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Clifford Algebras
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William Kingdon Clifford (1845-1879)

A Clifford algebra CL(p, q) of order p + q is an associative algebra
generated by {Iq,---,[piq} satisfying,

r? = 1for1<i<p,
M = —1forp+1<i<p+aq,
I',-FJ- = —Fjrifori;«éj.
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Setup
e Pick a pair of anticommuting operators A, B:
AB = —BA.

e No further restrictions.
e They can be realized as product of the Clifford generators T.
e Let them act on vector spaces [local Hilbert space, V]:
{Ai,Bi} =0

[Ai,B]]=0; i#].
The indices i, j denote the respective copies of V in the tensor
product.
e These operators form the algebraic input for our ansatze.

e We solve n-Simplex Equations, where n is the spacetime

dimension.
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n = 2 - Simplex Equation
- Yang-Baxter Equation -
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Ansatz
e Consider the ansatze :
Rj=AiA; . Ry = B;B;.
e They trivially solve the non-braided YBE :
Ri2R13Ro3 = RozRizRio.
e Reason : Each index appears twice in the YBE.
AZAZAZ = A2 ASA2

e Note : The braid operator K’,-j = PjjRj; solves the braided YBE
non-trivially :

Ri2RosR12 = RazRiaRos.
P;j; is the standard permutation operator on the tensor products of

V's.
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Pictorially
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Linearity

¢ Question - Do linear combinations of A;A; and B;B; satisfy the
non-braided YBE 7

o Let R,’j = A,'AJ' + B,’Bj

R12R13R23
= AA3(A1A2 — B1B2) (A1As — B1B3)
+ ByB3(—A1A2 + B1By) (—A1As + B1B3)
= Rx3(A1A2 — B1B2) (A1As — B1B3)
= Rx3[A1A3(A1A2 + B1By)
— BiB3y(—AiAs — BiB))]
= RasRizRi2

e Linear solutions for non-linear equations
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n = 3 - Simplex Equation
- Tetrahedron Equation -
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Labeling Schemes

e Different ways to index the scattering process.

e Vertex Form : Labels the vertices at the intersections.
R123 R145 Ro46 R356 = R3s6R246 R145 R123

e Edge Form : Labels the line segments.
Ri123R124 R134 Ro34 = Ro3a R134 Ri24 Ri23.

e Cell Form : Labels the tetrahedrons formed in spacetime picture.
Equation satisfied by the Boltzmann Weights. [Zamolodchikov '80,
'81].
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Ansatze
e Consider a type (a, b) operator.
a = Number of A’s : b = Number of B’s.

e Solutions are ‘words’ made of four types of operators [8 words]:

(3.,0) : Ry = AAA
(2,1) : Ry = {AABy, or AiBjA, or BiAAL},
(1,2) Rijk = {BiBjAx,or BjA;By,or A;B;By},
(0,3) Rijx = BiB;jBx,

satisfy vertex and edge forms of the tetrahedron equation.

e Reason : Both sides of this equation simplify to
A2 A3(B3A3)A3(BsAs) A2,

when Rjj = AjA;By is used.
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Linear space

e Linear combinations of operators of types (2,1) and (0, 3) satisfy
the vertex and edge forms.

R,'J'k =« A,‘AjBk + 5 A,‘BjAk + B,'AjAk +6 B,'BjBk.

e Linear combinations of operators of types (1,2) and (3,0) satisfy
the vertex and edge forms.

R,'J'k =« B;BjAk + 3 B;AjBk + v A,‘BjBk + 0 A;AjAk.

e The parameters «, [3, v and 0 are constant complex numbers,
like coupling constants.
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Spectral parameter dependent solutions

e Make the coefficients site-dependent :
R,'j (Zijk) = Qjjk A;AjBk + Bijk A,'BjAk + Vijk B;AjAk + (S;J'k B;BjBk.

Here ¥k = (ijjk, Bij, Vij, dijk) denotes the tuple of spectral
parameters.

e This satisfies spectral-parameter dependent tetrahedron equation:

R123(X123) R1a5(X145) Roas (X246 ) R356 (2356 )
= R356( 2356 ) Roa6 (X246 ) Rias (X 145) R123(2123).
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n =4 - Simplex Equation
[V. Bazhanov, Y.G. Stroganov (1982)]
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Ansatze

e The vertex form of the 4-simplex equation :

R1234 R1567 R2589 R368,10 R479,10
= R479,10R368,10 Ro580 R1567 R1234-

e ‘Words' in A and B [5 types of operators] :

(4,0) :© Rju = AAAA,
(3,1) : Ry = {AAAB, AABLA;, AiBAA, BIAAAY,
(2,2) : Ry = {AA BBy, AiBiALBy, BiAAB,

AiBiBi A, BiABLA, BiBiALA}
(1,3) : Rju = {BiBjBA, BiBiALBy, BiA;B« By, AiBB(B},
(0,4) : Rjy = B;B;iByB.
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Linearity in the space of solutions

e Other than the (3,1) and (1, 3) types all other words satisfy the
4-simplex equation.

e Most general solution is a linear combination of (4,0), (0,4) and
(2,2) type words :
R = o AjAjAA + v BiBjBkB

+ 51 AiAiBkBi + B2 AiBjAkB + 33 BiAjAkB

+ B4 AiBiBkA + Bs BiAjBkA| + PBe BiBjAKA.
e The other words satisfy generalizations of the 4-simplex
equation.

e Make the coefficients site-dependent for spectral parameter
dependent solutions.
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General n-Simplex Equation
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Remarks on n-Simplex Operators

e n indices on the n-simplex operator.
e An (a, b) type word
A -ALBj By i, jp € {1, n}.
at+b=n.
e There are n+ 1 types of such words.

e The vertex form of the n-simplex equation has "(";1) indices.
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Theorem for n-simplex solutions

e This theorem specifies when words are solutions and the
conditions for linearity in the space of the different types of words.

Condition on words to be solutions : Consider the set of type (a, b)
words where a,b € {0,1,--- ,n} and a+ b = n. These words
satisfy the n-simplex equation when at least one of a or b is even.

Linearity within a given type : Linear combination of the words of
a given type (a, b) is also a solution.

Linearity between different types : Linear combinations of different
pairs are solutions when the pairs (a;, b;), with i € {1,---  n+ 1},
are such that a; — a; is even for all pairs i,j € {1,--- ,n+1}.
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Anti-n-Simplex Equation
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n is even

e Linear combinations of the type (a, b) operators when both a
and b are odd satisfy the anti-d-simplex equation.

e Example n=2: The (1,1) type operators
Rij = a AiB; + 3 BiA;
satisfy the anti-Yang-Baxter equation
Ri2R13R23 = — RazRizRia.

e Example n =4 : Linear combinations of the (3,1) and (1,3)
types satisfy the anti-4-simplex equation :

R1234 R1567 Ro589 R368,10 R479,10
= — Ry479,10R368,10 R2589 R1567 R1234.
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nis odd

e Linear combinations of (a1, b1) and (a2, b2) types when a; — a»
is odd.

e Example n = 3 : Linear combinations of types (3,0) and (0, 3)
satisfy the anti-tetrahedron identity

R123 R145 Ro46 R356 = R§§6) Ré;tj) R:&E)) R{}) .
e Here

Rijk = « A,'AjAk + B,‘BjBk.
RU) = o AiAjAc— 8 BiBiB.

21/35



Reflection Equation
[E. K. Sklyanin (1988), I. V. Cherednik (1984)]

[A. Kuniba - Quantum Groups in Three Dimensional
Integrability (2022), Springer]
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n=23

e n—=2case:
R12KoRo1 K1 = K1R12 Ko Rog,

solved by
R,'j = A,‘Aj + B,'Bj ; KJ = Aj + Bj.
e n =3 case:

Rijk = A,'AjBk + A,‘BjAk + B,‘AJ'Ak
Kijkl = A,'AjAkA/ + B,‘BjBkB/.

solves

Re89 K3579 R249 Ro58 K1478 K1236 Ras56
= Rus6K1236 K1478 Ro58 Ro49 K3579 Res9.
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Examples : Matrix Solutions
Take V = C2.
X, Y and Z are the Pauli matrices.
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Yang-Baxter Solutions

e Choose A= X and B=Z7.

M2
R(pi,p2) =1 X @ X +pup Z@ Z =

M1
oChooseA:X(¥): <(1) 8) - B=Z7Z=

M2
R(pi,p2) =1 AR A+ Z@ Z =

M1

M1
—H2 1
H1 o — 2
) ) 2
1 0
0o -1)°
—H2
) —H2
) K2

e Coincides with the (1,4) and (0,1) classes of Hietarinta's
classification of constant 4 by 4 Yang-Baxter solutions [Hietarinta

92].
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Tetrahedron Solutions

e Choose A= X and B=Z.

R(pa, pro,p13) =1 X X @ Z 4+ X@Z X +pu3 Z@ X @ X

M3 : 2 M1
M3 : 2 : : —H1
M3 : ’ M1 : : —H2
_ “3 : : : : —H1 —H2 :
) 2 M1 : : : : —H3
2 : : —H1 : : —H3 :
H1 : : —H2 : —H3 :

—H1 T2 : —H3
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oChooseA:X(lJEZ):<(1) 8) : B:Z:G)

°)

R(po, pray pro, pi3) =0 Z @ ZQZ+ 111 ARARZ

o
M3

M2
K1

F AR ZRQA+ 13 ZRARA

—Ho
) —Ho
’ Ho
. —THo
) Ho

—H1

— K2

End of Clifford approach.

—H3

Ho

—Ho
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Except of 'Clifford’ we have
other sets of solutions:

2) SUSY
3) Majorana
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Solutions using SUSY algebras

e Nilpotent operators can be realized using N' = 2 SUSY algebras

2
>=(q")"=0; {g,q'} =hqga'=b ; glqg=".

e The two dimensional representation of the supercharges g
generates Mat (2, C):

(e (30 (09

e Example : SUSY expression for Permutation operator on
C?®C?:
P=qoq +q'@q+bb+faf

After Baxterization turns into Yang solution.
e Higher dimensional representations obtained from higher
dimensional representations of q.
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Baxterizarion and Hamiltonians

Baxterization was developed by:

P. P. Kulish, N. Yu. Reshetikhin E. K. Sklyanin: 1981

L. D. Faddeev, N. Yu. Reshetikhin L. A. Takhtajan: 1987

N. Yu. Reshetikhin: 1987, 1990,1992

In our case:

e Baxterized versions lead to regular R-matrices with additive
spectral parameters.

e Baxterizing non-invertible constant 4 x 4 solutions lead to
non-hermitian Hamiltonians:
https://arxiv.org/pdf/2503.08109

JHEP05(2025)206

e Baxterizing invertible constant 4 x 4 solutions lead to both
hermitian and non-hermitian Hamiltonians:
https://arxiv.org/pdf/2508.04315
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https://arxiv.org/pdf/2503.08109
https://arxiv.org/pdf/2508.04315

Solutions using Majorana fermions

e The Majorana fermion algebra mimics Clifford algebras:
{7 = 20
e A Majorana tetrahedron solution:
Rikm = 1 + 7k Ym»

satisfies the vertex form of the tetrahedron equation.

e Further analysis and other Majorana solutions of all higher
simplex equations: https://arxiv.org/pdf/2410.20328
Nuclear Physics B (2025), 0550-3213, 116865.
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Ising model can be embedded in our Majorana approach

e The R-matrix: Rix(A\) = v — e 2

The Hamiltonian H =iy 7 yj7j11 — inanm

B. M. McCoy and T. T. Wu, Harvard University Press 1973;
J. H. Perk and T. T. Wu. Phys. Rev. Lett. 1981

e The transfer matrix contains the Kramers-Wannier duality

operator. https://arxiv.org/pdf/2506.03668
P. Fendley et. al (2016, 2020)

e Fermionic R-matrices can also lead to the 1D Hubbard model.
F. Essler et. al. (2005)
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Solutions of Yang-Baxter equations can be
used as gates in quantum circuits
1) J. Phys. A: Math. Theor. 57 445303 (2024)
Adv. Quantum Technol. 2024, 2300345
2) https://arxiv.org/pdf/2406.08320
3) https://arxiv.org/pdf/2307.16781
https://arxiv.org/pdf/2405.16477
Integrable quantum computers.
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Summary

e Clifford algebras provide a method to solve the n-simplex
equations. arXiv:2404.11501v2 [hep-th]

e This framework introduces the anti-n-simplex equations and
provides its solutions.

e The reflection equations can also be solved with these methods.
e Other solutions using SUSY algebras and Majorana fermions.

e Primary role of my coauthor Pramod Padmanabhan from Indian
Institute of Technology.
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Thank you for your attention.
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