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1. Lecture 1: The scattering calculus on Rn introduced

Recall that the standard Hörmander pseudodifferential calculus Ψm(Rn) is the space
of operators A given by quantizations of symbols a ∈ Sm(Rn × Rn) as follows:

Aϕ(x) = (2π)−n

∫
ei(x−y)·ξa(x, ξ)ϕ(y) dy dξ, ϕ ∈ S(Rn)

= (2π)−n

∫
eix·ξa(x, ξ)ϕ̂(ξ) dξ. (1.1)

Here the symbol class Sm(Rn × Rn) is the class of smooth functions a(x, ξ) satisfying
the standard symbol estimates∣∣∣Dα

xD
β
ξ a(x, ξ)

∣∣∣ ≤ Cαβ⟨ξ⟩m−|β|. (1.2)

Our notation is that Dxj = −i∂xj , D
α
x = Dα1

x1
. . . Dαn

xn
where α = (α1, . . . , αn) ∈ Nn is

a multi-index, and ⟨ξ⟩ :=
√

1 + |ξ|2 is the ‘Japanese bracket’.
The scattering calculus on Rn, denoted Ψ∗,∗

sc (Rn), is a sub-calculus that is more
symmetric in (x, ξ). Given two orders (m, l), the set of scattering symbols of order

(m, l), denoted Sm,l
sc (Rn ×Rn) are by definition the smooth functions a(x, ξ) satisfying

the estimates ∣∣∣Dα
xD

β
ξ a(x, ξ)

∣∣∣ ≤ Cαβ⟨x⟩l−|α|⟨ξ⟩m−|β|. (1.3)

These symbol estimates endow Sm,l
sc (Rn × Rn) with the structure of a Fréchet space,

with an increasing sequence of norms defined by

∥a∥m,l;k = sup
(x,ξ)∈R2n,|α|+|β|≤k

∣∣∣Dα
xD

β
ξ a(x, ξ)⟨x⟩

−l+|α|⟨ξ⟩−m+|β|
∣∣∣. (1.4)

The quantization of such symbols gives us the space of scattering pseudodifferential

operators of order (m, l), denoted Ψm,l
sc (Rn).

The point of the scattering calculus is

• It is an ideal tool for doing scattering theory, i.e. the study of the generalized
eigenfunctions of operators on Rn and their large-distance asymptotics;

• It is the right framework for realizing certain non-elliptic operators as Fredholm
maps betwen suitable Sobolev-like spaces.
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Some examples of scattering pseudodifferential operators:

• Constant coefficient differential operators of order m on Rn are scattering pseu-
dodifferential operators of order (m, 0). To give specific examples, the Laplacian
∆ =

∑
j DxjDxj , the wave operators D2

t − ∆ and the Klein-Gordon operator

D2
t − ∆ −m2 (where m > 0 is constant) are scattering pseudodifferential op-

erators. (Notice that we use the ‘microlocal’ convention that ∆ is a positive
operator.)

• More generally, pseudodifferential operators of order m in the Hörmander class
with symbols depending only on ξ (thus, Fourier multipliers) are scattering
pseudodifferential operators of order (m, 0).

• Differential operators of order m with coefficients that are themselves symbols

in x of order l are in Ψm,l
sc (Rn).

• Suppose that g =
∑

ij gij(x)dxidxj is an ‘asymptotically Euclidean’ metric on
Rn, i.e.

gij(x)− δij ∈ S−1(Rn),

then the associated Laplace operator,

∆g =
∑
ij

1√
g(x)

Dxig
ij(x)

»
g(x)Dxj , g = det gij(x),

is in Ψ2,0
sc (Rn). (Here gij(x) is the inverse matrix to gij(x).)

• A non-example: differential operator with periodic (and non-constant) coeffi-
cients are in the Hörmander class, but not in the scattering class of pseudodif-
ferential operators.

1.1. Basic Properties of Symbols.

• If m′ ≤ m and l′ ≤ l then Sm′,l′
sc (Rn × Rn) ↪→ Sm,l

sc (Rn × Rn) is continuous.

• Dα
xD

β
ξ maps Sm,l

sc (Rn × Rn) → S
m−|β|,l−|α|
sc (Rn × Rn) continuously.

• Pointwise multiplication is continuous

Sm,l
sc (Rn × Rn)× Sm′,l′

sc (Rn × Rn) → Sm+m′,l+l′
sc (Rn × Rn).

• Density. Let S−∞,−∞
sc (Rn×Rn) =

⋂
m,l S

m,l
sc (Rn×Rn) denote the residual space

of symbols. Then S−∞,−∞
sc is not dense in Sm,l

sc . However, if a ∈ Sm,l
sc , then there

exists a sequence aj ∈ S−∞,−∞
sc that is uniformly bounded in Sm,l

sc and which

converges to a in the (slightly weaker) topology of Sm′,l′
sc for any m′ > m and

l′ > l.
• Asymptotic summation: given a sequence of orders (mj , lj), j ≥ 0 with mj ↘
−∞, lj ↘ −∞, and a sequence of scattering symbols aj ∈ S

mj ,lj
sc , there exists

a ∈ Sm0.l0
sc such that

a−
J−1∑
j=0

aj ∈ SmJ ,lJ
sc .

We call a an asymptotic sum of the aj ; it is unique modulo S−∞,−∞
sc .
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1.2. Compactification of phase space. We define the radial compactification of Rn

as follows: using polar coordinates, we can represent Rn \ {0} as (0,∞)r ×Sn−1
x̂ , where

r = |x| and x̂ = x/|x|. We then let s = 1/r, so that [1,∞)r = (0, 1]s. We compactify
(0, 1]s to [0, 1]s and then take the product with Sn−1

x̂ ; we have thus added a ‘sphere at

infinity’. Formally our compactification Rn is given by

Rn = Rn ⊔ [0, 1]s × Sn−1
x̂ / ∼,

where the equivalence relation ∼ identifies (r, x̂) (when r ≥ 1) and (s, x̂) exactly when
r = 1/s. Topologically Rn is a closed ball.

The compactification of phase space Rn
x×Rn

ξ is then defined to be T ∗Rn := Rn
x×Rn

ξ.
It is a compact manifold with corners of codimension 2.

We can reformulate the symbol estimates using the compactification T ∗Rn. We note

that a ∈ Sm,l
sc if and only if a is smooth on (T ∗Rn), and if(

⟨x⟩Dx

)α(⟨ξ⟩Dξ

)β
a ∈ ⟨ξ⟩m⟨x⟩lL∞(T ∗Rn)

for all multi-indices (α, β). We then claim that ⟨x⟩Dx and ⟨ξ⟩Dξ generate all smooth

vector fields on T ∗Rn tangent to the boundary. Let’s show this. We can write

⟨x⟩Dxk
=

1

⟨x⟩
Dxk

+
∑
j

xj
⟨x⟩

xjDxk

and since
xj

⟨x⟩ is a smooth function on Rn, we see that it is equivalent to requiring that

repeated applications of xjDxk
and ξjDξk (as (j, k) range between 1 and n indepen-

dently) to a remain in the fixed space ⟨ξ⟩m⟨x⟩lL∞(T ∗Rn).
We claim that the vector fields xjDxk

on Rn generate (over C∞(Rn)) all smooth

vector fields on Rn tangent to the boundary. To see this we notice that such vector fields
are homogeneous of degree zero under dilations x 7→ ax, a > 0. In polar coordinates
r, y, where y = (y1, . . . , yn−1) are angular coordinates, i.e. functions of x̂, vector fields
that are homogeneous of degree zero take the form∑

j

bj(y)Dyj + c(y)rDr.

Changing to s = 1/r this reads∑
j

bj(y)Dyj − c(y)sDs,

and this is evidently smooth in (s, y) (which is a smooth coordinate system on Rn near
the boundary), and tangent to the boundary since the coefficient of Ds vanishes when
s = 0. So the reformulation of the definition of the symbol space is

Sm,l
sc (Rn × Rn) =

{
a ∈ ⟨ξ⟩m⟨x⟩lL∞(T ∗Rn) | V1 . . . Vka ∈ ⟨ξ⟩m⟨x⟩lL∞(T ∗Rn) for all

smooth vector fields V1, . . . Vk on T ∗Rn tangent to the boundary, and all k ∈ N
}
.

(1.5)

It’s clear from this formulation that C∞(T ∗Rn) (or more precisely the set of restric-

tions of such functions to the interior T ∗Rn) is contained in S0,0
sc ; we call these symbols
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classical symbols of order (0, 0) and denote them S0,0
sc,cl(T

∗Rn). We similarly define

classical symbols of order (m, l) to be Sm,l
sc,cl(T

∗Rn) := ⟨ξ⟩m⟨x⟩lS0,0
sc,cl(T

∗Rn). Classical

symbols have a Taylor-like series at both spatial and frequency infinity. Choose bound-
ary defining functions s = 1/r for the boundary at spatial infinity and ρ = 1/|ξ| at
frequency infinity. (A boundary defining function for a boundary hypersurface H of
a manifold with corners is a smooth function that is nonnegative, vanishes at H and

whose differential is nonzero at H, i.e. it vanishes simply at H.) Then a ∈ Sm,l
sc,cl iff a

admits asymptotic expansions as s→ 0 and as ρ→ 0 of the form

a ∼
∞∑
j=0

s−l+jaj(x̂, ξ) where |ξ| is bounded , aj ∈ C∞, s→ 0, (1.6)

as well as

a ∼
∞∑
k=0

ρ−m+kbk(x, ξ̂) where |x| is bounded , bk ∈ C∞, ρ→ 0. (1.7)

Near the corner, we have a Taylor-like expansion in two variables (ρ, s):

a ∼
∞∑

j,k=0

s−l+jρ−m+kcjk(x̂, ξ̂)cjk ∈ C∞, ρ→ 0, s→ 0. (1.8)

Not all symbols are classical! A simple example of a non-classical symbol in S0,0
sc is ⟨x⟩iλ

or ⟨ξ⟩iλ where λ ̸= 0 ∈ R. Clearly, this symbol does not have a limit at the boundary
of phase space, as classical symbols of order (0, 0) do.

1.3. Exercises.

Problem 1.1.
Prove the statements about density of symbols above. To prove the density statement,
take a function χ ∈ C∞

c (Rn), such that χ = 1 on B(0, 1) and χ = 0 outside B(0, 2).
Let aj(x, ξ) be the function

aj(x, ξ) = χ(x/j)χ(ξ/j)a(x, ξ)

and prove the properties stated above for the sequence aj .

Problem 1.2. Prove the statement about asymptotic completeness above. In this
case, we may construct a as a sum of the form

a =
∞∑
j=0

aj(x, ξ)
(
1− χ(ϵjx)

)(
1− χ(ϵjξ)

)
,

where the ϵj are a sequence of small parameters converging to zero sufficiently fast.
Notice that this sum is locally finite for any fixed (x, ξ) since only finitely many terms
are nonzero, so the sum converges to a smooth function. However, we need to show
more, we need convergence in the symbol space. Assume, mostly for ease of notation,
that mj = m− j and lj = l − j.
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(i) Prove that a sufficient condition for convergence, both of the series above to a in

the topology of Sm,l
sc , and of the series a−

∑J
j=0 aj in the topology of Sm−J,l−J

sc , is that
for all k ≥ 0, J ≥ 0,

∥aJ+k(x, ξ)
(
1− χ(ϵJ+kx)

)(
1− χ(ϵJ+kξ)

)
∥m−J,l−J ;J ≤ 2−k.

(ii) Show that these conditions are satisfied given a finite number of smallness con-
ditions on ϵj for each j. Hence we can satisfy all conditions and thus construct the
asymptotic sum.

2. Lecture 2: Composition, principal symbol, ellipticity

2.1. Composition. As the term ‘calculus’ suggests, the scattering pseudodifferential
calculus is a bigraded algebra, i.e.

Ψm.l
sc ◦Ψm′,l′

sc ⊂ Ψm+m′,l+l′
sc . (2.1)

We will give a partial proof of this fact, taking for granted the graded algebra property
of the Hörmander calculus. First we treat the case l ≤ 0, l′ ≤ 0; it is easy to reduce

to this case (see the first exercise). Let A ∈ Ψm,l
sc and B ∈ Ψm′,l′ . Then A ∈ Ψm and

B ∈ Ψm′
(the usual Hörmander calculus), so we know that A◦B ∈ Ψm+m′

. We need to

show that the symbol of A◦B is in the space Sm+m′,l+l′
sc , which is a stronger condition.

Let’s consider the first the asymptotic expansion of the symbol of the composition:

σL(A ◦B) ∼
∑
α

(
Dα

ξ aL(x, ξ)
)(
∂αx bL(x, ξ)

)
α!

(2.2)

Consider all terms with |α| = j. We have

Dα
ξ aL(x, ξ) ∈ Sm−|α|,l

sc , ∂αx bL(x, ξ) ∈ Sm′,l′−|α|
sc

so taking the pointwise product gives a symbol in S
m+m′−|α|,l+l′−|α|
sc for all such terms.

We can asymptotically sum such terms since both exponents are tending to −∞ as

|α| → ∞, obtaining a symbol in Sm+m,l+l′
sc . This is a good sign, but is not a proof as

we also have to consider the properties of the remainder term.
There are three main approaches to composition: Gauss transforms, used in Hör-

mander’s treatise [4], as well as Zworski [16], Dimassi-Sjöstrand [1], etc; left-right re-
duction, used by lecture notes of Melrose, Vasy [13] and Hintz [3]; and using pullback
and pushforward of distributions via double and triple spaces, due to Melrose (e.g. [6]).
We will follow the left/right reduction method. This involves quantizing symbols that
depend on both the left and right variables of the Schwartz kernel of the operator, i.e.
we quantize symbols a(x, y, ξ) in a certain symbol class to the operator with Schwartz
kernel

Ka(x, y) = (2π)−n

∫
ei(x−y)·ξa(x, y, ξ) dξ. (2.3)

The relevant class here is symbols that behave in a scattering-like manner in the x and

y variables independently: that is, we consider classes Sm,l,l̃
sc (Rn

x × Rn
y × Rn

ξ ) satisfying
product-type estimates∣∣∣Dα

xD
α̃
yD

β
ξ a(x, ξ)

∣∣∣ ≤ Cαβ⟨x⟩l−|α|⟨y⟩l̃−α̃⟨ξ⟩m−|β|. (2.4)
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It turns out that these quantize to elements of Ψm,l+l̃
sc . That is, only the sum l + l̃ is

relevant to the spatial order of the operator, which is not surprising as only the jet
of the symbol a(x, y, ξ) on the diagonal x = y affects the operator (modulo residual
terms). This is shown in Vasy’s Grenoble lecture notes [].

To show composition, then, we follow the following standard strategy:

• We show that each symbol a(x, y, ξ) ∈ Sm,l,l̃
sc can be left or right reduced in a

unique manner. That is, there are uniquely determined symbols aL(x, ξ) and

aR(y, ξ), both in Sm,l+l̃
sc , that quantize to the same operator as (2.3).

• We observe that the composition A ◦ B is a pseudodifferential operator with
symbol aL(x, ξ)bR(y, ξ).

• We then perform, say, left reduction on this symbol to show that we obtain

something in Sm+m′,l+l′
sc . One expands the symbol in a Taylor series around the

diagonal x = y. As we have already seen, the terms in the asymptotic expansion
are no problem, but we need to consider the remainder term after subtracting
the first J terms in the expansion. There is a subtlety, as this remainder term
is obtained from the remainder term in the Taylor expansion of aL(x, ξ)bR(y, ξ)
at x = y, and involves an integral along the line segment from x to y (the usual
Taylor formula integral remainder term). The problem is that if |x| is large,
and y is approximately −x, then the line segment passes near the origin. It
means that the remainder might, ostensibly, decay much less than the terms
in the expansion, since spatial decay happens when x and/or y are large. To
circumvent this difficulty, we can decompose our symbol aL(x, ξ)bR(y, ξ) into a
part far from the diagonal and a part near the diagonal. The part far from the
diagonal produces a residual operator as is shown by standard integration-by-
parts tricks – see exercises. The part near the diagonal has the good property
that the line segment from x to y has distance from the origin comparable to |x|
and |y|, and allows us to prove uniform decay of the remainder term as required.
See Vasy’s Grenoble notes [13] for the details.

We obtain the bigraded algebra property of the scattering calculus, and we have also
confirmed that the symbol of the composition admits the usual asymptotic expansion
(2.2), which is an even better expansion than the usual expansion in the sense that we
gain spatial decay as well as frequency decay with each additional term. Indeed, in the
scattering calculus, if we write RN for the remainder term of expansion of A ◦B, then

RN ∈ Ψm+m′−N,l+l′−N
sc and every norm of RN in this space (by which we mean the

norms of σL(RN ) in Sm+m′−N,l+l′−N
sc ) is bounded by a constant times a suitable norm

of A in Ψm,l
sc and a suitable norm of B in Ψm′,l′

sc .

2.2. Principal symbol. Let A = OpL(aL) ∈ Ψm,l
sc . The principal symbol, σm,l

pr (A),

is defined to be the equivalence class of aL in Sm,l
sc /Sm−1.l−1

sc . It is the same as the
equivalence class of aR if A = OpR(aR).

Notice the difference with the Hörmander calculus: the principal symbol determines
the leading behaviour of the symbol both as |ξ| → ∞ for all x, and as |x| → ∞ for all
ξ (even ξ = 0).
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For classical symbols, we can be more explicit. Assume that (m, l) = (0, 0) for

convenience. Then a classical symbol a ∈ S0,0
sc,cl is by definition C∞ on T ∗Rn, and in

particular has a limit at ∂T ∗Rn. On the other hand, if b ∈ S−1,−1
sc , then b = sρb̃, where

b̃ ∈ C∞(T ∗Rn) where s = ⟨x⟩−1, ρ = ⟨ξ⟩−1. Such symbols are precisely those symbols

of order (0, 0) that vanish at ∂T ∗Rn. Thus, the principal symbol of a ∈ S0,0
sc,cl can be

identified with the boundary value of a on ∂T ∗Rn. The boundary value of a is exactly
knowing the limit of a as |ξ| → ∞ for all x and ξ̂, and the limit as |x| → ∞ for all ξ and
x̂. This boundary value is ‘smooth’ in the sense that it is smooth on each boundary
hypersurface, and is consistent at the corner. Next lecture, we will see that there is an
important symmetry between these two boundary hypersurfaces of the manifold with
corners T ∗Rn.

Fundamental properties of the principal symbol:

• By definition of the principal symbol there is a short exact sequence:

0 → Ψm−1,l−1
sc → Ψm,l

sc → Sm,l
sc /Sm−1,l−1

sc → 0, (2.5)

where the third arrow is the principal symbol map.
• The principal symbol is multiplicative:

σm+m′,l+l′
pr (A ◦B) = σm,l

pr (A)σm
′,l′

pr (B). (2.6)

• We also have the formula for the principal symbol of a commutator [A,B] =
AB − BA. Recall some background to this identity: the cotangent bundle
of any manifold, here Rn, is a symplectic manifold with a canonically defined
symplectic form ω =

∑
j dξj ∧ dxj . This defines a Poisson bracket {·, ·} and

for any real function p on T ∗Rn, a Hamilton vector field Hp on T ∗Rn defined
invariantly by

ω(Hp, V ) = dp(V ) = V (p).

Then we have

σm+m′−1,l+l′−1
pr (i[A,B]) = {a, b} = Ha(b) = −Hb(a), a = σm,l

pr (A), b = σm
′,l′

pr (B).
(2.7)

2.3. Ellipticity. We say that A ∈ Ψm,l
sc is (totally) elliptic if its principal symbol is

invertible,in the sense that there exists B0 ∈ Ψ−m,−l
sc such that

σm,l
pr (A) · σ−m,−l

pr (B0) = 1 ∈ S0,0
sc /S

−1,−1
sc .

In other words,

σL(A) · σL(B0)− 1 ∈ S−1,−1
sc . (2.8)

NB: this is a very strong version of ellipticity! The standard Laplacian ∆ is not
elliptic according to this definition, for example: although the principal symbol at
frequency infinity is elliptic, the principal symbol at spatial infinity is not; in fact, it
vanishes at ξ = 0. However, ∆+ λ is totally elliptic in the scattering calculus provided
λ ∈ C \ R≤0.

The standard construction, adapted to the scattering calculus, shows that if A is an
elliptic scattering pseudodifferential operator, then there is an inverse modulo residual
operators in the scattering calculus. Let us show this.
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Definition 2.1. Let A ∈ Ψm,l
sc be elliptic. A parametrix for A is an operator B such

that

AB − Id ∈ Ψ−∞,−∞
sc ∋ BA− Id. (2.9)

Proposition 2.1. Every elliptic element of the scattering calculus has a parametrix.

Proof. Given A ∈ Ψm,l
sc elliptic, choose B0 ∈ Ψ−m,−l

sc as above. From (2.8), we see that

AB0 − Id = −R1 ∈ Ψ−1,−1
sc . (2.10)

We want to invert Id−R1. Modulo residual operators we can do this with a Neumann
series: let R be an asymptotic sum

R ∼ R1 +R2
1 +R3

1 + . . . ,

which exists as Rj
1 ∈ Ψ−j,−j

sc . Then we have

(Id−R1)(Id +R) = Id +Rr, Rr ∈ Ψ−∞,−∞
sc .

So defining Br = B0(Id +R) we have

ABr = Id +Rr.

In the same way, putting B0 on the left of A instead of to the right, we can find Bl

such that

BlA = Id +Rl, Rl ∈ Ψ−∞,−∞
sc .

We then note that Bl and Br differ by a residual operator. This follows from the
following calculation:

BlABr = Br +RlBr = Bl +BlRr.

It follows that either Bl or Br is a parametrix for A. □

We remark that for classical symbols of order (0, 0), ellipticity is equivalent to the
condition that a

∣∣
∂T ∗Rn is everywhere nonzero. Since any classical a is continuous on

∂T ∗Rn, and ∂T ∗Rn is compact it follows that if a is classical and elliptic, then a is
bounded away from zero on ∂T ∗Rn and hence a−1 is also smooth. By extending a−1

into the interior arbitrarily as a smooth function, we obtain an symbol b satisfying
ab− 1 ∈ S−1,−1

sc,cl so quantizing b leads to an operator B0 as above.

For a general operator A, we define the elliptic and characteristic sets of A, which are

subsets of ∂T ∗Rn. This is easiest to do in the case of classical operators. If A ∈ Ψm,l
sc

is classical, let ã = ⟨ξ⟩−m⟨x⟩−lσL(A). Then ã is smooth on T ∗Rn and we can define

Ell(A) = {q ∈ ∂T ∗Rn | ã(q) ̸= 0},
Char(A) = {q ∈ ∂T ∗Rn | ã(q) = 0}.

(2.11)

More generally, for a non-necessarily-classical operator A, we say that a point q ∈
∂T ∗Rn is in Ell(A) iff there exists a symbol b ∈ S−m,−l

sc such that σL(A) · b − 1 is in

S−1,−1
sc in a neighbourhood of q ∈ T ∗Rn. More precisely, there is a smooth function χ

on T ∗Rn, identically 1 near q, such that χ(σL(A) ·b−1) is in S−1,−1
sc . The characteristic

set Char(A) is defined to be the complement of the elliptic set in ∂T ∗Rn. Notice that
the elliptic set is an open subset of ∂T ∗Rn, and hence the characteristic set is closed.
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2.4. Mapping properties of residual operators. We will discuss the boundedness
properties of scattering operators more fully in Lecture 3. But here, we make an
elementary observation about the mapping properties of residual operators. It is easy
to see that a symbol a of order (−∞,−∞) is precisely a Schwartz function on R2n.
It follows that the Schwartz kernel of Op(a) is also a Schwartz function on R2n, as it
involves taking the Fourier transform of a in ξ. Such Schwartz kernels map distributions
to Schwartz functions, since if u1 and u2 are distributions, and K(x, y) is Schwartz in
R2n
x,y, then

u2 7→
〈
u2, ⟨K(x, ·), u1⟩

〉
, u ∈ S ′(Rn)x,

is a continuous linear functional on S ′(Rn), and thus ⟨K(x, ·), u1⟩ is Schwartz. Thus,
residual operators map distributions to Schwartz functions.

It follows that the null space of any elliptic operator A is Schwartz. In fact, if B
is a parametrix, with BA = Id + R, R residual, then Au = 0 implies (Id + R)u = 0,
so u = −Ru is Schwartz. This has some consequences for essential self-adjointness of
symmetric elliptic operators.

2.5. Applications of the elliptic parametrix construction. We give a few corol-
laries. Fix V ∈ S−ε(Rn) for some ε > 0. Recall that a bound state of a Schrödinger
operator △+V on Rn is an L2-eigenfunction with negative eigenvalue. Our discussion
above immediately implies

Proposition 2.2. Bound states are necessarily all Schwartz functions.

Next, we give a spectral-theoretic application. Recall that a symmetric, densely
defined unbounded operator on a Hilbert space is said to be essentially self-adjoint
if its closure is self-adjoint. Then, the spectral theorem can be brought to bear. In
particular, all eigenfunctions of an essentially self-adjoint operator have real eigenvalues.

To show that essential self-adjointness is subtle:

Example. Fix ε ∈ {−1,+1} and k ∈ N. Consider P = D2
x + εxk ∈ Ψ2,k

sc (R). This is
certainly symmetric:

⟨Pu, v⟩L2 = ⟨u, Pv⟩L2 (2.12)

whenever u, v ∈ H2(R). Q. Is it essentially self-adjoint, when considered as an un-
bounded operator on L2(R) with domain C∞

c (R)? A.

• If k is even and ε = +1, or if k ∈ {0, 1, 2}, then P is essentially self-adjoint.
• Otherwise, P is not essentially self-adjoint. In fact, for any complex number
λ, there exists an L2-eigenfunction of P with that eigenvalue. So, P is not
essentially self-adjoint for any domain D ⊆ H2(R). (That we took D = C∞

c (R)
is not important.)

Most of this is a consequence of some classical ODE theory (Liouville–Green, or JWKB),
which tells us that there exist solutions with prescribed exponential behavior as x→ ±∞.
For example, if k ≥ 4 is even and ε is negative, then any solution of the ODE Pu = λu
is asymptotic to a linear combination of

1

|x|k/4
e±

2i
k+2

|x|(k+2)/2

(2.13)
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as |x| → ∞. As long as k ≥ 3, this lies in L2(R). If instead k ≥ 3 is odd, then there
exists a u with the asymptotic eq. (2.13) on one side of the real line and superpolynomial
decay on the other. Either way, we have an L2-eigenfunction with eigenvalue λ. Similar
arguments apply to the remaining cases. (If k = 0, 1, 2, then the asymptotic eq. (2.13)
is incorrect, receiving a correction from the λ term.)

The following reformulation is useful:

Lemma 2.1. Fix m, s ∈ R. Let D denote a subspace C∞
c (Rn) ⊆ D ⊆ Hm,s(Rn).

Suppose that A ∈ Ψm,s
sc is L2-symmetric (eq. (2.12)). Then, A is essentially self-adjoint

on L2 with domain D if and only if

kerL2(A± i) = {0},

for both choice of signs.

This reduces questions of the essential self-adjointness of differential operators P to
a concrete question about the well-posedness of the PDE (P ± i)u = f .

Proof. If A is essentially self-adjoint, then it has real spectrum, so the non-trivial part of
the lemma is that kerL2(A± i) = {0} is sufficient to conclude essential self-adjointness.

Note that if P is L2-symmetric, then we in fact have ⟨Pu, v⟩L2 = ⟨u, Pv⟩L2 for all
u ∈ S and v ∈ S ′. Here, the L2-inner product is understood distributionally:

⟨ϕ, ψ⟩L2 =

®
ϕ∗(ψ) ϕ ∈ S ′

ψ(ϕ∗) ψ ∈ S ′.
(2.14)

Indeed, if we fix u ∈ S, then ⟨Pu, v⟩L2 , ⟨u, Pv⟩L2 depend continuously on v with respect
to the topology of S ′ and agree when v ∈ S.

Deficiency index theory (see e.g. [RS72, Chp. VIII §2]]) says that the essential self-
adjointness of A on D is equivalent to the range of A ± i, acting on D, being dense
in L2, for both choices of sign. Therefore, it sufficient to consider only D = C∞

c (Rn).
Now,

RanC∞
c (Rn)(A± i) = L2 ⇐⇒ RanC∞

c (Rn)(A± i)⊥ = {0}
⇐⇒ {u ∈ L2 : ⟨(A± i)v, u⟩L2 = 0 for all v ∈ C∞

c (Rn)} = {0}
⇐⇒ {u ∈ L2 : ⟨v, (A∓ i)u⟩L2 = 0 for all v ∈ C∞

c (Rn)} = {0}
⇐⇒ {u ∈ L2 : (A∓ i)u = 0}︸ ︷︷ ︸

kerL2 (A∓i)

= {0}.

(2.15)

□

Why is it not obvious that kerL2(A ± i) = {0}? This is the statement that ±i is
not an eigenvalue of A, but we saw in the example above that this can happen, e.g.
for A = ∂2x + x3. What goes wrong if we try to apply to the unbounded operator A
the usual argument that bounded symmetric operators have only real eigenvalues? If
u ∈ L2 satisfies Au = λu, and if P were bounded, then

λ∗∥u∥2 = ⟨Au, u⟩ = ⟨u,Au⟩ = λ∥u∥2, (2.16)
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which implies λ = λ∗ if u ̸= 0. The problem is that if A is not bounded, then we
only know ⟨Au, v⟩L2 = ⟨u,Av⟩L2 for “nice” u, v, and it may not be the case that an
L2-eigenfunction is nice. For example, for A = ∂2x + x3, the kerL2(A ± i) consists of
functions which are smooth but which do not decay particularly rapidly at infinity.
They are in L2, but if we try to carry out the proof that ⟨Au, u⟩L2 = ⟨u,Au⟩L2 , the
integration-by-parts produces boundary terms. In fact,

⟨Au, u⟩L2 ̸= ⟨u,Au⟩L2 (2.17)

for such u.

Proposition 2.3. If V ∈ S−ε(Rn) is real, then the operator P = △+ V is essentially
self-adjoint on L2 with domain C∞

c .

Proof. By the argument above, it suffices to show that any L2-eigenfunction of P with
eigenvalue ±i is sufficiently nice for ⟨Pu, u⟩L2 = ⟨u, Pu⟩L2 to hold.

Note that P ± λ is an elliptic element of Ψ2,0
sc if λ is non-real. Consequently, any

element of its null space must be Schwartz. □

2.6. Exercises.

Problem 2.1. Show that the composition result above in the case l ≤ 0, l′ ≤ 0 implies
composition for arbitrary orders.

Problem 2.2. Consider a symbol in the case Sm,l,l̃
sc with the property that it vanishes

whenever |x − y| ≤ ⟨x⟩/4. Show that the quantization of such a symbol is residual.
(Integrate by parts suitably.)

Problem 2.3. Suppose that the characteristic set of A ∈ Ψm,0
sc is disjoint from fiber

infinity. Suppose that A is symmetric, meaning that ⟨Au, v⟩L2 = ⟨u,Av⟩L2 for all
u, v ∈ S.

Show that A, with domain C∞
c (Rn), is essentially self-adjoint on L2(Rn).

Problem 2.4. Suppose that V ∈ C∞(R) satisfies limx→−∞ V (x) = 0. Suppose that u
is a bound state, with energy E < 0. Show that u is smooth everywhere and Schwartz
on the left- half-line.

Problem 2.5. If k > 0 and V ∈ S(Rn), then △ + kx2 + V is essentially self-adjoint
acting on C∞

c (R). Hint: a coordinate change from x to some

x̃ =

®
x (x ≤ 1)

x2 (x ≥ 2)
(2.18)

may be useful.

Problem 2.6. Consider the differential operator on the real line given by P = −∂2x+1.
A student makes the following argument:

P is an elliptic element of Ψ2,0
sc (R), and so, via elliptic regularity, Pu = 0 ⇒

u ∈ S(R).
But, u(x) = ex solves Pu = 0 and is not Schwartz. What mistake did the student
make?
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3. Lecture 3: Weighted Sobolev spaces

3.1. Intertwining with the Fourier transform. In the first lecture, we defined
Ψ0,0

sc = Ψ0,0
sc (Rn), which is a certain proper subset

Ψ0,0
sc ⊊ Ψ0

of Hörmander’s Ψ0 = Ψ0(Rn). Roughly, one should think of sc-pseudodifferential op-
erators as those ordinary pseudodifferential operators with “good” behavior at infinity.

The purpose of this subsection is to provide another motivation for the sc-calculus,
namely that it is, in some sense, the simplest pseudodifferential calculus that treats
momentum/frequency and position on equal footing. This is an attractive feature of the
sc-calculus not possessed by Hörmander’s Ψ.

One can develop this theme in many ways. Here is one:

Proposition 3.1. If F denotes the Fourier transform, then F ◦ Ψs,ℓ
sc ◦ F−1 = Ψℓ,s

sc .
That is,

F ◦A ◦ F−1 ∈ Ψs,ℓ
sc (3.1)

for all A ∈ Ψs,ℓ
sc .

Remark 3.1. In contrast: F ◦Ψ0 ◦F−1 is not a subset of Ψ0. (We will not prove this,
but it follows via a similar computation to that below.)

Proof. Fix A = OpL(a), a ∈ Ss,ℓ
sc . Let us compute the action of F ◦ A ◦ F−1 on

ϕ ∈ S(Rn). Directly plugging into the definition eq. (1.1),

F ◦A ◦ F−1ϕ(ζ) = (2π)−n

∫ ∫
eix·(ξ−ζ)a(x, ξ)ϕ(ξ)dξdx =

∫
K(ζ, ξ)ϕ(ξ)dξ, (3.2)

where

K(ζ, ξ) = (2π)−n

∫
eix·(ξ−ζ)a(x, ξ)dx. (3.3)

To make this more recognizable, we can rename dummy variables:

K(x, y) = (2π)−n

∫
eiξ·(y−x)a(ξ, y)dξ = (2π)−n

∫
eiξ·(x−y)a(−ξ, y)dξ. (3.4)

We now recognize this asKã(x, y), where ã(x, y, ξ) = a(−ξ, y). Let R(π/2) : R2n → R2n

denote the 90◦ rotation
R(π/2) : (x, ξ) 7→ (−ξ, x).

Then, ã = a ◦R(π/2). So,
F ◦A ◦ F−1 = OpR(a ◦R). (3.5)

The key point is that a ◦ R is a sc-symbol, specifically one in Ss,m
sc , because R(π/2)

is (obviously) a map
R(π/2) : Ss,m

sc → Sm,s
sc ,

owing to the fact that the estimates used to define S0,0
sc treat position and frequency

on equal footing. □

As part of the previous proposition, we proved:

Proposition 3.2. If A ∈ Ψsc, then, if a denotes the full left symbol of A, then a ◦R is
the full right symbol of A.
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Corollary 3.1. The principal symbol of F ◦A ◦ F−1 is a ◦R.

Proof. For either left or right quantization, we have A = OpL/R(a) ⇒ a ∈ σ(A). So,
this follows immediately from Proposition 3.2. □

Remark 3.2. For the reader acquainted with Fourier integral operators (FIOs), let
us remark that the Fourier transform can be thought of as an FIO quantizing the
symplectomorphism R±1.

Then (since the composition of FIOs is an FIO), and since pseudodifferential opera-
tors are FIOs whose underlying symplectomorphism (/canonical relation) is the identity,
F ◦A ◦ F−1 should be an FIO for any A ∈ Ψsc, whose underlying symplectomorphism
is R±1 ◦ id ◦R∓1 = id, i.e. a pseudodifferential operator.

3.2. Weighted Sobolev spaces. The ordinary (L2-based) Sobolev spaces Hs(Rn) =
Ψ−s(Rn)L2(Rn) play a fundamental role in the ordinary microlocal analysis of PDEs.
The analogous role in scattering theory is played by the (polynomially) weighted
Sobolev spaces

Hs,ℓ
sc (Rn) = L2(Rn) = ⟨x⟩−ℓHs(Rn) ⊂ S ′. (3.6)

These come with a natural Hilbertizable topology, namely that coming from Hs, such

that multiplication by ⟨x⟩−ℓ defines a continuous map Hs → Hs,ℓ
sc .

Remark 3.3. Warning: different conventions exist for how H•,•
sc should be indexed.

We are following the convention that higher orders mean more regularity and more
decay.

In this subsection, we will present a few basic facts about weighted Sobolev spaces.
Proofs will only be provided when they differ in some essential way from the corre-
sponding facts about ordinary Sobolev spaces.

Proposition 3.3. The map ι : S → (Hs,ℓ
sc )∗ given by ι(f)(u) =

∫
uf extends boundedly

to an isomorphism H−s,−ℓ
sc

∼= (Hs,ℓ
sc )∗.

Proof sketch. Follows from the duality (L2)∗ ∼= L2. □

Proposition 3.4 (Schwartz representation theorem). •
⋂

s,ℓ∈RH
s,ℓ
sc = S,

•
⋃

s,ℓ∈RH
s,ℓ
sc = S ′.

Proof sketch. The first fact follows from Sobolev embedding. The second follows by
dualizing the first. □

In the spirit of the previous subsection, let us remark:

Proposition 3.5. F : Hs,ℓ
sc → Hℓ,s

sc .

Example. Suppose M ⊆ Rn is a closed codimension k-submanifold of Rn. Then,

the Dirac-δ function δM lies in Hs,ℓ
sc whenever s < −k/2. So, FδM ∈ Hs,ℓ

sc whenever
ℓ < −k/2.

For example, if M = {0}, then FδM = 1. We are claiming that 1 ∈ ⟨r⟩ℓHs whenever
ℓ < −n/2, which is true.
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Proposition 3.6. If A ∈ Ψs,ℓ
sc , then, for all s′, ℓ′ ∈ R, A maps

A : Hs′,ℓ′
sc → Hs′−s,ℓ′−ℓ

sc , (3.7)

and does so boundedly.

So, if s, ℓ > 0, then applying A ∈ Ψs,ℓ
sc reduces regularity by s orders and reduces

decay by ℓ orders. Similar statements apply if s ≤ 0 or ℓ ≤ 0, switching “reduces” to
“increases” where necessary.

The proposition is an easy corollary of the L2-boundedness of ordinary ΨDOs:

Proof. We have a commutative diagram

Hs,ℓ
sc

A //

×⟨x⟩ℓ′
��

Hs′−s,ℓ′−ℓ
sc

Hs′

⟨x⟩ℓ′−ℓA⟨x⟩−ℓ′
// Hs−s′

×⟨x⟩ℓ−ℓ′

OO (3.8)

in which all of the maps except the top map are known to be bounded. (The reason

we know that ⟨x⟩ℓ′−ℓA⟨x⟩−ℓ′ maps Hs′ → Hs′−s boundedly is that, since ⟨x⟩r ∈ Ψ0,r
sc

for any r,

⟨x⟩ℓ′−ℓA⟨x⟩−ℓ′ ∈ Ψ0,ℓ′−ℓ
sc Ψs,ℓ

sc Ψ
0,−ℓ′
sc ⊆ Ψs,0

sc ⊂ Ψs, (3.9)

and we already know, as part of the theory of Ψ, that elements of Ψs map Hs′ → Hs′−s

boundedly.)

So, A maps Hs′,ℓ′
sc → Hs′−s,ℓ′−ℓ

sc , and does so boundedly. □

Remark 3.4. It is sometimes useful to note that Op(a) depends continuously on a in

the sense that if a1, a2, · · · ∈ Ss,ℓ
sc is some sequence such that an → a in Ss,ℓ

sc , then

Op(an) → Op(a)

in L(Hs′,ℓ′
sc , Hs′−s,ℓ′−ℓ

sc ).

3.3. The Rellich theorem. Recall the Rellich compactness theorem, which states that
if X is a closed manifold, then the inclusion Hm′

(X) ↪→ Hm(X) is compact whenever
m < m′.

Importantly, this fails when X = Rn. Indeed, fix u ∈ C∞
c (Rn). Then, for any

nonzero k ∈ Rn, the translates un = u(• + nk) converge weakly to 0 in Hm for every
m ∈ R. (Why?) But, ∥un∥Hm is constant, and therefore not converging to 0. So,

Hm′
(Rn) ↪→ Hm(Rn) is never compact.

Instead, the “correct” analogue of the Rellich compactness theorem on Rn is:

Proposition 3.7. For any s, s′, ℓ, ℓ′, with s < s′ and ℓ < ℓ′, the embedding Hs′,ℓ′
sc ↪→

Hs,ℓ
sc is compact.

Proof Idea. The full result follows easily from the m, s = 0 case.
So, we want to show that if ε > 0, then the inclusion Hε,ε

sc ↪→ L2 is compact. In other
words, we want to show that if u1, u2, . . . is a sequence of elements of Hε,ε

sc converging
weakly to 0 in this space, then ∥un∥L2 → 0.
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Via the Rellich compactness of the inclusion Hε ↪→ L2 on compact manifolds (say,
the torus Rn/ΛZn for Λ large) (the Rellich compactness theorem), it must be the case
that ∥χun∥L2 → 0 for any χ ∈ C∞

c (Rn). This means that the L2-mass of the un is
leaving every compact subset. But we want to say that the L2-mass of the un is going
to zero. So, what we need to rule out is that the L2 mass of the un “escapes” to
spatial infinity without decaying. Intuitively, it makes sense that this is ruled out by
weak convergence in Hε,ε

sc ; were un to escape, it would be expected to be possible to
construct an adversarial v ∈ H−ε,−ε

sc = (Hε,ε
sc )∗ such that ⟨v, un⟩ ̸→ 0.

Rather than argue along these lines, it is somewhat easier to use an alternative
characterization of compact maps between Hilbertizable spaces, namely that the com-
pact maps are those in the closure (under the operator norm) of the set of finite-rank
operators. □

Proof. For each R > 0, consider the multiplication operator MR = χ(x/R). By the
Rellich compactness theorem, there exists a finite-rank operator FR : Hε,ε

sc → L2 such
that ∥MR − FR∥Hε,ε

sc →L2 ≤ 1/R. Now,

∥1−FR∥Hε,ε
sc →L2 ≤ ∥1−MR∥Hε,ε

sc →L2 + ∥MR −FR∥Hε,ε
sc →L2 ≤ ∥1−MR∥Hε,ε

sc →L2 +1/R.
(3.10)

But, χ(•/R) converges, as R → ∞, to 1 in Sε,ε
sc , for every ε > 0. [Exercise.] It follows

that ∥1−MR∥Hε,ε
sc →L2 → 0 as R→ ∞. □

Suppose that A,A′ ∈ Ψ0,0
sc have the same principal symbol. Then, it follows that

A−A′ ∈ Ψ−1,−1
sc . (3.11)

So, the difference K = A − A′ is compact acting on any fixed sc-Sobolev space. In
the sc-calculus, principal symbols capture operators modulo compact errors. This is the
single most important property that the sc-calculus has that Hörmander’s Ψ does not
— it is why Ψsc is as useful as it is when doing scattering theory.

3.4. A quick review of abstract Fredholm theory. It is a fact of life that many
PDEs one cares about are not well-posed. For example, if △g denotes the Laplace–
Beltrami operator on a closed Riemannian manifold (M, g), then, for λ ∈ R, the prob-
lem ®

u ∈ H2(M),

△gu− λu = f ∈ L2
(3.12)

is only well-posed if λ is not an eigenvalue of △g.
After well-posedness, Fredholmness is the next best thing. Recall that if X ,Y are

two Banach spaces and P : X → Y is a bounded linear map, then P is said to be
Fredholm if the following three conditions are all satisfied:

(i) P has closed range,
(ii) P has finite-dimensional null space,
(iii) P has finite-dimensional cokernel Y/PX ∼= (PX )⊥.

Roughly, being Fredholm means being invertible modulo a finite-dimensional ob-
struction.
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Example. If (M, g) is a closed Riemannian manifold, then, for any first-order differ-
ential operator Q with smooth coefficients, the operator P = △g +Q is Fredholm as a
map Hm(M) → Hm−2(M), for any m ∈ R. Thus, every eigenvalue of △g has finite
multiplicity.

Example. On Rn, if

△ =

n∑
j=1

D2
xj

= −
n∑

j=1

∂2xj

denotes the positive semidefinite Laplacian and λ > 0, then △ + λ is Fredholm as a
map Hm(M) → Hm−2(M), for any m ∈ R.

This is not true if λ ≤ 0. Indeed, then P = △ + λ, considered as a map H2 → L2,
has range

rangeP = F{u ∈ L2 : (ξ2 − λ)−1u ∈ L2(Rn)}

which is dense in L2 but not all of L2, and therefore not closed.

Moral. Unlike on closed manifolds, Fredholmness on non-compact spaces can de-
pend on seemingly lower-order operators. The reason for “seemingly” in the previous
sentence is that △ ∈ Ψ2,0

sc and +λ ∈ Ψ0,0
sc ; so in terms of differential order, it is true

that △ is higher-order, but in terms of decay order, they are both 0th order.
Let P : X → Y denote a bounded linear map. A semi-Fredholm estimate is one of

the form

∥u∥X ≤ C(∥Pu∥Y + ∥ιu∥Z) (3.13)

for ι : X → Z a compact injection from X to some other Banach space Z, and C > 0
a constant (independent of u). This essentially means that we can control u in terms
of Pu and some weak norm ∥ϕu∥Z of u.

Remark 3.5. If P had no null space, then we would have an estimate ∥u∥X ≤ C∥Pu∥Y .
So, a semi-Fredholm estimate is almost as good, except we have to allow a “small” error
on the right-hand side to accomodate the fact that P may have null space.

The following fact about Fredholm operators is “standard.”

Proposition 3.8. Fix Hilbert spaces X ,Y. Then, the following are equivalent:

(i) P is Fredholm.
(ii) P is invertible modulo a compact error. That is, there exists a bounded linear

operator Q : Y → X such that

QP − idX , PQ− idY

are compact.
(iii) (Semi-Fredholm estimates.) P and P ∗ : Y → X both satisfy a semi-Fredholm

estimate.

Proof. The equivalence of (i), (ii) really is a standard fact, explained in many functional
analysis texts, so we will focus on the equivalence of (iii) with the other two.
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• (iii) ⇒ (i): Suppose that u1, u2, u3, . . . were some infinite orthonormal sequence
of elements of kerP . Then, un → 0 weakly in X . Since ι is compact, this implies
∥ιun∥Z → 0. But this violates the semi-Fredholm estimate for P , which, when
applied to un, says

1 = ∥un∥X ≲ ∥ιun∥Z . (3.14)

So, the kernel of P has to be finite-dimensional.
To see that the range of P is closed: suppose that u1, u2, u3, . . . are some

infinite sequence of nonzero elements of X such that Puj → f . Suppose we
knew that the uj (or a subsequence thereof) stayed within some large ball in
X . Then, by the Banach–Alaoglu theorem, we could pass to some subsequence
converging weakly to some u∞ ∈ X . Assuming without loss of generality that
passing to the subsequence is not necessary, Puj → Pu∞ weakly. This implies
Pu∞ = f , so f ∈ RanP .

Of course, it need not be the case that uj stay bounded in X , since we
always could add an arbitrarily large element of kerP to uj without changing

its image under P . So, we might as well take uj ∈ (kerP )⊥. Now suppose that
still ∥uj∥ → ∞. Let ûj = uj/∥uj∥. Since these stay bounded in X , by Banach–

Alaoglu we can assume that they converge weakly to some v ∈ (kerP )⊥. Now,
Pûj → Pv weakly, but also ∥Pûj∥ = ∥Puj∥/∥uj∥ → 0. So, we must have
Pv = 0. On the other hand, ιuj → ιv strongly in Z. The semi-Fredholm
estimate says

1 = ∥ûj∥X ≲ ∥Pûj∥Y + ∥ιûj∥Z . (3.15)

Since ∥Pûj∥Y → 0, this means that ∥ιûj∥Z , and therefore ∥ιv∥Z , must eventu-
ally be bounded below by something positive. So, v ̸= 0. But, the three facts
v ∈ (kerP )⊥, Pv = 0, v ̸= 0 are inconsistent.

So, the range of P is closed.
From this, it follows that the cokernel is isomorphic to kerP ∗ (see Prob-

lem 3.3. The argument above shows that the finite-dimensionality of kerP ∗

follows from the semi-Fredholm argument.
• (ii) ⇒ (iii). Let K = QP − idX , which we assume is a compact operator on X .
Then,

∥u∥X ≤ ∥QPu∥X + ∥Ku∥X ≲ ∥Pu∥Y + ∥Ku∥X . (3.16)

Let Z = kerK ⊕KX , endowed with the norm ∥(u, k)∥Z = ∥u∥X + ∥k∥X . Let
ι : X → Z be defined by ι : u 7→ (Ku,ΠkerKu). Then,

∥u∥X ≲ ∥Pu∥Y + ∥ιu∥Z . (3.17)

So, we get a semi-Fredholm estimate for P .
Applying the same argument to P ∗, we conclude that it satisfies a semi-

Fredholm estimate.

□

The operator Q in above is called a parametrix for P .
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3.5. Elliptic Operators are Fredholm. Now the main result of this lecture:

Proposition 3.9. If A ∈ Ψs,ℓ
sc is elliptic, then it is Fredholm as a map Hs′,ℓ′

sc →
Hs′−s,ℓ′−ℓ

sc .

Proof. Follows immediately from the elliptic parametrix construction, the characteriza-
tion Proposition 3.8 of Fredholmess, and the compactness of the embedding H−1,−1

sc ↪→
L2(Rn) □

Consequently:

Proposition 3.10. If A ∈ Ψs,ℓ
sc is elliptic, then kerS′ A is finite-dimensional.

Proof. By the elliptic parametrix construction, kerS′ A consists entirely of Schwartz
functions. Thus, they lie in the kernel of A restricted to any individual sc-Sobolev
space, say L2. By the the previous proposition, the Fredholmness of A acting on L2

implies that the kernel is finite-dimensional. □

Corollary 3.2. Consider P = △ + V , V ∈ S−ε. For each E < 0, there are at most
finitely many bound states with that energy.

3.6. Problems.

Problem 3.1. Prove Proposition 3.4.

Problem 3.2. Prove Proposition 3.5.

Problem 3.3. (1) Show that if P : X → Y is a bounded linear map between
Hilbert spaces X ,Y with closed range, then Y/PX ∼= kerP ∗.

(2) Is this true if we do not assume that P has closed range?

Problem 3.4. Consider u(x) = ex sin(ex).

(1) Show that u ∈ H−1,ℓ
sc (R) for l sufficiently negative.

(2) (Optional.) For which Hk,ℓ
sc (R) is u in? (k is an integer.)

Problem 3.5. Consider a repulsive Coulomb-like potential V ,

V =
1

⟨r⟩
+ S−1−ε(Rn).

Show that kerS′(△ + V ) is finite-dimensional. Hint: a coordinate change might be
useful.

4. Lecture 4: Microlocalization

Recall that the wavefront set WF(u) of a distribution u ∈ D′(R) is a subset1

⊆ Rn︸︷︷︸
base

× ∂Rn︸︷︷︸
Sn−1 fiber

= S∗Rn (4.1)

1Usually, one defines wavefront set to be a fiberwise conic subset of T ∗Rn = Rn×Rn. The compact-
ified perspective is that, instead of taking the wavefront set to consist of lines in the cotangent bundle,
to only take their “endpoints” at fiber infinity.
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obstructing smoothness — the wavefront set over a point x ∈ Rn in the base is a subset
of the fiber Sn−1 over x describing the directions where the germ of u at x fails to be
smooth. A distribution is smooth if and only if it has empty wavefront set.

In this lecture, we talk about the scattering wavefront set. This assigns to each
tempered distribution u ∈ S ′ a subset

WFsc(u) ⊂ ∂(Rn × Rn) (4.2)

of the “square boundary” ∂(Rn × Rn) which obstructs u being Schwartz. Over the
“interior” Rn ⊂ Rn, this is just the ordinary wavefront set WF(u). The novel thing
about the sc-wavefront WFsc(u) is that it contains, in addition to the ordinary wavefront
set, a set of points over spatial infinity. Namely, over ∞θ, θ ∈ Sn−1, the sc-wavefront
set contains the frequencies at which u, in that direction, fails to be Schwartz. So,
while the ordinary wavefront set is detecting a failure to be smooth, the sc-wavefront
set is also detecting failure to decay.

Obviously, we need to make this mathematically precise. We will do this in the next
subsection. Afterwards, we will discuss examples.

4.1. Basics. In this section, if S is a subset of ∂(Rn × Rn), then we use S∁ to denote
the complement of S within this set:

S∁ = (∂(Rn × Rn))\S. (4.3)

The sc-wavefront set of a tempered distribution u is defined by

WFsc(u) =
⋂

A∈Ψ0,0
sc s.t. Au∈S

charsc(A) =

Å ⋃
A∈Ψ0,0

sc s.t. Au∈S

ellsc(A)

ã∁
. (4.4)

Since this is an intersection of closed sets, it is closed.

Proposition 4.1. • The portion of WFsc(u) not over base infinity is just the
ordinary wavefront set WF(u).

• If u is compactly supported, then its sc-wavefront set is the same as its ordinary
wavefront set.

Proof. Exercise. □

Proposition 4.2. u ∈ S ⇐⇒ WFsc(u) = ∅.

Proof. • (⇒): take A = 1.

• (⇐): if WFsc(u) = ∅, then, for each point p in ∂(Rn × Rn), there exists an

Ap ∈ Ψ0,0
sc such that ellsc(Ap) ∋ p and Apu is Schwartz. Because the sets

ellsc(Ap) are all open, and because ∂(Rn × Rn) is compact, we can choose a
finite number J ∈ N+ of points pj such that the sets ellsc(Apj ) form an open

cover of ∂(Rn × Rn). Now consider

A =
J∑

j=1

A∗
jAj ∈ Ψ0,0

sc . (4.5)
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This satisfies Au ∈ S. The principal symbol of A is

a =
J∑

j=1

|aj |2,

where the aj ’s are the principal symbols of the Aj ’s. Because the sets ellsc(Apj )

form an open cover of ∂(Rn × Rn), a is totally elliptic. So, it follows that

Au ∈ S ⇒ u ∈ S. (4.6)

□

A local version of this is:

Proposition 4.3. Let θ ∈ Sn−1 be a direction. Then, WFsc(u) is disjoint from the
fiber over ∞θ if and only if there exists some χ ∈ C∞(Sn−1) identically = 1 near θ and
some ψ ∈ C∞

c (R) identically = 1 near the origin such that the product χ(r−1x)ψ(1/r)u
is Schwartz.

More generally:

Proposition 4.4. Suppose that A ∈ Ψsc has WF′(A) disjoint from WFsc(u). Then Au
is Schwartz.

Proof. See Problem 4.1. □

Proposition 4.5 (Microlocality). If A ∈ Ψsc and u ∈ S ′, then WFsc(Au) ⊆ WFsc(u)∩
WF′

sc(A).

Proof. • First, we show that WFsc(Au) ⊆ WF′
sc(A), i.e. WFsc(Au)

∁ ⊇ WF′
sc(A)

∁.

Suppose that p ∈ WF′
sc(A)

∁. Then, ∃B ∈ Ψ0,0
sc elliptic at p but whose operator

wavefront set is disjoint from that of A. Then, BA ∈ Ψ−∞,−∞
sc . Thus BAu ∈ S,

so the elliptic set of B, including p, is contained in WFsc(Au)
∁.

• Second, we show that WFsc(Au) ⊆ WFsc(a), i.e. WFsc(Au)
∁ ⊇ WFsc(u)

∁. If

p ∈ WFsc(u)
∁, then there exists a B ∈ Ψ0,0

sc elliptic at p but with WF′
sc(B)

disjoint from WFsc(u). It follows that WF′
sc(BA) is disjoint from WFsc(u). So,

Proposition 4.4 implies that BAu ∈ S. It follows that p ∈ WFsc(Au)
∁.

□

Just as differential operators do not spread supports, pseudodifferential operators do
not spread singular supports or wavefront set.

The following proposition will be useful in reducing computations of sc-wavefront set
to computations of ordinary wavefront set:

Proposition 4.6. Except at the corner of the square ∂Rn × ∂Rn, WFsc(u) consists of
the union of the ordinary wavefront set WF(u) set of u and the rotation by 90◦ of the
ordinary wavefront set of Fu.

By rotation we mean turning the square Rn × Rn on its side.

Proof. Follows from Proposition 3.1. □
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Similarly, if we want to measure u’s failure to lie in some sc-Sobolev space Hs,ℓ
sc , then

we consider
WFs,ℓ

sc (u) =
⋂

A∈Ψ0,0
sc s.t. Au∈Hs,ℓ

sc

charsc(A). (4.7)

Proposition 4.7. WFsc(u) =
⋃

s,ℓ∈RWFs,ℓ
sc (u).

Remark 4.1. The closure here is necessary! (Why?)

The propositions above apply, mutatis mutandis, to the WFs,ℓ
sc . For example, mi-

crolocality reads:

Proposition 4.8. If A ∈ Ψs,ℓ
sc and u ∈ S ′, then WFs′,ℓ′

sc (Au) ⊆ WFs′+s,ℓ′+ℓ
sc (u) ∩

WF′
sc(A).

4.2. One-dimensional examples.

Example. Fix σ > 0. Consider u ∈ S ′(R) defined by u(x) = eiσx. Then, WFsc(u)
consists of exactly two points, one over each of the two points in ∞S0.

Proof. The Fourier transform of u is a Dirac δ-function over the single point σ ∈ R.
The ordinary wavefront set of such a δ-function is the whole cosphere S∗σR over the
point where the δ-function is located. The sc-wavefront set must be the same — we
cannot have any sc-wavefront set at base infinity — since the δ-function is compactly
supported. So, the claim follows from Proposition 4.6. □

This is consistent with the intuition that WFsc is measuring which frequencies fail
to decay.

Example (Wavefront set at the corner). How do we interpret sc-wavefront set at the
corner

∂Rn × ∂Rn ⊆ ∂(Rn × Rn)? (4.8)

Let us get some intuition in the n = 1 case.

• Consider the Dirac comb u(x) =
∑

k∈Z δ(x − k). Since the singular support of
u is Z, and since the sc-wavefront set is a closed set, the sc-wavefront set of u
must contain points in the corner.

This applies also to

u(x) =
∑
k∈Z

f(x)δ(x− k)

for f Schwartz.

• Consider u(x) = eix
2
. This tempered distribution is not Schwartz, so it has to

have sc-wavefront set somewhere. But it is smooth, so it has no ordinary wave-
front set. Moreover, it’s Fourier transform has the same form (up to rescaling)
and therefore has no ordinary wavefront set either.

Therefore, by Proposition 4.6, the wavefront set of u must be entirely at the
corner.

Intuition: sc-wavefront set at the corner corresponds to oscillations with infinite
frequency which fail to decay.
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4.3. Higher-dimensional examples: it’s about the cones.

Example. A plane wave has the form u(x) = eik·x for k ∈ Rn. Claim: the sc-wavefront
set of u consists of a single point over each point at spatial infinity.

Proof. Same as in the one-dimensional case. □

Ignoring fiber infinity, we can think of the portion of ∂(Rn×Rn) over ∞θ, θ ∈ Sn−1,
as consisting of one point for each plane wave.

Example. A spherical wave has the form u(x) = eiσ⟨r⟩ for σ ∈ R. The sc-wavefront
set over ∞θ consists of a single point, that in the sc-wavefront set of the plane wave
eik·x for k = σθ.

Q. Fix a plane wave eik·x. At how many points do WFsc(e
ik·x), WFsc(e

iσ⟨r⟩) inter-
sect? A. 0 if σ ̸= ∥k∥, 1 otherwise.

Example. Let n = 2 (for notational simplicity). Consider a “beam” of the form
u(x) = χ(x2)e

iσx1 for nonnegative χ ∈ C∞
c (R) not identically zero.

Q. What is the sc-wavefront set of u? A. The sc-wavefront set is entirely over the
forward/backwards directions ±∞e1, e1 = (1, 0), but, rather than consisting of a single
point over each, it consists of (the closure of) all of the wavevectors k ∈ R2 of the form
k = (σ, η), η ∈ R.

Proof. First of all, u is smooth — it has no ordinary wavefront set. Its sc-wavefront
set therefore sits entirely over base infinity. Some of this wavefront set could be in the
corner. Let’s ignore this (but see Problem 4.8). The question we are then asking is
about the sc-wavefront set of u over base infinity at finite frequency. This is equivalent
to asking about the ordinary wavefront set of the Fourier transform û.

The Fourier transform û is χ̂(ξ2)δ(ξ1 − σ). Because χ is compactly supported, the
support of χ̂ must be the whole real line. (This is because the Fourier transform of
any C∞

c function on the real line extends to an entire, nonzero function on the complex
plane, so cannot vanish on any nonempty open sets.) So, the ordinary wavefront set of
û is

WF(û) = N∗{ξ1 = σ}. (4.9)

That is, it consists of the entire conormal bundle of the line {ξ1 = σ}. Rotating this
by 90◦, we conclude the claim. □

Moral: We cannot determine the plane waves out of which a distribution is built if
we restrict attention to a rectangular prism R = {∥y∥ < C}, because, if we only have
access to u|R, then we cannot distinguish different functions of the form eik·xAk for
Ak ∈ C∞(Rn) for k ∈ Rn with the same first component. Instead, we need access to
the whole cone {∥y∥ < Cx1}.

4.4. The microlocal elliptic parametrix construction.

Proposition 4.9. Suppose that A ∈ Ψs,ℓ
sc is elliptic at p ∈ ∂(Rn × Rn). Then, there

exists a B ∈ Ψ−s,−ℓ
sc such that AB − 1, BA− 1 have WF′

sc disjoint from p.
This also applies with p replaced by any closed subset.

Proof. Analogous to construction of parametrix for totally elliptic operators. □
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Microlocality says that pseudodifferential operators cannot spread wavefront set.
Elliptic regularity says that pseudodifferential operators cannot kill wavefront set except
where characteristic. Specifically:

Proposition 4.10. Suppose A ∈ Ψs,ℓ
sc . Then,

WFs′,ℓ′
sc (Au) ⊇ WFs′,ℓ′

sc (u)\ chars,ℓsc (A).

Proof. If B ∈ Ψ0,0
sc and K = I −BA, then, from u = BAu+Ku, we get

WFsc(u) ⊆ WFsc(BAu) ∪WFsc(Ku) ⊆ WFsc(Au) ∪WF′
sc(K). (4.10)

So,

WFsc(u) ⊆ WFsc(Au) ∪
⋂

B∈Ψ0,0
sc

WF′
sc(I −BA). (4.11)

If p /∈ chars,ℓsc (A), then the microlocal elliptic parametrix construction says we can find
some B such that the operator wavefront set of I − BA does not contain p. So, p is
not in the intersection above. So,⋂

B∈Ψ0,0
sc

WF′
sc(I −BA) ⊇ chars,ℓsc (A). (4.12)

So we end up with WFsc(u) ⊆ WFsc(Au) ∪ chars,ℓsc (A), which is a restatement of the
desired result. □

4.5. Problems and exercises.

Problem 4.1. Prove Proposition 4.4. Hint: you cannot use microlocality, since we used
Proposition 4.4 to prove microlocality. Instead, use the microlocal elliptic parametrix
construction.

Problem 4.2. Suppose that u is real-valued. Show that WFsc(u) is closed under the
fiberwise antipodal map.

Problem 4.3. • Prove WFsc(u+ v) ⊆ WFsc(u) ∪WFsc(v).

• Let u =
∑J

j=1 e
ikj ·x for some distinct kj ∈ Rn. What is WFsc(u)?

Problem 4.4. Let p(x) denote a nonzero polynomial of x ∈ Rn. What can the sc-
wavefront set of p be? Can you guess the answer before doing any work?

Problem 4.5. Consider u(x) = eix
3 ∈ S ′(R). What is the sc-wavefront set of this u?

Can you guess the answer before doing any work?

Problem 4.6. Consider the Bessel function Jν(x), ν ∈ R. What is the sc-wavefront
set of u(x) = 1x>0χ(1/x)Jν(x)?

Hint: use Bessel’s ODE, x2u′′(x) + xu′(x) + (x2 − ν2)u(x) = 0.

Problem 4.7. Consider the Airy function A(x). What is the sc-wavefront set of A?
Hint: use Airy’s ODE A′′(x) = xA(x).

Problem 4.8. Consider the beam u(x) = χ(x2)e
iσx1 on R2. Show that the portion of

its sc-wavefront set at the corner is the closure of the sc-wavefront set at finite frequency.
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Problem 4.9. Repeat a nonempty subset of the problems above for the Sobolev wave-
front sets WFm,s

sc .

A perturbed plane wave is a function u ∈ C∞(Rn) of the form u(x) = eik·xA(x) for
some nonzero k ∈ Rn and A ∈ C∞(Rn) such that A|∞Sn−1 = 1. The function eik·x is
an exact plane wave, and eik·x(A − 1) is the perturbation. Perturbed plane waves are
one of the basic objects of scattering theory. A natural question to ask is:

Q. how large does a subset S of Rn need to be for k to be uniquely determined by
u|S?

In other words, for what S can we determine the wavevector k from only looking at u
within S?

Of course, no bounded subset of Rn will do, because we can prescribe A arbitrarily
in bounded subsets. We restrict attention to the region

S[C, j] = {x ∈ Rn : x1 > 0, ∥y∥ ≤ Cxj1} (4.13)

where x = (x1, y), for C > 0, j ≥ 0.

Problem 4.10. For which regions S = S[C, j] is k uniquely determined by u|S? Say
what you can.

5. Microlocal propagation estimates I

5.1. Null bicharacteristics and microlocal propagation. Consider P ∈ Ψm,l
sc (Rn)

which is not elliptic. The failure of ellipticity could be at frequency infinity, at spatial
infinity, or both. For example, the Helmholtz operator ∆−λ2, where λ > 0, is elliptic at
frequency infinity but not at spatial infinity, while the Klein Gordon operator D2

t −∆−
m2, m > 0, is non-elliptic both at frequency infinity and at spatial (or more precisely

spacetime) infinity. We’ll assume that P has a real, classical principal symbol p ∈ Sm,l
sc,cl.

Recall some basic symplectic geometry: the vector field Hp is given by the formula

Hp =
∑
j

( ∂p
∂ξj

∂

∂xj
− ∂p

∂xj

∂

∂ξj

)
. (5.1)

Although we write this using the usual Cartesian coordinates on Rn, this is actu-
ally invariant under coordinate changes: if (x1, . . . xn) are any local coordinates and
(ξ1, . . . , ξn) are the dual coordinates induced by (x1, . . . xn) on the fibres of the cotan-
gent bundle, then Hp takes the form (5.1) in these coordinates.

If P happens to have order (1, 1), then the Hamilton vector field is a smooth vector
field on T ∗Rn, tangent to the boundary, and hence restricts to a smooth vector field on
∂T ∗Rn. This is straightforward to see from (5.1), which we write as follows:

Hp =
∑
j

(
⟨x⟩−1 ∂p

∂ξj

(
⟨x⟩ ∂

∂xj

)
− ⟨ξ⟩−1 ∂p

∂xj

(
⟨ξ⟩ ∂

∂ξj

))
. (5.2)

As we have seen before, the vector fields ⟨x⟩∂xj and ⟨ξ⟩∂ξj are smooth on T ∗Rn and
tangent to the boundary, while the coefficients in (5.2) are classical of order (0, 0) and
hence smooth on T ∗Rn. For operators of general order (m, l), it is convenient to rescale
the Hamilton vector field as follows:

scHm,l
p = ⟨x⟩−l+1⟨ξ⟩−m+1Hp. (5.3)
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Then scHm,l
p is again smooth on T ∗Rn and tangent to the boundary. Moreover, the

flow of scHm,l
p exists for all ‘time’. An easy calculation (see exercises) shows that this

rescaled vector field is tangent to p = 0, where p = ⟨x⟩−l⟨ξ⟩−mp is a smooth function
on T ∗Rn vanishing at Char(P ). It follows that if one point of an integral curve of Hp

is contained in Char(P ), then the whole integral curve is contained in Char(P ). Such
integral curves play an important role in microlocal analysis.

Definition 5.1. A (null-)bicharacteristic of P is an integral curve of scHm,l
p contained

in Char(P ) = {p = 0} ∩ ∂T ∗Rn.

Simple example: take P = Dx1 ∈ Ψ1,0. Then p = ξ1 and Hp = ∂x1 . The regularized

Hamilton vector field is scH1,0
p is ⟨x⟩∂x1 and is tangent to ∂T ∗Rn. Note that if we are

only interested in frequency infinity, then over a bounded region in x-space there is no
need for the regularization.

5.2. Propagation theorems. A major theorem (or really a meta-theorem, with many
versions in different contexts) in microlocal analysis is called ‘Propagation of Singular-
ities’, or perhaps more accurately ‘Propagation of Regularity’. Our first version of this
theorem is:

Theorem 5.1. Suppose that P ∈ Ψm,l
sc (Rn) and admits a real, classical principal symbol

p. Suppose that u ∈ S ′(Rn) satisfies Pu ∈ S(Rn). Then

• WFsc(u) ⊂ Char(P ), and

• WFsc(u) is a union of bicharacteristics of scHm,l
p .

That is, if q, q′ ∈ Char(P ) are on the same bicharacteristic of P , then q ∈ WFsc(u) iff
q′ ∈ WFsc(u). Equivalently, q /∈ WFsc(u) iff q′ /∈ WFsc(u), i.e. we have ‘propagation
of regularity’ along bicharacteristics.

We can also give a more quantitative version of this, in which we look at wavefront
set relative to Hs,k:

Theorem 5.2. Suppose that P ∈ Ψm,l
sc (Rn) and admits a real, classical principal symbol

p. Suppose that u ∈ S ′(Rn) satisfies Pu ∈ Hs,k. Then

• u is in Hs+m,k+l microlocally on Ell(P ), i.e.

WFs+m,k+l
sc (u) ∩ Ell(P ) = ∅;

• WFs+m−1,k+l−1
sc (u) ⊂ Char(P ) is a union of bicharacteristics of scHm,l

p .

Remark 5.1. Notice the discrepancy of the two orders in the two statements of The-
orem 5.2. On the elliptic set, we gain regularity of order (m, l), the same as the order
of P , where ‘gain’ refers to the orders of the Sobolev space containing u compared to
the orders of the Sobolev space containing Pu. On the characteristic variety, there
is no ‘automatic’ gain as in the elliptic case, but there is a ‘conditional’ gain, i.e. if
one has regularity of a certain order of Pu and regularity of u at some point along a
bicharacteristic, then one has regularity along the whole bicharacteristic. However, the
‘non-elliptic’ gain here is only (m − 1, l − 1), one less in each exponent relative to the
elliptic gain. This is always the case and is explained by the method of proof below.
More on this later in Lecture 6.
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We will prove a microlocal propagation estimate that implies Theorem 5.2 and is a
strictly stronger result, as it is ‘fully microlocal’: instead of the global assumption that
Pu ∈ Hk,r, we only assume this in some microlocal region. To set up this theorem, we

suppose as before that P ∈ Ψm,l
sc has real, classical principal symbol, and γ : [0, s0] →

Char(P ) is a nontrivial bicharacteristic, i.e. nonconstant (equivalent to assuming that
scHm,l

p does not vanish at γ(0)). Let U0 and U be open subsets of ∂T ∗Rn such that U0

contains γ(0) and U contains γ([0, s0]).

Theorem 5.3. There exist operators B,E,G ∈ Ψ0,0
sc such that

γ([0, s0]) ⊂ Ell(B) ⊂ WF′(B) ⊂ Ell(G) ⊂ WF′(G) ⊂ U,

γ(0) ⊂ Ell(E) ⊂ WF′(E) ⊂ U0,
(5.4)

such that for all s, k,N there exists C > 0 such that for all u ∈ S ′(Rn) we have

∥Bu∥Hs,k ≤ C
(
∥GPu∥Hs−m+1,k−l+1 + ∥Eu∥Hs,k + ∥u∥H−N,−N

)
. (5.5)

This inequality holds in the strong sense that if the RHS is finite, then so is the LHS, and
the inequality holds. In particular it means that if u ∈ H−N,−N , Pu is in Hs−m+1,k−l+1

microlocally in U , and u is in Hs,k microlocally in U0, then u is in Hs,k microlocally
on Ell(B), in particular on γ([0, s0]).

Remark 5.2. Note that this estimate is ‘fully microlocal’ in the sense that the as-
sumptions both on u and Pu are microlocalized near the region of interest, which
is the bicharacteristic segment γ([0, s0]). The only exception is the assumption that
u ∈ H−N,−N but this is really no assumption at all, since every tempered distribution
is in H−N,−N for sufficiently large N .

We will prove this result next lecture.

5.3. A simple example. In the remainder of this lecture we will present a proof in
a simple model situation. Here will be working at frequency infinity, over a bounded
region of R2. Let P = Dx1 ∈ Ψ1,0

sc (R2), and we suppose that u is a tempered distribution
such that Pu = f ∈ L2(R2). We will assume that

u ∈ L2([−2, 0]x1 × [−2, 2]x2).

The problem is to prove that u is L2 on a rectangle that is larger in the x1 direction,
although (for convenience) a bit smaller in the L2 direction: show that

u ∈ L2([−2, 2]x1 × [−1, 1]x2).

That is, regularity of u ‘propagates’ in the x1-direction. It will be enough, in view of
the assumption on u, to show it is L2 on L2([−1, 2]x1 × [−1, 1]x2).

We choose a cutoff function χ1(x1) that is identically 1 on [−1, 2], supported on
[−2, 3], and monotone nondecreasing between [−2,−1], monotone nonincreasing on
[2, 3]. We also choose a cutoff χ2(x2) that is identically 1 on [−1, 1], supported on
[−2, 2], and monotone nondecreasing between [−2,−1], monotone nonincreasing on
[1, 2]. We define

a(x1, x2) = χ1(x1)χ2(x2)e
−x1 .
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We compute
i[P, a(x1, x2)] = ∂x1a(x1, x2)

= −b(x1, x2) + e(x1, x2) where

b(x1, x2) = a(x1, x2)− χ′
1(x1)1x1≥0e

−x1χ2(x2) ≥ 0,

e(x1, x2) = χ′
1(x1)1x1≤0e

−x1χ2(x2) ≥ 0.

(5.6)

Then we compute (for suitably regular u, say u ∈ C1(R2)) the commutator

i
〈
i[P, a(x1, x2)]u, u

〉
L2(R2)

(5.7)

in two different ways.
First, we unwrap the commutator, obtaining

(5.7) = i
〈
a(x1, x2)u, Pu

〉
− i

〈
Pu, a(x1, x2)u

〉
= 2 Im

〈
Pu, a(x1, x2)u

〉
= 2 Im

〈
f, a(x1, x2)u

〉
.

(5.8)

Second, we use (5.6) to write

(5.7) = −⟨bu, u⟩+ ⟨eu, u⟩. (5.9)

Using the support property of e, we put these two identities together and use Cauchy-
Schwarz on (5.7) to find that

⟨bu, u⟩ ≤ ⟨eu, u⟩+ 1

ϵ
∥f∥2L2 + ϵ∥au∥2L2

for any ϵ > 0. Here, the ⟨eu, u⟩ term can be controlled by C ′∥u∥2L2([−2,1]x1×[−2,2]x2 )
, but

we do not make this step just yet.
Notice that 0 ≤ a ≤ 9. So a2 ≤ 9a ≤ 9b. Choosing ϵ = 1/18, we find

⟨bu, u⟩ ≤ C ′⟨eu, u⟩+ 18∥f∥2L2 +
1

2
⟨bu, u⟩.

We now absorb the ⟨bu, u⟩ term on the RHS and obtain, after multiplying by 2,

⟨bu, u⟩ ≤ 2C ′⟨eu, u⟩+ 36∥f∥2L2 .

Unfortunately, this argument does not prove that u is L2 on [−1, 2] × [−1, 1] as it
requires that ⟨bu, u⟩ < ∞ (for the absorption step), which is a stronger assumption!
So it might seem that what we’ve done so far is completely pointless. This is not the
case however, as we have proved a quantitative estimate that can be combined with an
approximation argument to achieve our aim. Quantitative estimates are very powerful
as we shall see shortly.

To do this, we notice that we can assume without loss of generality that u is com-
pactly supported, and any compactly supported tempered distribution is in H−N , for
sufficiently large N . Fixing such an N , we let

ur = (1 + r∆)−Mu := Tru, M ≥ N/2, r > 0,

and consider the limit as r → 0. Intuitively, as r → 0, Tr tends to the identity operator.
In fact this is rigorously true in the topology of Ψη,η

sc for any η > 0; moreover, Tr is
uniformly bounded in Ψ0,0

sc as r → 0 and converges strongly to the identity operator in
B(L2, L2) (exercise). We have

ur ∈ L2 for all r > 0, and Pu = Trf = fr
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where for the second identity we used the fact that P and Tr commute (both are Fourier
multipliers). Our previous estimate applies to ur for each r > 0, and we obtain

⟨bur, ur⟩ ≤ 2C ′⟨eur, ur⟩+ 36∥fr∥2L2 . (5.10)

Now we take the limit as r → 0. Since f ∈ L2, we have fr → f in L2 and hence

∥fr∥2L2 → ∥f∥2L2 .

Next we consider the limit of the ⟨eur, ur⟩ term. This is slightly more complicated as
u, unlike f , is not globally in L2. We write this term by choosing a new cutoff function
ψ, so that ψ ≡ 1 on the support of e, and ψ is supported in [−2, 1]x1 × [−2, 2]x2 . We
have

⟨eTru, Tru⟩ = ⟨eTrψu, Trψu⟩+ ⟨eTr(1− ψ)u, Trψu⟩+ ⟨Tru, eTr(1− ψ)u⟩. (5.11)

The first term on the RHS converges to ⟨eu, u⟩ since ψu ∈ L2, Tr → Id strongly, and
ψ ≡ 1 on the support of e. We would like to show that the other two terms tend to
zero.

Consider the operator eTr(1 − ψ). Since e(1 − ψ) = 0 (as the supports of e and
1 − ψ are disjoint) this operator is equal to e(Tr − Id)(1 − ψ). We recall that Tr − Id
converges to zero in the topology of Ψη,η

sc for all η > 0. However, we can say much more
by writing the operator eTr(1 − ψ) as the expansion of this composition to K terms,
plus a remainder term. The expansion vanishes identically, and the remainder (which

is eTr(1− ψ) itself) tends to zero in Ψ−K+η,−K+η
sc for all η > 0. From this we see that

eTr(1 − ψ)u converges to zero in every Sobolev space, showing that the second and
third terms on the RHS tend to zero.

Using (5.10) and the reasoning above, we have

lim sup
r→0

⟨bur, ur⟩ ≤ 2C ′⟨eu, u⟩+ 36∥f∥2L2 . (5.12)

Now we would like to distribute
√
b on both sides of the inner product on the LHS.

This can be done either by choosing b to be a square of a smooth function from the
outset, or we can give up a little, and choose χ ∈ C∞

c (R2) such that 0 ≤ χ2 ≤ b and
χ ≡ 1 on [−2, 1]× [−1, 1]. Then we have from (5.13) that

lim sup
r→0

∥χTru∥2L2 ≤ 2C ′⟨eu, u⟩+ 36∥f∥2L2 . (5.13)

The uniform boundedness of χTru in L2 means that there is a weakly convergent
subsequence, (weakly) converging to v ∈ L2, say. A fundamental property of weak
limits is that ∥v∥2L2 also satisfies the inequality (5.13). On the other hand, we have

χTru → χu in a weaker topology, that of H−N−η,−N−η, using the convergence of
Tr → Id in Ψη,η

sc for all η > 0. Uniqueness of limits shows that v = χu. We deduce that

∥χu∥2L2 ≤ 2C ′⟨eu, u⟩+ 36∥f∥2L2 ≤ 2C ′∥u∥2L2([−2,1]x1×[−2,2]x2 )
+ 36∥f∥2L2 , (5.14)

and since χ = 1 on [−1, 2]× [−1, 1], we have achieved our goal.
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5.4. Exercises.

(1) Check that the rescaled Hamilton vector field scHm,l
p of P = Op(p) is tangent

to p = 0, using the notation in the lecture notes above.
(2) Show that Tr = (1+r∆)−M is a uniformly bounded family of operators in Ψ0,0

sc ,
for any M > 0.

(3) Suppose that u is a tempered distribution in R2 satisfying the PDE

Dx1u = δ + f,

where δ is the two-dimensional delta distribution, supported at the origin in
R2, and f is an L2 function of (x1, x2) ∈ R2 supported where x1 > 0. You are
given that u is C∞ for x1 < 0. Use the result of Theorem 5.2 to answer the
following questions:

(i) Suppose that s < −1. Show that u is ‘locally’ in Hs(R2), in the sense
that for any ϕ ∈ C∞

c (R2), we have ϕu ∈ Hs(R2).
(ii) Suppose that −1 < s < 0. Give an optimal bound on WFs(u). (Hint: it

might help to first consider the case that f = 0.)
(iii) Suppose that s > 0. Give an optimal bound on WFs(u), expressed in

terms of WFs(f) (and taking account of the δ term as well).

6. Microlocal propagation estimates II

In this section we prove Theorem 5.3 for a general operator P . However, we shall
assume that P ∈ Ψ1,1

sc which simplifies some of the numerology. There is no real loss of
generality, as solving an equation Pu = f is equivalent to solving TPu = Tf where T is
an invertible operator. We can always choose an invertible scattering pseudodifferential
operator T with real, classical symbol, such that TP ∈ Ψ1,1

sc (see below) and this reduces
us to this case.

For such a P , with real, classical principal symbol, we want to construct B,E,G ∈
Ψ0,0

sc as in the theorem, so that the estimate

∥Bu∥Hs,k ≤ C
(
∥GPu∥Hs,k + ∥Eu∥Hs,k + ∥u∥H−N,−N

)
(6.1)

holds. The nontrivial case of (6.1) is that u is in H−N,−N , that Pu is in Hs,k microlo-
cally in U , and that u is in Hs,k microlocally in U0, otherwise the RHS is infinite (or
can be made infinite by choosing E,G carefully) and the result is vacuously true. So
we assume this for the remainder of the proof.

6.1. Proof of Theorem 5.3, Step 1. We construct A ∈ Ψ2s,2k
sc with real symbol a,

with A = A∗ such that

i(P ∗A−AP ) = −B̃∗B̃ − (Λ−s,−rA)∗Λ−s,−rA+ E′ +R, (6.2)

where

• Λs,k = ⟨x⟩k⟨D⟩s is an invertible elliptic operator, with real, classical symbol, of
order (s, k). Note that ⟨D⟩s is an abbreviation for Op(⟨ξ⟩s).

• B̃ = Λs,kB, where B is as in (6.1).

• E′ ∈ Ψ2s,2k
sc and WF′(E′) ⊂ Ell(E).

• R ∈ Ψ2s−1,2k−1
sc , WF′(R) ⊂ Ell(G).
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• G is microlocally equal to the identity on WF′(A).

Notice that in (6.4), the LHS has order (2s, 2k) although the individual terms P ∗A and
AP have higher order. In fact, we can write this as

i[P,A] + i(P ∗ − P )A,

and [P,A] has order (2s, 2k) since commutators drop order by (1, 1) relative to the
sum of the orders of the individual operators; while (P ∗ − P ) has order (0, 0) since

σ1,1pr (P ) = σ1,1pr (P ) = σ1,1pr (P ∗). On the RHS side, the first three terms have order
(2s, 2k), while the last term has order (2s − 1, 2k − 1). Thus, if we view the R term
as a remainder term of lesser interest (we only care about it microsupport, as in the
fourth bullet point above), then the operator equation (6.4) can be arranged by making
it hold at a principal symbol level.

The reason for being interested in the quantity i(P ∗A−AP ) is that〈
i(P ∗A−AP )u, u

〉
= 2 Im⟨Pu,Au⟩.

Given the identity (6.4), and a sufficiently nice u (meaning it is in a Sobolev space with
sufficiently large orders), we can make the following calculation:

2 Im⟨Pu,Au⟩ = −∥B̃u∥2L2 − ∥Λ−s,−kAu∥2L2 + ⟨E′u, u⟩+ ⟨Ru, u⟩. (6.3)

We can microlocalize the Pu term by using the fact that G = Id microlocally on
WF′(A). Therefore, by redefining R by the addition of a residual operator (which we
do not indicate in notation), we obtain from (6.4) the variant

i((GP )∗A−AGP ) = −B̃∗B̃ − (Λ−s,−kA)∗Λ−s,−kA+ E′ +R, (6.4)

and this leads to (with the same redefinition of R)

2 Im⟨GPu,Au⟩ = −∥B̃u∥2L2 − ∥Λ−s,−kAu∥2L2 + ⟨E′u, u⟩+ ⟨Ru, u⟩. (6.5)

in place of (6.3). We estimate the LHS as follows: we write Au = (Λ−s,−k)−1Λ−s,−kAu
and move the left factor to the other side of the inner product, noting that the adjoint
of (Λ−s,−k)−1 is Λs,k. We then apply Cauchy-Schwarz to the inner product. We obtain

∥B̃u∥2L2 + ∥Λ−s,−kAu∥2L2 ≤ ∥Λs,kGPu∥L2∥Λ−s,−kAu∥L2 + ⟨E′u, u⟩+ ⟨Ru, u⟩. (6.6)

We now apply the inequality 2ab ≤ a2 + b2 to the first term on the RHS. We also
apply an elliptic estimate to the ⟨E′u, u⟩ term, noting that (Λs,rE)∗Λs,rE is elliptic on
WF′(E′) (see exercises at the end of the lecture). We can do the same with the R term.

In fact, we choose a B′ ∈ Ψ0,0
sc such that WF′(R) ⊂ Ell(B′) ⊂ WF ′(B′) ⊂ Ell(G), and

estimate it in the same way.

∥Λs,kBu∥2L2 + ∥Λ−s,−rAu∥2L2 ≤ ∥Λs,rGPu∥2L2 + ∥Λ−s,−rAu∥2L2

+ C∥Λs,rEu∥2L2 + C∥Λs−1/2,r−1/2B′u∥2L2 + C∥u∥2H−N,−N , (6.7)

where the final term arises from the remainder term in the elliptic estimates. The
∥Λ−s,−rAu∥2L2 terms cancel. Now eliminating the Λ•,• factors and writing norms in
terms of weighted Sobolev norms, we have obtained

∥Bu∥2Hs,r ≤ C
(
∥GPu∥2Hs,r + ∥Eu∥2Hs,r + ∥B′u∥2

Hs−1/2,r−1/2 + ∥u∥2H−N,−N

)
, (6.8)
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which is almost the estimate we are aiming for: the only discrepancy is the term
C∥B′u∥2

Hs−1/2,r−1/2 on the RHS. Notice that this term is just like the Bu term on the

LHS that we are estimating, but it has orders lower by (1/2, 1/2). We can thus proceed
by induction, estimating the B′ term as above, up to an additional B′′u term that
would be measured in the Sobolev space Hs−1,r−1, and so on. Each time, we need to
enlarge the microlocal support of B′, B′′, ... relative to the operator before (and also
enlarge the microlocal support of the E′ term correspondingly), but we can do this
while always remaining in the region where G is microlocally equal to the identity.
After a finite number of steps, the order of the extra term is reduced to (−N,−N) and
then this term can be absorbed in the ∥u∥2

H−N,−N term, at which point the argument
is terminated and the estimate is proved.

To complete the proof, we need to accomplish two more steps: arrange the operator
identity (6.4), and eliminate the assumption that u is in a sufficiently nice Sobolev
space.

Remark 6.1. Returning to Remark 5.1, the reason that there is a loss of 1 in both
orders relative to the elliptic gain is that, in the propagation proof, the estimate arises
from the ellipticity of B, which comes from the positivity (actually negativity, as we
presented it!) of the commutator i[P,A]. On the other hand, in the elliptic estimate
the ellipticity is directly from the ellipticity of P . Since the commutator drops order
by (1, 1) relative to the composition of the two operators, this causes the propagation
estimate to be weaker, i.e. we need to measure Pu by a stronger norm to deduce a
fixed Sobolev norm of Bu.

6.2. Proof of Theorem 5.3, Step 2. Constructing the operators. We do this first
in the case that (s, k) = (0, 0). The general case is hardly more complicated.

We need to arrange (6.4). Since we are not much interested in the properties of R
(other than its microlocal support, which is anyway bounded above by the union of the
microlocal supports of the other operators), to have (6.4) it is enough to ensure it holds

at a principal symbol level. Let p1 = iσL(P
∗ − P ) ∈ S0,0

sca; this is a classical symbol,
and real since i(P ∗ − P ) is symmetric. At the principal symbol level, (6.4) reads

Hp(a) + p1a = −b2 − a2 + e′. (6.9)

Using ODE theory, assuming that γ is not contained in the corner of T ∗Rn, there are
local coordinates (z1, z

′), z′ ∈ R2n−2, on ∂T ∗Rn near γ([0, s0]) so that γ(0) = (0, 0) and
Hp = ∂z1 in this coordinate system, i.e. bicharacteristics are given by z′ =constant. A
small, mostly notational, modification of this construction serves to treat the case that
γ is contained in the corner of T ∗Rn; we do not pursue this further here.

Choose ϵ > 0 sufficiently small so that, in the coordinates (z1, z
′),

[−2ϵ, s0 + 2ϵ]× {|z′| ≤ 2ϵ} ⊂ U ⊂WF 0,0(Pu)∁,

[−2ϵ, 2ϵ]× {|z′| ≤ 2ϵ} ⊂ U0 ⊂WF 0,0(u)∁.

We now choose several cutoff functions. Let ψ(z′) ∈ C∞
c (R2n−2) be such that ψ(z′) =

1 for |z′| ≤ ϵ and ψ(z′) = 0 if |z′| ≥ 2ϵ. Then, in the z1 direction we choose turn-on and
turn-off functions. The turn-on function is χ1(z1) which is smooth, monotone, equal to
0 for z1 ≤ −ϵ and 1 for z1 ≥ ϵ. The turn-off function we specify a bit more explicitly, as
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we need to take square-roots and show smoothness of these. We let χ0 be the smooth
function defined by

χ0(t) =

®
0, t ≤ 0

e−𭟋/t, t ≥ 0
(6.10)

where 𭟋 > 0 will be chosen sufficiently large. Notice that

χ′
0(x) = 𭟋χ0(x)/x

2. (6.11)

The turn-off function is then defined by

χ(z1) = χ0(s0 + ϵ− z1) =⇒ χ′(z1) = − 𭟋
(s0 + ϵ− z1)2

χ(z1). (6.12)

We now define

a(z, z′) = χ1(z1)
2χ(z1)ψ(z

′)2. (6.13)

We compute

Hpa+ p1a = χ′(z1)χ1(z1)
2ψ(z′)2

+p1(z, z
′)χ(z1)χ1(z1)

2ψ(z′)2

+2χ1(z1)χ
′
1(z1)χ(z1)ψ(z

′)2

(6.14)

where the sum of the first two lines is nonpositive (for 𭟋 sufficiently large) and the
third line is nonnegative. We will define b so that the first two lines are −b2 − a2, and
the third line is e′. Using (6.12), this requires that

b2 =
( 𭟋
(s0 + ϵ− z1)2

+ p1

)
χ(z1)χ1(z1)

2ψ(z′)2 − χ(z1)
2χ1(z1)

4ψ(z′)4. (6.15)

Noting that
√
χ1 is a smooth function, we have

b =
»
χ(z1)χ1(z1)ψ(z

′)

 
𭟋

(s0 + ϵ− z1)2
− p1 − χ(z1)χ1(z1)2ψ(z′)2 (6.16)

Clearly, for 𭟋 sufficiently large, the argument of the square root is bounded away from
zero on the support of χ1(z1)χ(z1)ψ(z

′)2 and therefore b is smooth, and can be extended
to T ∗Rn as a symbol of order (0, 0).

As mentioned above, we define e′ to be the third line of (6.14):

e′ = 2χ1(z1)χ
′
1(z1)χ(z1)ψ(z

′)2. (6.17)

We choose g, the principal symbol of G, to be a smooth function equal to 1 on the
support of a (hence also on the support of b and e) and supported in U .

We then extend the smooth functions a, b, e′, g into the interior and quantize to
obtain operators

A =
OpL(a) + OpL(a)

∗

2
, B = OpL(b), E′ = OpL(e

′), G = OpL(g).

so that (6.4) is satisfied, noting that this makes R ∈ Ψ−1,−1
sc . We must extend g into

the interior so that it is identically 1 in a neighbourhood (in the ambient space, i.e.
not just at ∂T ∗Rn) of WF′(A). We also note that WF′

sc(R) is bounded by the union
of WF′

sc(A),WFsc(B) and WFsc(E
′). Thus (6.4), and the conditions listed below that

equation, are all satisfied.
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In the case of general (s, k) we redefine a to be

a = ⟨ξ⟩2s⟨x⟩2kχ1(z1)
2χ(z1)ψ(z

′)2

and proceed as before. In the calculation (6.14), as well as multiplying the whole
identity through by the factor ⟨ξ⟩2s⟨x⟩2k we will obtain extra terms, while arise from
differentiating these factors. The new terms, in effect, have the effect of replacing the
p1 term by

p1 + ⟨ξ⟩−2s⟨x⟩−2kHp

(
⟨ξ⟩2s⟨x⟩2k

)
.

It is easy to see that this additional term is a symbol of order (0, 0); in fact, it is
the principal symbol of Λ−2s,−2k[P,Λ2s,2k] which has order (0, 0). So, effectively the
difference is to replace p1 by some other symbol p̃1 of order (0, 0), so this allows the
construction to proceed exactly as before, with b and e′ redefined suitably. It would be
a useful exercise to compute the exact formulae for b and e′ in this setting of general
orders.

6.3. Proof of Theorem 5.3, Step 3. At this stage we have proved the required in-
equality for sufficiently regular/decaying u. As with the simple example proved last
lecture, this is not very satisfactory as we need to assume at least as much regular-
ity/decay as is proved. Indeed, the ∥Bu∥2

Hs,k term needs to be absorbed on the RHS,
which requires it to be finite a priori. Nevertheless we have proved a quantitative esti-
mate for sufficiently regular/decaying functions, and as with the example last lecture,
we can use a regularization argument to obtain the full result.

In the simple example last time, we used Tr = (1+r∆)−M as a regularizing operator.
This worked well as it commuted with the operator P = Dx1 . In the more general case,
the lack of commutation is an issue and we have to be more careful. Moreover, Tr only
improves in the differential sense, not the decay sense. To emphasize the point here,
we will henceforth assume that γ lies in the spatial boundary, at finite frequency. Thus
the appropriate ‘regularization’ is to multiply by (1 + r|x|2)−M . We will thus define a
family ar, r ≥ 0, (again sticking to the case s = k = 0 for notational simplicity; note
that the s parameter is actually irrelevant for us if γ is at finite frequency, and only
the k is relevant) by

ar = χ1(z1)
2χ(z1)ψ(z

′)2(1 + r|x|2)−M . (6.18)

This will allow us to apply the regularized operators Ar = (OpL(ar)+OpL(ar)
∗)/2, etc,

to u (notice that although u is only assumed to be in H−N,−N the lack of differential
regularity is not a problem as our operators are all microsupported near γ, and in
particular away from frequency infinity; that is, they can be taken to be order −∞
in the differential sense, so only the spatial order needs to be improved). Then, when
we compute Hpar + p1ar, we obtain an extra term from differentiating the regularizer.

Recalling that Hp is a smooth vector field on T ∗Rn tangent to the boundary, in the
coordinates (z1, z

′, ρb), where ρb = 1/|x| is a defining function for the spatial boundary,
we have, in the ambient space,

Hp =
∂

∂z1
+ q(z1, z

′, ρb)ρb
∂

∂ρb
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for some smooth function q ∈ C∞(T ∗Rn). Therefore,

Hp(1 + r|x|2)−M =
2Mqr|x|2

(1 + r|x|2)
(1 + r|x|2)−M := fr(1 + r|x|2)−M .

One can check that the factor fr = 2Mqr|x|2/(1 + r|x|2) is a symbol of order (0, 0),
uniformly as r → 0. Thus, this additional term is similar to the additional term from
varying the order of the symbol a: it in effect changes p1 to a new symbol of order
(0, 0), although now it is r-dependent (but in a uniform way). We notice that it is
proportional to M , which could be large. However, we fix M (depending on N , where
u ∈ H−N,−N ) and then choose 𭟋 large enough so that the square root defining br is
well-defined and smooth. It is a subtle but important technical point that we can only
do a finite (although arbitrarily large) amount of regularization in this argument.

The upshot of this is that we can repeat the previous construction with r-dependent
operators and obtain families of operators Ar, Br, E

′
r, Rr satisfying the identity (in

the case of general orders (s, k), but assuming that γ is located away from frequency
infinity)

i(P ∗Ar −ArP ) = −B̃∗
r B̃r − (Λ−s,−kAr)

∗Λ−s,−kAr + E′
r +Rr, (6.19)

where these operators satisfy, for every η > 0, and every S ∈ R,

• Ar ∈ ΨS,2k
sc uniformly, and Ar ∈ ΨS,2k−2M

sc for each r > 0,

• B̃r ∈ ΨS,k
sc uniformly, and B̃r ∈ ΨS,k−M

sc for each r > 0, B̃r → B̃ in ΨS,k+η
sc ,

• E′
r ∈ ΨS,2k

sc uniformly, and E′
r ∈ ΨS,2k−2M

sc for each r > 0, E′
r → E′ in ΨS,2k+η

sc ,

• Rr ∈ ΨS,2k−1
sc uniformly, and Rr ∈ ΨS,2k−1−2M

sc for each r > 0, Rr → R in

ΨS,2k−1+η
sc .

Because of the regularization, we can now take expectation values with u ∈ H−N,−N

and we find that

∥B̃ru∥2L2 ≤ C
(
∥GPu∥2Hs,k + ⟨E′

ru, u⟩+ ∥u∥2H−N,−N

)
, (6.20)

We now ‘take a limit’ as r → 0, or more precisely investigate the uniform properties
of this inequality in this limit. Intuitively, we expect that the term ⟨E′

ru, u⟩ should be
uniformly bounded, since u is in Hs,k microlocally on WF′(E′). This is correct, and
is one of the exercises for this lecture. Thus the RHS of (6.20) is uniformly bounded,

and it follows that B̃ru is uniformly bounded in L2, as r → 0. We can therefore find a
sequence rj tending to zero such that B̃rju converges weakly, say to v ∈ L2. Similarly
to last lecture, we have

∥v∥2L2 ≤ lim sup
r→0

∥B̃ru∥2L2 ≤ C
(
∥GPu∥2Hs,k + ∥Eu∥2Hs,k + ∥u∥2H−N,−N

)
. (6.21)

On the other hand, we know that B̃ru converges to B̃u in a weak Sobolev norm, since

B̃r → B̃ in Ψs,k+η
sc . So we have B̃ru converges to both B̃u and v distributionally.

By uniqueness of limits, B̃u = v so we have the inequality (6.21) for B̃u in L2, or
equivalently for Bu in Hs,k. This completes the proof of Theorem 5.3.
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6.4. Exercises.

(1) Let E′ ∈ Ψ2s,2k
sc and suppose that E ∈ Ψ0,0

sc is elliptic on WF′(E′). Show that
for all N there is a constant C such that, for all u ∈ Hs,k,

|⟨E′u, u⟩| ≤ C
(
∥Eu∥2Hs,k + ∥u∥2−N,−N

)
.

Hint: find an operator C ∈ Ψ0,0
sc such that E′ = (Λs,kE)∗CΛs,kE +R, where R

has sufficiently negative orders.
(2) Extend the previous result as follows: Suppose that σL(E

′
r) = σL(E

′)(1 +
r|x|2)−M . Prove the above inequality with E′

r in place of E′ on the LHS, with
a constant C independent of r for all r ∈ (0, 1]. Hint: use the fact that the

operator norm of C is controlled by a suitable S0,0
sc -norm of its left-reduced

symbol.

7. Lecture 7: Scattering calculus on manifolds (with boundary)

We introduce the scattering calculus and discuss its basic properties in this part.
Some treatments here are from the lecture notes of Peter Hintz, which is available at:
https://people.math.ethz.ch/∼hintzp/notes/micro.pdf .

We only deal with operators acting on scalar functions with details, but a significant
portion of those general statements in this section have fairly straightforward gener-
alization to vector bundles. Of course, difficulties in dealing with vector bundles will
arise in concrete problems.

7.1. The scattering cotangent bundle. Let M be a n-dimensional manifold with
boundary and denote its boundary by ∂M . Then its smooth structure determines a
boundary defining function x. All of our bundles, symbol classes, calculi will be the
same as the classical ones on manifolds without boundary on the interior of M , but
not uniformly down to ∂M .

Suppose y = (y1, ..., yn−1) is a coordinate system near p ∈ ∂M , then

(x, y1, ..., yn−1)

forms a coordinate system of M near p.
A local frame of the space2 of vector fields that are tangent to ∂M will be

x∂x, ∂y1 , ... ∂yn−1 . (7.1)

We denote their C∞(M)-span by Vb(M), which is called the space of b-vector fields on
M . A direct computation shows that this is a Lie algebra with the Lie bracket being
the standard commutator:

[V1, V2]f = V1V2f − V2V1f, f ∈ C∞(M). (7.2)

Then we define the space of to be

Vsc(M) = xVb(M). (7.3)

Another characterization of Vsc(M) can be given by

Vsc(M) = {V ∈ Vb(M) : V x = O(x2)}.

2Rigorously speaking, generators of the left C∞(M)-module.
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From (7.1) and the definition, we know that locally Vsc(M) is the span of

x2∂x, x∂y1 , ... x∂yn−1 . (7.4)

This is again a Lie algebra with the Lie bracket being the commutator as in (7.2). In
fact, it is even better, in the sense that

[Vsc(M),Vsc(M)] = [xVb(M), xVb(M)] ⊂ x2Vb(M) = xVsc(M),

which means commutators has one order better decay compared with Vsc(M) and this
corresponds to the more general fact that the scattering calculus is commutative on the
top level in both the differential and decay sense, and this is one of the major reasons
that makes it more tractable3 compared with other calculus (for example, b-calculus)
when one wants to obtain Fredholm property or invertibility.

This uniquely determines4 a vector bundle scTM , which is called the scattering tan-
gent bundle. The bundle of importance for our analysis is its dual bundle scT ∗M , which
is called the scattering cotangent bundle. Its local frame5 is given by

dx

x2
,
dy1
x
, ...

dyn−1

x
. (7.5)

This is going to be the phase space in which we work and coefficients in terms of
this frame gives the ‘scattering frequency’. Concretely, this means that we write the
(extension of) tautological one-form as

α = τ
dx

x2
+ µ · dy

x
, (7.6)

where µ = (µ1, ... µn−1) and µ · dy
x =

∑n−1
i=1 µi

dyi
x .

In the case M = Rn, they are closely related to the frequency in classical Fourier
analysis. Let (z, ζ) be coordinates of T ∗Rn, then one have

τ
dx

x2
+ µ · dy

x
= ζ · dz, (7.7)

with x = |z|−1 for |z| large and y ∈ Rn−1 is obtained from a local parametrization of
Sn−1. So one can think of τ as the radial component of your classical frequency while
µ is the tangential component.

Of course, as we did on Rn, to facilitate the high frequency analysis, we will com-
pactify the fiber to be Rn and denote the corresponding bundle by scT

∗
M . We call

it the compactified scattering cotangent bundle, which is an n-ball bundle over M . Its
boundary consists of two parts: its restriction to ∂M , which we denote by scT

∗
∂MM ,

and the ‘fiber infinity’, which is locally of the form U × ∂Rn, where U is an open set
in M on which you can trivialize scT ∗M . We will use ρdf (df stands for ‘differential
face’) to denote a boundary defining function of this boundary hypersurface, which is
just the boundary defining function of Rn formed by compactifying the Rn of (τ, µ).
Even when M is a manifold with boundary having no corner, this will have a corner
formed by the intersection of these two parts.

3Of course, when it is applicable!
4See Exercise 3.
5Again, by frame below, we mean the generator of a left C∞(M)-module.
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Remark 7.1. If one is familiar with the so called double space construction of those
calculi, then in general the conceptually correct phase space to work with should be
the conormal bundle of the lifted diagonal of your double space. See [7, Lemma 4.6] for
the case of b-calculus and this should be a quite general philosophical principle that
applies to many settings.

7.2. The symbol class and the quantization. We will define the scattering symbol
class and the corresponding pseudodifferential algebra in this lecture.

As we have seen in the case M = Rn, compared with the classical symbol class, the
main property of the scattering symbol class is that it gains decay when you differentiate
in spatial variables.

We will define them in terms of smooth functions on the interior of scT
∗
M with

certain prescribed growth or decay rate when we approach ∂M or fiber infinity, but of
course, one should think of them as objects living on this compactified phase space.

Let M◦ be the interior of M and we denote the restriction of scT ∗M to M◦ by
scT ∗

M◦M . The space of scattering symbols of order (m, r), which we denote by Sm,r
sc (M),

consists of smooth functions a on scT ∗
M◦M such that in a coordinate chart:

|(x∂x)α∂βy ∂γτ ∂δµ∂µa(x, y, τ, µ)| ≤ Cαβγδ⟨τ, µ⟩m−γ−|δ|x−r. (7.8)

We will call m the differential order, and r the decay6 order. For fixed indices, the
infimum7 of Cαβγδ on the right hand side gives a seminorm on this symbol class. All
those seminorms together gives the Fréchet topology on Sm,r

sc (M).
In the case with M = Rn, we know that the ∂zi will be equivalent (in the sense that

the linear transformations between them have uniformly bounded coefficients on both
directions) to x2∂x, x∂yi . So remain the same growth under x∂x, ∂yi is indeed the
same as gaining one order growth under ∂zi .

Let S(M) =
⋂

N∈N x
NC∞(M) be the Schwartz function class on M . Then for

a ∈ Sm,r
sc (M) that is supported in a single coordinate chart, the (left) quantization of

a ∈ Sm,r
sc (M) is defined to be the operator acting on functions in S(M) and supported

in the same chart by

Op(a)f(z) = (2π)−n

∫ ∫
ei(τ

x−x′
xx′ +µ·( y

x
− y′

x′ ))a(x, y, τ, µ)f(x′, y′)
dx′dy′

(x′)n+1
dτdµ, (7.9)

and defined on larger spaces by extension. And it act on functions with support disjoint
from this chart by a kernel that is a Schwartz function on M ×M .

Generally, we define Ψm,r
sc (M) to be the space of operators having Schwartz kernels

of the form ∑
i

Ai +R, (7.10)

where Ai acts like (7.9) in various charts and R ∈ S(M×M). That is, near the diagonal
of M ×M , it acts by (7.9) and off the diagonal, it acts by a kernel that is a Schwartz
function.

6In fact, this is a growth order on the symbol or operator side if one think about how the requirement
changes as r increases. It will become clear that this is a good name after we define corresponding
Sobolev spaces.

7We fix an atlas of coordinate charts that is locally finite.
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This definition gives a local reduction to Ψm,r
sc (Rn) modulo S(M×M). Now it might

be illuminating to look at the phase τ x−x′

xx′ + µ · ( yx − y′

x′ ) in the Rn case. For example,

in the region of Rn such that zn dominates all other components and zn > 0, then we
can take

x =
1

zn
, yi =

zi
zn
, i = 1, 2, .. n− 1. (7.11)

And we have

α = τ
dx

x2
+ µ · dy

x
= (−τ − µ · z̃

zn
)dzn +

n−1∑
i=1

µidzi, (7.12)

where z̃ = (z1, .., zn−1). Comparing with α = ζ · dz, we know

ζi = µi, 1 ≤ i ≤ n− 1, ζn = (−τ − µ · z̃
zn

). (7.13)

Then we have

ζ · (z − z′) = µ · (y
x
− y′

x′
) + (−τ − µ · y)( 1

x
− 1

x′
),

which equals to our phase to the leading order. (They differ by (x−x′

xx′ )(µ · y).)
In addition, this phase is the reasonable one to use by composing elements in Vsc(M)

from the left. If we apply x2Dx, xDy, then it brings down an τ, µ factor respectively.
We will call Ψsc(M) =

⋃
m,l Ψ

m,r
sc (M) the scattering pseudodifferential algebra on

M . We will discuss its structure as a multi-graded algbra in the next part. Lastly, we
set

Ψ−∞,−∞
sc (M) =

⋂
m,l

Ψm,r
sc (M), (7.14)

which consists of operators with kernels being Schwartz functions on M ×M , and we
will call them residual.

Classical symbols are defined in the same manner as the Rn-case:

Sm,r
sc,cl(M) = ρ−m

df x
−rC∞(scT

∗
M) ⊂ Sm,r

sc (M), (7.15)

If a is classical, then A = Op(a) is called classical.
Now we turn to the quantization map. A lot of without any restriction will face the

issue that you need to compare the volume growth of your manifold and the off-diagonal
decay of your kernel or other objects you are summing/integrating over. In this notes
we make the following assumption:

M is (topologically) compact.

The word ‘topologically’ means that we still allow certain ‘geometrically’ non-compact
setting. The most typical example would be the asymptotically conic manifolds. That
is, with M being a manifold with boundary as above, and equipped with a metric of
the form (these are called scattering metrics)

g =
dx2

x2
+
h(x, dy)

x2
, (7.16)

where h is a metric on ∂M depending on x smoothly. This also gives a metric on scTM ,
making it complete.
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As we will see in Theorem 7.1, there can’t be a ‘perfect’ quantization. So we just
define it via gluing (7.9). Concretely, let ϕi : Ui → Rn be a coordinate chart8, and
let χi be a partition of unity that is subordinate to this cover and let χ̃ ∈ C∞

c (Ui) be
identically 1 on suppχi. Then we define

Op(a) =
∑
i

Op(χia)χ̃i, (7.17)

where Op(χia) is defined via (7.9)9 and it can act one χ̃if since it have support con-
tained in Ui.

Here the localizer ϕ̃i differs with ϕi because in (7.9) we allow f to have support
slightly larger than a.

7.3. Basic properties of the calculus. We discuss basic properties of Ψsc in this
part.

First we define the principal symbol of scattering pseudodifferential operator. Con-
sider Aloc = χAχ with χ ∈ C∞

c (M) with support contained in a single coordinate chart
ϕ : U → U ′ ⊂ Rn and is identically 1 on some smaller V ⊂ U (of course, it will be 1 on
V then). Then we know that Aloc can be identified with

(ϕ−1)∗Alocϕ
∗, (7.18)

which is a scattering pseudodifferential operator on Rn (verify this!). So locally this
(ϕ−1)∗Alocϕ

∗ can be written as Op(aU ′) for some aU ′ ∈ Sm,r(Rn). Finally, we set

aV = ϕ̃∗aU ′ |scT ∗
V M , (7.19)

where ϕ̃ : scT ∗
UM → ϕ(U) × Rn is the trivialization induced by ϕ. And the equivalent

class

[aV ] ∈ Sm,r
sc (V )/Sm−1,r−1

sc (V ) (7.20)

is independent of the choice of χ and the coordinate system ϕ, by checking the ‘coor-
dinate invariance’ as in the classical setting10. This defines the principal symbol of A
locally and the actual ‘global’ principal will be the equivalent class modulo Sm−1,r−1

sc (M)
obtained by gluing those aU ′ . It is not hard to check the following fact: if V1 ⊂ V , then
we have

[aV ]|T ∗
V1

M = [aV1 ]. (7.21)

Definition 7.1. The principal symbol of A ∈ Ψm,r
sc (M) is the unique equivalent class

σm,r(A) ∈ Sm,r
sc (M)/Sm−1,r−1

sc (M) (7.22)

such that: let a ∈ Sm,r
sc (M) be any representative of it and V, [aV ] as above, then

[a|scT ∗
V M ] = [aV ] in S

m,r
sc (V )/Sm−1,r−1

sc (V ).

Proof. The uniqueness is easy: the restriction of σm,r(A) to any coordinate chart is
uniquely determined.

8Rigorously speaking, one should reduce Rn to Rn and half-spaces further.
9Here we packaged pull-backs, trivialization induced by ϕi into the definition of Op.
10This is not very trivial. Read Section 6.1 of Hintz’s notes if you haven’t seen this.
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To show the existence, we use a partition of unity {ϕi} subordinate to a locally
finite11 open cover {Vi} as in the definition of [aV ] above. Now we take a representative
aVi for each [aVi ] and set

a =
∑
i

ϕiaVi , σm,r(A) = [a] ∈ Sm,r
sc (M)/Sm−1,r−1

sc (M). (7.23)

Now we verify that [a] satisfies desired properties. Take any V in the definition, since
for any p ∈ V , there is a ϕ ∈ C∞

c (V ) that is identically 1 near p, so we only need to
show that for all ϕ ∈ C∞

c (V ) we have

[(ϕa)|V ] = [(ϕa)V ].

As aforementioned, making further restriction does not change the equivalent class, so
we restrict [ϕϕiaVi ] and [ϕϕiaV ] to Vi ∩ V to see that

ϕϕiaVi = ϕϕiaV + ei,

with ei ∈ Sm−1,r−1
sc (M) and is supported in scT ∗

V ∩Vi
M . Then we have

ϕa = ϕaV +
∑
i

ei,

while
∑

i ei ∈ Sm−1,r−1
sc (M), as desired.

□

Remark 7.2. Being able to glue those local principal symbols can be thought of a quite
algebraic fact. In fact, it is easy to check Sm,r

sc (M) and Sm−1,r−1
sc (M) are sheaves on

M . But in general quotient of sheaves is only a pre-sheaf. However, Sm−1,r−1
sc (M) is a

flasque (that is, the restriction map is surjective) subsheaf of Sm,r
sc (M), which is enough

to derive that Sm,r
sc (M)/Sm−1,r−1

sc (M) is a sheaf. And we can verify compatibility
conditions for [aV ] in terms of intersection and restriction to derive that this global

principal symbol exists. In the proof above, Sm−1,r−1
sc (M) being flasque is reflected for

example by saying ei is global directly.

Now we turn to the ellipticity. For a ∈ Sm,r
sc (M), it is called elliptic (in Sm,r

sc (M)) at

q ∈ ∂(scT
∗
M) if

|xrρmdfa(x, y, τ, µ)| ≥ C > 0

in a neighborhood of q. We say a is elliptic (in Sm,r
sc (M)) if it is elliptic at every point of

∂(scT
∗
M). Of course, this property descends to a property of Sm,r

sc (M)/Sm−1,r−1
sc (M)

and we say A is elliptic if σm,r
sc (A) is elliptic. This is equivalent to the following fact:

a ∈ Sm,r
sc (M) is elliptic if and only if there exists b ∈ S−m,−r

sc (M) such that

ab− 1 ∈ S−1,−1
sc (M). (7.24)

Also, A is elliptic in Ψm,r
sc (M) if and only if there is a B ∈ Ψ−m,−r

sc (M) such that

AB − Id, BA− Id ∈ Ψ−1,−1
sc (M). (7.25)

In fact, the error term can be improved to be in Ψ−∞,−∞
sc (M) and such B is called the

parametrix of A.

11It can be taken to be finite by our assumption.
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Proposition 7.1. The principal symbol map gives the following short exact sequence12:

0 → Ψm−1,r−1
sc (M) → Ψm,r

sc (M)
σm,r(·)−−−−→ Sm,r

sc (M)/Sm−1,r−1
sc (M) → 0.

This means that σm,r(·) captures the leading order behaviour in both the differential
sense and the decay sense. If two operators have the same principal symbol, then the
coincide up to Ψm−1,r−1

sc (M)-level (in the sense that their difference lies in here).
Then the proof of the composition law can be done by local reduction to the Rn-case.

We state the conclusion below.

Proposition 7.2. Ψsc is a multi-graded ∗-algebra in the following sense (let ∗ denote
the formal adjoint)

A ∈ Ψm,r
sc (M) =⇒ A∗ ∈ Ψm,r

sc (M),

A ∈ Ψm1,r1
sc (M), B ∈ Ψm2,r2

sc (M) =⇒ A ◦B ∈ Ψm1+m2,r1+r2
sc (M).

(7.26)

In addition, the principal symbol map ‘preserves products’:

σm1+m2,r1+r2(AB) = σm1,r1(A)σm2,r2(B). (7.27)

Of course, the product on the right hand side is defined via taking representatives to
form a product and then take the equivalence class again. One can check that this does
not depend on the choice of representatives.

As we will see in the proof of propagation estimates, commutators will play a very
important role in microlocal analysis. In scattering calculus, commutators has the
following property that is analogous to the classical case:

Proposition 7.3. Let A ∈ Ψm1,r1
sc (M), B ∈ Ψm2,r2

sc (M), then [A,B] ∈ Ψm1+m2−1,r1+r2−1
sc (M)

and
σm1+m2−1,r1+r2−1([A,B]) = −i{σm1,r1(A), σm2,r2(B)}. (7.28)

The proof comes down to local reduction to the Rn case and use the asymptotic
expansion. The Poisson bracket on the right hand side is defined via taking represen-
tatives and compute using the definition that is almost the same as the Rn-case which
we recall below. For p, a ∈ C∞(scT ∗M), {p, a} is defined via

{p, a} = Hpa, (7.29)

where Hp is the Hamilton vector field uniquely determined by

dp(H ′) = ωsc(Hp, H
′), (7.30)

for any smooth vector field H ′ on scT ∗M . Here ωsc is the symplectic form

ωsc = −d(τ dx
x2

+ µ · dy
x
)

= −dτ ∧ dx

x2
− dµ ∧ dy

x
+ x

dx

x2
∧ µ · dy

x
.

(7.31)

Of course, both of the Poisson bracket and the Hamiltonian vector field are the
same as the classical one in the interior and one can compute them in terms of local
coordinates. But notice that our contact form is *NOT* τdx + µ · dy, but there are

12Say, as left C∞(M)-modules. But this is not that important in our analysis.



LECTURE NOTES ON NON-ELLIPTIC FREDHOLM THEORY 43

x-factors involved and the expression in terms of those coordinates will look different
from the classical case.

By condition (7.30) solving for the undetermined coefficients, we have

Hp =∂τp(x
2∂x) + ∂µp(x∂y)− (x2∂xp+ xµ · ∂µp)∂τ

− (x∂yp− xµ) · ∂µ.
(7.32)

One point we would like to emphasize here is that one can see from (7.28) that
Hamiltonian dynamics will enter naturally if one want to

In fact, one can check that this Poisson bracket satisfies the Jacobi’s identity and
makes C∞(scT ∗M) a Lie algebra. On the other hand [·, ·] also makes Ψsc a Lie algebra.
Then (7.28) says that the principal symbol map (modulo the i-factor) preserves those
structures on the top level. Of course, one would like to ask can we preserve this
completely precisely? The answer is no, even in a much more limited setting. This is
the Groenewold’s theorem:

Theorem 7.1. On Rn, as long as S ⊂ C∞(T ∗Rn) includes symbols that is polynomial
in positions and frequencies, then there is no quantization map Q : S → Ψ(Rn) such
that

−iQ({f, g}) = [Q(f), Q(g)]. (7.33)

A sketch of the proof is as following: the condition for polynomials of first two
orders determines it have to be the Weyl quantization. And then the quantized version
of (x1, ξ1 stands for the first component of position and frequency respectively)

x21ξ
2
1 =

1

9
{x31, ξ31} =

1

3
{x21ξ1, x1ξ21}

will lead to contradiction. See [2, Section 13.4] for details.

7.4. Sobolev spaces, mapping properties. Recall we have the Schwartz function
class on M defined by

S(M) =
⋂
N∈N

xNC∞(M), (7.34)

and it is equipped with the Fréchet topology induced by this intersection (for example:
sup(x,y)∈ϕ(U) |x−N∂αx,yu| for a fixed set of charts (U, ϕ) forming an finite open cover of

M).
Then we denote S ′(M) to be the dual space of it (continuous linear functionals on

it). It is called the space of tempered distributions on M .

The metric (7.16) gives a volume form | dxdy
xn+1 | and this defines L2

sc(M). Concretely,
let χi be a partition subordinate to coordinate charts {(Ui, ϕi)} consists of finitely Ui

and we define

∥u∥L2
sc(M) = (

∑
i

∫
|χiu(x, y)|2|dν|)1/2 (7.35)

for u ∈ S(M). Here |dν| is | dxdy
xn+1 | if we are near the boundary and if some of Ui is

completely away from ∂M and have coordinate system z = (z1, .., zn), then we just use
|dz|. One can verify that this is a norm and L2

sc(M) is defined to be the completion of
S(M) with respect to this norm.
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Let {(Ui, ϕi, χi)} be as above, and set

∥u∥Hm,r
sc (M) =

(∑
i

∥(ϕ−1
i )∗(χiu)∥2Hm,r

sc (Rn)

)1/2
. (7.36)

for u ∈ S(M), and again set Hm,r
sc to be the completion of S(M) with respect to this

norm. This is a Hilbert space with the inner product defined by

⟨u, v⟩ =
∑
i

⟨Ai(ϕ
−1
i )∗(χiu), Ai(ϕ

−1
i )∗(χiv)⟩, (7.37)

where Ai is a invertible elliptic operator in Ψsc(Rn) and ⟨·, ·⟩ is the L2-pairing with

respect to |dz| or | dxdy
xn+1 | as above, depending on we are near the boundary or not.

The boundedness of Ψsc-operators on Sobolev spaces are proved by reducing to the
Rn case and the residual part with S(M ×M) kernel is easy to deal with. We only list
results below for the convenience of reference afterwards.

Proposition 7.4. Let A ∈ Ψm,r
sc (M), then for any s, l ∈ R, A is a continuous map

from Hs,l
sc (M) to Hs−m,l−r

sc (M):

∥Au∥
Hs−m,l−r

sc (M)
≤ C∥u∥

Hs,l
sc
, (7.38)

where the constant C may depend on A,m, r, s, l and choices we made in the definition
of norms.

As aforementioned, A ∈ Ψm,r
sc (M) is elliptic if and only if there is a B ∈ Ψ−m,−r

sc (M)
such that

AB − Id, BA− Id ∈ Ψ−∞,−∞
sc (M). (7.39)

And this yields the elliptic estimate:

Proposition 7.5. Suppose A ∈ Ψm,r
sc (M) is elliptic, then (7.38) can almost be reversed

with an error term:

∥u∥
Hs,l

sc
≤ C

(
∥Au∥

Hs−m,l−r
sc (M)

+ ∥u∥
H−N,−N

sc

)
. (7.40)

Here N ∈ R is arbitrary, but the useful case is when N is large: −N < s, l.

Finally, we briefly introduce the scattering the wavefront sets for distributions and
operators. Let A ∈ Ψm,r

sc (M), then WF′
sc(A) is the subset in ∂(scT

∗
M) that captures

locations and frequencies whereA is non-trivial, where trivial means acting with integral
kernel that is a Schwartz function. Concretely, let a be the full symbol of A (potentially

modulo a Ψ−∞,−∞
sc -term, according to our definition of the operator class) using the

quantization (7.17), then for q ∈ ∂(scT
∗
M), we say that q /∈ WF′

sc(A) if there exists

χ ∈ C∞(scT
∗
M) such that χ(q) = 1 and χa ∈ S−∞,−∞

sc (M), which is the space of

Schwartz functions on scT
∗
M . This is equivalent to that there is a Q ∈ Ψ0,0

sc that is
elliptic at q such that QA ∈ Ψ−∞,−∞

sc , which means A is acting with an integral kernel
that is a Schwartz function microlocally at q

For u ∈ S ′(M), the scattering wavefront set of order s, l, denoted by WFs,l
sc (u) is

the subset of ∂(scT
∗
M) that captures locations and frequencies where u fails (to have
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enough regularity of decay) to lie in Hs,l
sc (M). Let q ∈ ∂(scT

∗
M), we say q /∈ WFs,l

sc (u)

if there is a Q ∈ Ψ0,0
sc that is elliptic at q such that Qu ∈ Hs,l

sc (M). One can also take
union over those finite order wavefront sets to form a set that measure where u fails
trivial (i.e., being Schwartz):

WFsc(u) =
⋃

s,l∈N
WFs,l

sc (u).

7.5. Generalization to vector bundles. The scattering algebra and pseudodiffer-
ential algebras constructed in previous chapters extends to operators between sections
of vector bundles naturally. We describe this process very briefly for the scattering
algebra as given in [8, Section 3], and this transplant to other algebras in a verbatim
manner. The major motivation of this generalization is the application to systems of
PDEs.

Let πE : E →M and πF : F →M be two vector bundles over M of rank rE and rF
respectively, either complex or real. We define the space of scattering pseudodifferential
operators from E to F with differential order m and decay order l as

Ψm,l
sc (M ;E,F ) := C∞(X; Hom(E,F ))⊗Ψm,l

sc (M), (7.41)

where the tensor product is over C∞(M), viewing C∞(X; Hom(E,F )) as a right

C∞(M)−module and Ψm,l
sc (M) as a left C∞(M)−module. Equivalently, an element in

Ψm,l
sc (M ;E,F ) is a matrix with entries in Ψm,l

sc (M). Suppose e1, ..., erE and f1, ..., frF
are local frames of E and F over an open set O respectively, then for any K ⋐ U , we

have Pij ∈ Ψm,l
sc (M), 1 ≤ j ≤ rE , 1 ≤ i ≤ rF such that

P (

rE∑
j=1

ϕjej) =
∑
i,j

Pij(ϕj)fi, (7.42)

where ϕi ∈ C∞
c (O) and suppϕi ⊂ K. We transposed the matrix interpretation com-

pared with notations in [8] to make it more compatible with basic linear algebra.

The space of corresponding symbols, denoted by Sm,l
sc (M ;E,F ) is the space of rF ×

rE matrices with entries in Sm,l
sc (M), and the quantization map sending a symbol to

Ψm,l
sc (M ;E,F ) is applying the quantization map in the scalar case componentwise. The

ellipticity
The Sobolev spaces Hs,r

sc (M ;E) is defined using a partition of unity, a local trivial-
ization of E, and a scattering connection ∇sc, which gives the notion of differentiating
sections of E along scattering vector fields, i.e., sending sections of E to sections of
E satisfying conditions for connections on vector bundles, but with V(M) replaced by
Vsc(M). For a positive integer s, Hs

sc(M ;E) is defined to be the space of sections of
E such that it up to s−order derivatives using ∇sc and scattering vector fields are
square integrable. Here we assume there is a fixed Hermitian inner product (and hence
volume form) on E to define the integration. For general s ∈ R, we define for s ≥ 0 by
interpolation, and then use duality to define the s < 0 case. The weighted case is done
by multiplying xr componentwise, where x is the boundary defining function of M .
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The concept of the adjoint operator requires us to fix a density Ω, and define A∗ of

Ψm,l
sc (M ;E,F ) as an element in Ψm,l

sc (M ;F ∗ ⊗Ω, E∗ ⊗Ω) using the equation of pairing

⟨Au, v⟩ = ⟨u,A∗v⟩, (7.43)

where u, v are sections of E and F ∗⊗Ω respectively. a ∈ Sm,l
sc (M ;E,F ) is said to be el-

liptic at (z, ζsc) if on a conic neighborhood of this point there exists b ∈ S−m,−l
sc (M ;F,E)

such that b ◦ a− IdE ∈ S−1,−1
sc (M ;E,E) and a ◦ b− IdF ∈ S−1,−1

sc (M ;F, F ). Then the
principal symbol the mapping properties, elliptic estimates, wavefront sets are similar
to the scalar case.

Exercises.

(1) Check the claim we made in Section 3: whenM = Rn, ∂zi will be equivalent (in
the sense that the linear transformations between them have uniformly bounded
coefficients on both directions) to x2∂x, x∂yi .

(2) Check the claim that a scattering metric as in (7.16) gives a metric on scTM
and it is complete. Can we do something similar to scT ∗M?

(3) In Section 3, we claimed that taking Vsc(M) as local sections uniquely deter-
mines a vector bundle. Verify this. (Hint: For any p ∈M , let Ip ⊂ C∞(M) be
the ideal of smooth functions vanishing at p, then define the fiber

scTpM = Vsc(M)/Ip · Vsc(M).

Then verify that this gives a vector bundle. Maybe think about what is
C∞(M)/Ip first.)

(4) Verify the equivalence of two definitions of the ellipticity given in Section 7.3.
(5) Derive (7.32).
(6) In terms of the quantization map in (7.17), verify: Op(1) = Id. And this quan-

tization map is almost surjective: Ψm,r
sc (M) = Op(Sm,r

sc (M)) + Ψ−∞,−∞
sc (M).

8. Lecture 8: Applications to Inverse problems

In this part we will discuss some application of the scattering calculus to inverse
problems. In particular, we will discuss the result of Uhlmann and Vasy (with an
Appendix by Zhou) [11], but with a slightly different proof, which is more similar to
the presentation in later papers [10] [15] [5] [14]. But we avoid introducing a quasi-
homogeneous semiclassical calculus, which is used in some of those referred papers.

We can’t offer a thorough literature review, but only refer to [10, Section 1] [12].

8.1. The X-ray transform. Let (X, g) be a Riemannian manifold with boundary.
The geodesic X-ray transform is a generalization of the Radon transform, and the
inverse problem on it can be formulated as follows: On a Riemannian manifold (X, g),
the information we have are integrals like

(I0f)(γ(·)) :=
∫
γ
f(γ(t))dt, (8.1)

where γ is a geodesic segment in a neighborhood Op of a fixed point p ∈ ∂X. Here 0
stands for viewing f as a tensor of rank 0. And the general case is defined via taking
the integrand to be f(γ(t))(γ̇(t), ..., γ̇(t)) when f is a tensor field.
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In this part, we consider the local geodesic ray transform with weights in dimension
at least 3. ‘Local’ means that the geodesic segment we integrate over lies in Op and has
endpoints on ∂X, see Section 8.2.3 for the more detailed definition. We show that we
can recover the restriction of the function f to Op, which amounts to the injectivity of
I0, by proving an estimate which uses the Sobolev norm of I0f (viewed as a function
on the projective sphere bundle PSX) to control the Sobolev norm of f . In addition,
this estimate is stable under small perturbations of the metric g.

8.2. Notations and results.

8.2.1. The set up. Let (X, g) be a Riemannian manifold with boundary. It is convenient
to consider a larger region containing X. So suppose X is embedded as a strictly convex
domain in a Riemannian manifold (X̃, g) (we have used the same notation to indicate
the smooth extension of the metric). Here convexity means when a geodesic is tangent
to ∂X, it is tangent and curving away from X.

Concretely, let X̄ be the closure of X in X̃ and let ρ be the boundary defining
function of X̃, which means ρ(z) vanishes on ∂X, ρ(z) > 0 on X, and satisfy the non-
degeneracy condition dρ ̸= 0 when ρ = 0. Using G to denote the dual metric function
on T ∗X̃, the convexity means that if at some β ∈ T ∗

p X̃\o with p ∈ ∂X and o being the
zero section, we have:

if (HGρ)(β) = 0, then (H2
Gρ)(β) < 0. (8.2)

We will consider local geodesic transform near p in a neighborhood Op ⊂ U of p in X.
See Section 8.2.3 for more details on Op and the meaning of local here. Recall that an
initial point and an tangent vector at this point determine a geodesic. The bundle we
use to parametrize geodesics is the projective sphere bundle, denoted by PSX, whose
fibers are R×Sn−2. It parametrizes geodesics whose initial velocities has unit tangential
component, except for those ones that are normal to our foliation (corresponding to
λ = ±∞). Those excluded geodesics are irrelevant for our purpose since our cut-off χ
is restricting our analysis to those geodesics that are almost tangential to our foliation.

8.2.2. The foliation condition and the choice of the coordinate system. We first intro-
duce another boundary defining function x̃ satisfying

dx̃(p) = −dρ(p), x̃(p) = 0, (8.3)

whose level sets are strictly convex from the sub-level sets {x̃ < −T} for a constant
T > 0, which means geodesics tangential to this region will curve away from it. This
function is used to introduce the artificial boundary, which is a level set of x̃ : {x̃ = −c}
for c > 0. This level set intersects with ∂X and together with ∂X it encloses a small
region on which our discussion happens. This allows us to conduct analysis locally. In
terms of this new parameter c > 0, the region Op is

Ωc := {z ∈ X : x̃(z) ≥ −c, ρ(z) ≥ 0}. (8.4)

We can choose x̃ such that Ω̄c is compact for c sufficiently small. Our proof for the
local result is valid for all small c.

We give an explicit construction of x̃ here to show it exists locally (thus can be
used for our Theorem 8.1), but our result is valid for any x̃ satisfying conditions above.
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Shrinking Op if necessary, we can assume the neighborhood we are working on is entirely
in a local coordinate patch. We take

x̃(z) = −ρ(z)− ϵ|z − p|2, z ∈ Op, (8.5)

where |·|means the Euclidean norm in this coordinate patch, and this term is introduced
to enforce the region characterized by x̃ to be compact. Here ϵ > 0 is a fixed constant
chosen before we choose c. For example, we can take ϵ = 1. Taking c > 0 sufficiently
small, {x̃ > −c} is compact. This is because x̃ > −c, ρ ≥ 0 implies ρ ≤ C and
|z − p| ≤ c/ϵ. Since we are in a fixed coordinate patch, topologically this region is a
closed subset of a compact Euclidean ball, hence it is compact. In addition, by the
discussion in [11, Section 3.1], each Σt with 0 ≤ t ≤ c is convex in the sense that any
geodesic tangent to it curves away from {x̃ ≤ −t}.

If we define Ωc to be {0 ≤ ρ(z) ≤ c}, the region might be non-compact (even when
c is small, it might be a long thin strip near the boundary). So we use a modification
of −ρ making the level sets less convex to enforce its intersection with ∂X happen in a
compact region.

We now turn to the convex foliation condition we need. From now on, we assume x̃
to be any function that satisfies (8.3) and convexity condition after it. Our foliation of
the part of X near ∂X is given by level sets of x̃. That is, the family of hypersurfaces
{Σ̃t = x̃−1(−t), 0 ≤ t ≤ T}. Here we choose T to be a number such that desired

properties of x̃ hold from Σ̃0 up to Σ̃T . For the Theorem 8.1, which concerns the local
injectivity, we only use the part of the foliation with t ≤ c. While for the Corollary,
which concerns the global result, we use the entire foliation up to x̃ = −T . By our
choice of c, we may take T = c. Taking T larger will make the region on which our
result holds larger. In fact, one may apply a layer stripping method to obtain injectivity
result up to Σ̃T . When T > c, we may take Σ̃c as the ‘new boundary’ and apply our
Theorem 8.1, and then repeat. For more details of the layer stripping method, see the
discussion after [11, Corollary].

Finally, the coordinate system we use is

(x, y, ξ, η), (8.6)

where x = x̃+ c, and y is the coordinate on Σ̃t, which are line segments in our context.
ξ, η are fiber variables dual to x, y respectively in the scattering cotangent bundle scT ∗X
(i.e., we are writing covectors as ξ dx

x2 + η dy
x ).

We emphasize that introducing X̃ and the artificial boundary {x̃ = −c} brings us
convenience in this framework, allowing us to restrict our analysis in to this local region
and use the scattering pseudodifferential calculus.

8.2.3. The local geodesic ray transform. Geodesics below are with respect to the metric
g. Recalling (8.4), we replace x̃ by x = x̃ + c, so that x itself becomes the defining
function of the artificial boundary. In an open set O ⊂ X̄, for a geodesic segment
γ ⊂ O, we call it O-local geodesic if its endpoints are on ∂X ∩ O, and all geodesic
segments we consider below are assumed to be Op−local with Op as in the
previous part.
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As we mentioned in the introduction, the local geodesic ray transform of a function
f is defined by:

I0f(s) :=

∫
γ
f(γ(t))dt,

where s ∈ PSX, γ(·) is the geodesic determined by s. So our geodesic ray transform
is a function on PSX.

8.2.4. The main result. We use exponentially weighted Sobolev spaces: Hs
F (Op) :=

eΦF (x)Hs(Op) = {f ∈ Hs
loc(Op) : e

−ΦF (x)f ∈ Hs(Op)}, where the additional subscript

F is a positive constant, which indicates the exponential conjugation, ΦF (x) =
F
x when

x is close to 0, and ΦF (x) =
F

c−x when x is close to c.
For exponentially weighted Sobolev spaces on other manifolds, we use the same

notation with Op replaced by that manifold. Furthermore, PSX|Op is the restriction
of the projective sphere bundle to Op. With all these preparations, the main theorem
is:

Theorem 8.1. For p ∈ ∂X, with x̃ as above, we can choose Op = {x̃ > −c} ∩ X̄, so
that the local geodesic transform is injective on Hs(Op), s ≥ 0. More precisely, there
exists C > 0 such that for all f ∈ Hs

F (Op),

||f ||Hs
F (Op) ≤ C||I0f ||Hs+1(PSX|Op )

. (8.7)

In the corollary below, X, Σ̃t are defined as above, and in addition we assume that
X̄ is compact.

Corollary 8.1. If the convex foliation construction {Σ̃t} is valid up to {x̃ = −T}
and KT := X\ ∪t∈[0,T ) Σ̃t has measure zero, the global geodesic X-ray transform is

injective on L2(X). If KT has empty interior, the global geodesic transform is injective
on Hs

F (Op)(X) for s > n
2 .

Remark 8.1. We added ‘global’ because the function are not restricted to Op anymore.
In addition, our result is stable since all the conditions we need in the proof are also
satisfied by small perturbations of g, and the constant C in (8.7) can be made uniform
for small perturbations of g, hence the same result holds for small metric perturbations.

Proof. Assuming the theorem holds, we prove the corollary. For nonzero f ∈ L2(X)
and KT has measure zero case, suppf has non-zero measure by the definition of L2(X).
Consider τ := infsuppf (−x̃). If τ ≥ T , then suppf ⊂ KT , which has measure zero,

contradiction. So τ < T and by definition f ≡ 0 on Σ̃t with t < τ . By the definition
of τ , closedness of suppf and compactness of X̄, we know there exists q ∈ Σ̃τ ∩ suppf .
However, consider the manifold given by {x̃ < −τ}, to which we can apply our theorem.
Since we have local injectivity near q, we conclude that q has a neighborhood disjoint
with suppf , contradiction.

If f ∈ Hs(X), s > n
2 , f ̸= 0, then f is continuous by the Sobolev embedding theorem

and consequently suppf has non-empty interior since .Then apply local result to a fixed
point in suppf gives the contradiction. □
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8.3. Why scattering calculus? We briefly explain why we need to use the scattering
calculus instead of Kohn-Nirenberg or Hörmander type calculus here. Before the result
of Uhlmann and Vasy [11], Stefanov and Uhlmann [9] have already shown that the
normal operator we define below (without the cutoff) is an elliptic pseudodifferential
operator.

However, if one don’t restrict to geodesics that are becoming more and more tangent
to the boundary of the local region, then the right hand side of the stability estimate
will involve Sobolev norms on a slightly larger region, since the X-ray transform and
in turn the normal operator will involve information outside this region. Consequently,
this does not give the desired invertibility.

Now if we introduce the cut-off, as we do below like χ(λx ) with χ(·) ∈ C∞
c (R), then

they are not bounded under actions of Dx and the resulting normal operator is not a
classical PsiDO as one approaches the boundary (not the ∂X, but the one introduced
by localization). But they are bounded under repeated applications of xDx and the
normal operator lies in Ψsc.

In addition, this localization is necessary as one will see in the proof. The smallness
of the region works like a ‘semiclassical’ parameter the finally allows us to remove the
error term in the elliptic estimate.

Of course, one can choose other scaling to restrict to geodesics tangent to the artificial
boundary. For example one can use

√
x here as the defining function of the artificial

boundary and consider geodesics with |λ| ≲
√
x. But that results in some pseudo-

differential algebras in which one needs to treat non-commutative (operator-valued)
boundary symbols. See [11, Remark 3.4].

8.4. The pseudodifferential property and ellipticity of the normal operator.
In this section we prove the pseudodifferential property and ellipticity of the expo-
nentially conjugated microlocalized normal operator. The exponential conjugation is
needed because although the Schwartz kernel of A in the previous section behaves

well when X = x′−x
x2 , Y = y′−y

x are bounded, it is not so when (X,Y ) → ∞. This
conjugation gives additional exponential decay to resolve this issue.

Using the notation (z, ν) = (x, y, λ, ω) ∈ PSX, we define the modified adjoint oper-
ator of I0 as

(Lv)(z) := x−2

∫
χ(
λ

x
, y)v(γx,y,λ,ω)dλdω,

where γx,y,λ,ω(t) is the geodesic starting at (x, y) with initial tangent vector (λ, ω), ω =
±1. χ is smooth and compactly supported in the first variable, with χ(0, y) = 1 and
the size of its support is uniformly bounded. All derivatives with respect to y are also
uniformly bounded. v is a function defined on the space of Op−local geodesic segments,
whose prototype is the geodesic ray transform

v(γ) = I0f(γ) =

∫
γ
f(γ(t))dt,

in which f(γ(t)) can be replaced by higher order tensors, coupling with γ̇(t) in all of
its slots in more general situations. By the compactness of Ω̄c discussed after (8.5) and
|(λ,±1)| ≥ 1 and the convexity assumption on we made, [14, Lemma 3.1] shows that
there exits a uniform bound Tg of the escape time of Ōp. Thus we assume |t| ≤ Tg in
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arguments below. I0 is the original geodesic ray transform operator and L is its adjoint
if we ignore χ and assume fast decay conditions on integrands. So their composition is
the model of the normal operator.

We define the conjugated normal operator AF as

AF = e−F/xL ◦ I0eF/x.

By the definition of L and I0, we know AF acts by

AF f(z) := x−2

∫
e
−F

x
+ F

x(γx,y,λ,ω(t))χ(
λ

x
, y)f(γx,y,λ,ω(t))dt|dν|, (8.8)

with |dν| = |dλdω| being a smooth density.
Recall the parameter c in the definition Op = {x̃ > −c} ∩ X̄ and we only concern

the region 0 ≤ x = x̃+ c ≤ c, we have:

Theorem 8.2. AF ∈ Ψ−1,0
sc for F > 0. In addition, if we choose χ ∈ C∞

c (R) appro-
priately with χ ≥ 0, χ(0) = 1, its principal symbol, including the boundary symbol, is
elliptic.

Proof. For the original derivation of the decay property of AF ’s Schwartz kernel and
consequently the membership AF ∈ Ψ−1,0

sc , we refer readers to [11, Section 3.5]. And
see [9, Section 5] for the interior of the region.

Since we only concern principal symbol level information, we use the following quan-
tization formula:

qL(a)u(x, y) = (2π)−n

∫
ei(ξ

x−x′
x2

+η y−y′
x

)u(x′, y′)a(x, y, ξ, η)
dx′dy′

(x′)n+1
dξdη. (8.9)

which is more convenient to evaluate in the current setting and does not differ from
(7.9) on the principal symbol level, to compute the principal symbol. The Schwartz
kernel of AF is given by:

KAF
(z, z′) = (2π)−2

∫
ei(z−z′)·ζaF (z, ζ)dζ,

where aF is the left symbol of AF . From the definition of AF , we know

KAF
(z, z′) =

∫
e
−F

x
+ F

x(γx,y,λ,ω(t))x−2χ(
λ

x
, y)δ(z′ − γx,y,λ,ω(t))

dt|dν|

= (2π)−n

∫
e
−F

x
+ F

x(γx,y,λ,ω(t))x−2χ(
λ

x
, y)e−iζ′·(z′−γx,y,λ,ω(t))

dt|dν||dζ ′|.

Taking inverse Fourier transform in z′ and then evaluate at ζ, which turns out to be a
factor δ0(ζ − ζ ′), we know:

aF (z, ζ) =(2π)ne−iz·ζF−1
z′→ζKAF

(z, z′)

=

∫
e
−F

x
+ F

x(γx,y,λ,ω(t))x−2χ(
λ

x
, y)e−iz·ζeiζ·γx,y,λ,ω(t)

dt|dν|.



52 LECTURE NOTES ON NON-ELLIPTIC FREDHOLM THEORY

Suppose we use the coordinate in the scattering cotangent vectors: ζ = ξ dx
x2 + η dy

x and

use the coordinate γx,y,λ,ω(t) = (γ
(1)
x,y,λ,ω(t), γ

(2)
x,y,λ,ω(t)). In our context, all of them are

scalars. While in the general n−dimensional case, the first component is of dimension
one, and the second component has dimension n− 1. The expression above becomes

aF (z, ζ) =

∫
e
−F

x
+ F

x(γx,y,λ,ω(t))x−2χ(
λ

x
, y)ei(

ξ

x2
, η
x
)·(γ(1)

x,y,λ,ω(t)−x,γ
(2)
x,y,λ,ω(t)−y)dt|dν|. (8.10)

Next we investigate the phase function of this oscillatory integral and then apply the
stationary phase lemma. We denote components of γz,ν(t) (recall ν = (λ, ω)) and its
derivatives by

γx,y,λ,ω(0) = (x, y), γ̇x,y,λ,ω(0) = (λ, ω),

γ̈x,y,λ,ω(t) = 2(α(x, y, λ, ω, t), β(x, y, λ, ω, t)),
(8.11)

where α, β are defined by by this equation and are smooth with respect to their vari-
ables. In addition, α is a quadratic form in ω, and it is strictly positive definition in ω
for small enough x, λ, t, which means being close to the starting point at the boundary,
by our convexity condition.

Since γx,y,λ,ω starting at (x, y) with initial velocity (λ, ω), there exists smooth func-

tions Γ(1),Γ(2) such that

γx,y,λ,ω(t) = (x+ λt+ αt2 + Γ(1)(x, y, λ, ω, t)t3, y + ωt+ Γ(2)(x, y, λ, ω, t)t2),

where we only expand the second component to the first order and have included the
β−term in the definition of Γ(2). Then we make the change of variables

t̂ =
t

x
, λ̂ =

λ

x
.

By the support condition of χ, the integrand is none-zero when λ̂ is in a compact

interval. However, the bound on t̂ is |t̂| ≤ Tg

x , which is not uniformly bounded, we
amend this by treating it in two regions separately. Using these new variables, we
rewrite our phase as

ϕ = ξ(λ̂t̂+ αt̂2 + xt̂3Γ(1)(x, y, xλ̂, ω, xt̂)) + η(ωt̂+ xt̂2Γ(2)(x, y, xλ̂, ω, xt̂)).

The damping factor coming from exponential conjugation is

−F
x

+
F

γ
(1)
x,y,λ,ω(t)

=− F (λt+ αt2 + t3Γ(1)(x, y, xλ̂, ω, xt̂))

× (x(x+ λt+ αt2 + t3Γ(1)(x, y, xλ̂, ω, xt̂)))−1

=− F (λ̂t̂+ αt̂2 + t̂3xΓ̂(1)(x, y, xλ̂, ω, xt̂)),

where Γ̂(i) is introduced when we first express γ
(1)
x,y,λ,ω(t) by variables t, λ, and then

invoke our change of variables, then collect the remaining terms, which is a smooth
function of these normalized variables. So this amplitude is Schwartz in t̂, hence we
take a constant ϵt > 0 and deal with regions |t̂| ≥ ϵt and |t̂| < ϵt separately. In our
later argument, we will take ϵt small to enforce t̂ = 0 holds for critical points.
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To see the peudodifferential property, we analyze the damping factor by analyzing
the structure of geodesics. By the convexisty condition (8.2) we assumed, there exists
a λ0 > 0 and C > 0 such that for all λ < λ0, we have (whenever γx,y,λ,ω(t) is defined):

γ
(1)
x,y,λ,ω(t) ≥ x+ λt+ Ct2. (8.12)

Then by the same computation above, and notice that xt̂3 = t× t̂2, which is ≪ t̂2 if we
select c0 to be small so that the uniform upper bound of t is small, we know that this

phase is O(e−Ct̂2) for large t̂ with some C > 0. In particular, those stationary phase
results for compact intervals applies here as well.

We left the proof of those geometric facts in Exercse 3. They were proven in [14,
Lemma 3.1].

To summarize, after substituting ϕ and the damping factor above into (8.10), it is
not hard to see, for finite (ξ, η) that it remain bounded under repeated application of
x∂x and ∂y. And indeed, the χ(λ/x)-factor tell us that we might lose control if we
consider the classical pseudodifferential algebra with respect to (x, y)13 here.

In addition, the Gaussian in t̂ decay allows the stationary phase argument below down
to arbitrary many terms, and this also shows the symbolic behaviour as (ξ, η) → ∞.
See Exercise 4.

Before considering the critical points of the phase for small x > 0, which is what we
finally need, we first consider the critical points of the phase at x = 0. This helps us
to get rid of those Γ(i)−terms and simplifies the process to solve the equation for the
critical points.

When x = 0, the phase becomes

ξ(λ̂t̂+ αt̂2) + t̂η · ω.

When |t̂| ≥ ϵt, the derivative with respect to λ̂ vanishes only when ξ = 0. Since our
analysis on the ellipticity is happening away from the zero section, thus ξ = 0 implies
|η| ≳ 1. Then we consider the ω-derivative to see that there is no critical points here.
So the region |t̂| ≥ ϵt gives rapid decay contribution when x = 0.

The case x > 0 can be dealt with the same method, but with more complicated
computation. Notice that, α,Γ(i) take λ = xλ̂, t = xt̂ as variables, and produces an
extra x factor when we take partial derivatives with respect to λ̂, t̂. Concretely, the
derivative with respect to λ̂ is:

∂ϕ

∂λ̂
= ξt̂(1 + xt̂∂λα+ x2t̂2∂λΓ

(1)) + ηx2t̂2∂λΓ
(2)

= ξt̂(1 + t∂λα+ t2∂λΓ
(1)) + ηt2∂λΓ

(2).

Recall that |t| ≤ Tg and we can choose Tg to be small by shrinking Op. Thus when

both |ξ| ≥ C|η| and |t̂| ≥ ϵt hold, ξt̂ is non-zero and is going to dominate other terms,

so ∂ϕ

∂λ̂
can not vanish and there is no critical point in this case.

In fact, expression for ∂ϕ

∂λ̂
above shows that we have to have |ξ|

|η| t̂≪ 1 at critical points

(if we still only consider |t̂| ≥ ϵt). Then we decompose ω according to the direction of

13Be careful here! We would be at ‘finite place’ if we use the classical pseudodifferential algebra.
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η to write

η · ω = |η|ω∥, ω = ω∥ + ω⊥. (8.13)

Then we have

ϕ = |η|
( ξ
|η|

(λ̂t̂+ αt̂2) + t̂ω∥).
Setting the t̂-derivative to 0 and recall |ξ|

|η| t̂ ≪ 1, we know |ω∥| ≪ 1 and it is a valid

coordinate component for ω. Finally taking ω∥-derivative gives t̂ = 0, contradiction (or
come to the next case).

Next we consider the region |t̂| < ϵt, whose closure is compact, and consequently we
can apply the stationary phase lemma. The same as before, we consider the condition
that the derivative with respect to λ̂ and t̂ vanish. First consider the x = 0, in which
case the expression can be significantly simplified:

ξt̂ = 0, ξλ̂+ η · ω = 0.

Repeating the argument before, we have the condition for critical points:

t̂ = 0, ξλ̂+ η · ω = 0.

Further, since the ϵt in arguments above is arbitrary, we know that the condition t̂ = 0
holds for any critical point including the x ̸= 0 case. The second condition can be
derived if we notice that (for general x):

∂ϕ

∂t̂
= (ξλ̂+ η · ω) +O(t̂),

where the O(t̂) term vanishes when t̂ = 0, and can be computed explicitly:

(2ξα+ 2xΓ(2))t̂+ (3xξΓ(1) + x2∂tΓ
(2))t̂2 + ξx2∂tΓ

(1)t̂3.

So those two conditions for stationary points extends to the x ̸= 0 case. In order to
apply those conditions of critical points of the phase, we first rewrite (8.10) as:

aF (z, ζ) =

∫
e
−F

x
+ F

x(γx,y,λ,ω(t))x−2χ(λ̂)ei(
ξ

x2
, η
x
)·(γ(1)

x,y,λ,ω(t)−x,γ
(2)
x,y,λ,ω(t)−y)dt|dν|

=

∫
e−F (λ̂t̂+αt̂2+t̂3xΓ̂(1)(x,y,xλ̂,ω,xt̂))χ(λ̂)

ei(ξ(λ̂t̂+αt̂2+t̂3xΓ̂(1)(x,y,xλ̂,ω,xt̂))+η(ωt̂+xt̂2Γ(2)(x,y,xλ̂,ω,xt̂)))dt̂dλ̂dω.

(8.14)

We use the notation θ = (λ̂, ω) and apply the stationary phase lemma with respect
to t̂, θ to compute the leading part as |(ξsc, ηsc)| → ∞. We decompose θ according to

directions parallel to and orthogonal to (ξsc, ηsc) and denote projections of θ by θ∥, θ⊥

respectively. Then the critical set is given by t̂ = 0, θ∥ = 0. So the leading part, up to
a constant factor, is

|(ξsc, ηsc)|−1x

∫
Sn−2

χ(λ̂(θ⊥), ω(θ⊥))dθ⊥, (8.15)

where the |(ξsc, ηsc)|−1 comes from the square root of the determinant of the Hessian of

the phase in the stationary phase lemma and λ̂(θ⊥), ω(θ⊥) indicates that this critical
set is parametrized by θ⊥ and thus other variables are functions of it. Now if we choose
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χ ≥ 0 with χ(0, y) = 1, then this indeed gives an elliptic (in the differential sense)
symbol.

Next we turn to show boundary part of the principal symbol of AF is also elliptic
(when the fiber variables are finite). Evaluating (8.14) at x = 0, the boundary principal
symbol of AF is

aF (0, y, ζ) =

∫
e−F (λ̂t̂+αt̂2)χ(λ̂, y)ei(ξ(λ̂t̂+αt̂2)+t̂η·ω)dt̂dλ̂dω.

Now α(x, y, xλ̂, ω) = α(0, y, 0, ω) := α(y, ω), which is a positive quadratic form in ω,
hence changing the sign of ω does not change its value. Now an observation is that we
can allow χ to depend on y and denote it by χ(s, y). We choose them to be a Gaussian
density first, then we use approximation argument to obtain one that has compact

support in s. We choose χ(s, y) = e
− Fs2

2α(y) , then we have:∫
e−F (λ̂t̂+αt̂2)χ(λ̂)ei(ξ(λ̂t̂+αt̂2)+ω·ηt̂)dt̂dλ̂dω

=

∫
(

∫
e−F λ̂t̂−Fλ̂2

2α
+iξλ̂t̂dλ̂)e−Fαt̂2+iω·ηt̂+iξαt̂2dt̂dω

The integral in λ̂ is a Fourier transform of Gaussian density, it is
»

2πα
F e

αF t̂2

2
−iξαt̂2− α

2F
t̂2ξ2 .

Thus we need to compute: ∫
e−

α
2F

(F 2+ξ2)t̂2+iω·ηt̂dt̂,

which is again a Gaussian type integral, and it equals to a constant multiple of…
F

α
(F 2 + ξ2)−

1
2 e

− F (ω·η)2

2(ξ2+F2)α(y,ω) ,

which is even in η. Finally, with a constant factor Ĉ, we have:

aF (0, y, ζ) = Ĉ

∫
Sn−2

…
F

α
(F 2 + ξ2)−

1
2 e

− F (ω·η)2

2(ξ2+F2)α(y,ω)dω. (8.16)

When x = 0, this equation shows that aF (0, y, ζ) is lower bounded by a positive constant
when the fiber variables are uniformly bounded. In fact, a more detailed decomposition
in ω also gives lower bound as |(ξ, η)| → ∞. The only potential issue to make it not
lower bounded is when |ω · η| ≫ |ξ|2 ≫ F 2. But one can look at the part on Sn−2

that is perpendicular to η with radius ∼ (|ξ|2+F 2)1/2

|η| . This part is roughly a small

interval times Sn−3 and will have volume ∼ (|ξ|2+F 2)1/2

|η| and the factor e
− F (ω·η)2

2(ξ2+F2)α(y,ω)

is uniformly lower bounded here. So the integral is ≳ 1 even as |(ξ, η)| → ∞, which is
how it should be, according to the previous part about ellipticity near fiber infinity.

Notice that the constants in (8.16) are uniformly bounded for all choices of small
c, thus we can choose c small and it will be lower bounded by a positive constant for
0 ≤ x ≤ c by continuity (which is uniform in terms of choices of c).

Now we amend the compact support issue. Let χ be a Gaussian as above, which
generates an elliptic operator, then we pick a sequence χn ∈ C∞

c (R) converges toχ in
the Schwartz function space S(R). Then we can obtain the convergence of χ̂n to χ̂
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in Schwartz function space. This gives us the convergence of X−Forier transform in
S(R). The Y−Fourier transform step is also continuous with respect to the topology
of S(R). In particular, we obtain the convergence of |ζ|an,F (z, ζ), the symbol obtained
from χn, in the C0 topology, which is enough to derive an elliptic type estimate for χn

with large enough n. □

Remark 8.2. Looking at (8.10),

8.5. The proof of the main theorem. Fix c0 small and apply results in previous
sections to Ωc0 , estimates above are uniform with respect to c ∈ (0, c0]. We let c
vary and take f ∈ Hs

F (Op). For Ωc, denote AF in Section 8.4 constructed for Ωc by
Bc. By Proposition 8.2, By the ellipticity of Bc we have its parametrix Gc such that
GcBc = Id + E0c, E0c ∈ Ψ−∞,−∞

sc (X̃).
Consider the map Ψc(x̃, y) = (x̃+ c, y), and let

Ac = (Ψ−1
c )∗BcΨ

∗
c , Ec = (Ψ−1

c )∗(E0c)Ψ
∗
c . (8.17)

This conjugation is introduced to make this family of operators to be defined on a fixed
region M̄0 := {x̃ ≥ 0}. We have an estimate of the error term in terms of f . To be more
precise, we consider the Schwartz kernel KEc of Ec, which satisfies |x−Nx′−NKEc | ≤
CN on Ωc. Then we insert a truncation factor ϕc compactly supported in Ωc, and
being identically 1 on smaller compact set Kc, such that |ϕc(x, y)ϕc(x′, y′)KEc | ≤
C ′
Nc

2Nxn+1(x′)n+1 for all N . The (n + 1)-power factors are introduced to deal with
the scattering density. Then we apply Schur’s lemma on the integral operator bound
(together with the aforementioned N − th power estimate) to conclude that

||ϕcEcϕc||L2
sc(M̄0)→L2

sc(M̄0) ≤ C ′′
Nc

2N . (8.18)

In particular, we can take c0 so that this norm < 1 when c ∈ (0, c0]. Since those
conjugations are invertible, this guarantees that ϕcGcBcϕc = Id+ϕcE0cϕc is invertible.
So for the functions supported on Kc, Bc is injective. Kc can be arbitrary compact
subset of Ωc for arguments up to now. Support conditions are encoded by subscripts
below. For example, Hs,r

sc (M̄c)Kc is the space consists of those functions in Hs,r
sc (M̄c)

which have support in Kc. Define M̄c := {x̃ + c ≥ 0} and Kc := M̄c ∩ {ρ ≥ 0} = Ωc.
Kc is compact by our choice of x̃. We have

||v||Hs,r
sc (M̄c)Kc

≤ C||Bcv||Hs+1,r
sc (M̄c)

.

If we recover this expression to A, this is (with f = e
F
x v):

||f ||
e
F
x Hs,r

sc (M̄c)Kc

≤ C||Af ||
e
F
x Hs+1,r+1

sc (M̄c)
.

We can get rid of the r−indices with the cost of increasing the power of left hand

side to e
F+δ
x . That is:

||f ||
e
F+δ
x Hs

sc(M̄c)Kc

≤ C||Af ||
e
F
x Hs+1

sc (M̄c)
.

Finally we consider the boundedness of operators involved. We consider the decompo-
sition A = L ◦ I0, and show that L is bounded. In order to prove this, we decompose
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L into L =M2 ◦Π ◦M1, with M2,Π,M1 being

M1 :H
s([0,+∞)x × Rn−1

y × Rλ × Sn−2
ω ) → Hs([0,+∞)x × Rn−1

y × Rλ × Sn−2
ω ),

(M1u)(x, y, λ, ω) = xsχ(
λ

x
, y)u(x, y, λ, ω),

Π :Hs([0,+∞)x × Rn−1
y × Rλ) → Hs([0,+∞)x × Rn−1

y ), (Πu)(x, y) =

∫
R
u(x, y, λ, 1)dλ,

M2 :H
s([0,+∞)x × Rn−1

y ) → x−(s+1)Hs([0,+∞)x × Rn−1
y ), (M2f)(x, y) = x−(s+1)f(x, y).

Consider the boundedness of M1 when s ∈ N first. The general case follows from
interpolation. Consider derivatives of xsχ(λx , y)u(x, y, λ, ω) up to order s. Each order

of differentiation on χ gives an x−1 factor, which is canceled by xs and the remaining
part belongs to L2 by smoothness of χ and u ∈ Hs. M2 is bounded by the definition
of the space on the right hand side. The operator Π is a pushforward map, integrating
over |λ| ≤ C|x| (notice the support condition after we apply M1), hence bounded via
Minkowski inequality.

On the other hand, I0 itself is a bounded operator. This comes from the decomposi-
tion I0 = Π̃ ◦ Φ∗, where Φ is the geodesic coordinate representation Φ(z, ν, t) = γz,ν(t)

and Π̃ is integrating against t, which is bounded as a pushforward map. Because the
initial vector always has length 1 on the tangent component, the travel time is uni-
formly bounded. Φ is one component of Γ and the later is a diffeomorphism when we
shrink the region. So Φ has surjective differential, hence the pull back is bounded.
Consequently I0 is bounded.

The boundedness of L gives us an estimate

||Af ||
e
F
x Hs+1

sc (M̄c)
≤ C1||I0f ||Hs+1(PSX|M̄c

),

where we require f to have supported in Kc, and used the fact Rλ×Sn−2
ω parametrizes

Sn−1 apart from two poles, and this completes the proof.

Exercises.

(1) Verify that x̃ given by (8.5) has properties we want.
(2) What is the expression of the damping factor introduced by the conjugation in

terms of X = x−x′

xx′ ? Why this is good for us?
(3) Prove (8.12), and verify the claim about the uniform upper bound of t.
(4) Prove that aF in (8.10) is indeed symbolic with respect to scattering frequencies

(ξ, η). (Hint: Fix the order of derivatives you want to deal with, then perform
stationary expansion up to some level depending on this order.)

(5) (i)Why this proof does not work in two dimension?
(ii) What conclusion can we say in two dimension using this proof?
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