Renormalization Group.
(Nishino and Okunishi).

The CTM can be grown by successively multiplying it with a linear
transfer matrix.
The linear transfer matrix must grow by adding two sites.

To make this computationally feasible, one projects on the
eigenspaces of the, say M largest eigenvalues.



Application to a hyperbolic lattice:

The pieces are merged at the fat edges, the thin edges represent
the outer boundary.
They are colored to distinguish their role.

The red object is a very small CTM, or wedge. The green object is
a generalization of the half open row-to-row transfer matrix, here
called beam. The gray object is just a single face.



Now for the recursion:

Color the objects obtained:



and the next step

Color the objects obtained:



And continue this as far as possible



One difficulty is that while this way we can calculate the partition
sum, the exponent ψ is not in the books. The size of the central
cluster N(A), can not be calculated in this way. Instead we need to
focus on observables like the number of clusters, or cluster /
dual-cluster boundaries that reach from the center of the disk to
the boundary.

Another option is exponents associated with the number of cluster
boundaries surrounding the center.

Work in progress



Concluding remark

Rodney Baxter has inspired me ever since 1973 when I learned of
the 8-vertex model.

I


