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Quantum phases from competing short- and
long-range interactions in an optical lattice

Renate Landig', Lorenz Hruby', Nishant Dogra', Manuele Landini', Rafael Mottl', Tobias Donner' & Tilman Esslinger!

Insights into complex phenomena in quantum matter can be gained
from simulation experiments ith ultracold atoms, especially in
cases where However,

. These

k of about 60 weakly coupled two-dimensional (2D) laye
2D layers are then exposed toa square lattice in the x-z plane formed
by one free space lattice and one intrscavity optical standing wave,

these experiments are mostly limited to sh
interactions; recently observed perturbative effects of long-range
interactions were too weak to reach new quantum phases'. Here
we experimentally realize a bosonic lattice model with competing
short- and long-range interactions, and observe the appearance
of four distinct quantum phases—a superfluid, a supersolid, a
Mott insulator and a charge density wave. Our system is based
on an atomic quantum gas trapped in an optical lattice inside a
high-finesse optical cavity. The strength of the short-range on-site
interactions is controlled by means of the optical lattice depth. The
long (infinite)- range interaction potential is mediated by a vacuum
mode of the cavity™ independently controlled by tuning the
cavity resonance. ‘When probing the phase transition between the
Mottinsulator and the charge density wave in real time, we observed
abeha ofafi hase transition. Our
measurements have accessed a regime for quantum simulation of
many-body systems where the physics is determined by the intricate
competition between two different types of interactions and the
zero point motion of the particles.

Experiments with cold atoms have contributed in many ways to

both ata of \=785.3 nm. They create periodic optical
potentials of equal depths Vap along both directions, which we will
specify in units of the recoil energy g = h?/2m\?, where m denotes
the mass of *Rb. In addition to the lattice potential, the atoms are
exposed to an overall harmonic confinement, which results in a
maximum density of 2.8 atoms per lattice site at the centre of the trap.
The standing wave along the z axis fulfils a second role as it controls
long-range interactions via off-resonant scattering into the optical
resonator mode. The photons are scattered off the trapped atoms and
are delocalized within the cavity mode, thereby mediating atom-atom
interactions of infinite range (see Methods). These infinite-range
interactions create A-periodic atomic density—density correlations on
the underlying A/2-periodic square lattice”, The correlations can lead
to the breaking of a Z,-symmetry between the two chequerboard
sublattices®, defined by either even or odd sites, resulting in the
appearance of a self-consistent optical potential with alternating
strength.

Ina wide range of the parameter space, the system can be described
by a lattice model with long-range interactions (see Methods and
Extended Data Fig. 1), given by:
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Figure 1 | Illustration of the experimental scheme that realizes a lattice
model with on-site and infinite-range interactions. Left, a stack of 2D
systems along the y axis is loaded into a 2D optical lattice (red arrows)
between two mirrors (shown grey). The cavity induces atom-atom
interactions of infinite range. Right, illustration of the competing energy
scales: tunnelling t, on-site interactions U and long-range interactions Uj.

Landig, Hruby, Dogra et al., Nature 532 (2016) 476
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There are 'down-to-earth’ physicists and chemists who reject
lattice models as being unrealistic. In its most extreme form, their
argument is that if a model can be solved exactly, then it must be
pathological. | think this is defeatist nonsense: ....

Rodney James Baxter,
Exactly Solved Models in Statistical Mechanics,
Academic Press, London, 1982.
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Open boundary conditions

Adjacency matrix

0| B B | 0
A=| = — = - —
B | o 0| —
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Free-boson Hamiltonian

Let {aj, aJT. j=1,...,myuU{b;, bJT :j=1,...,m} denote
mutually commuting sets of canonical boson operators satisfying

[a;, af] = [b;, bl = Gl
[aj, a] = [a], a}] = [by, bu] = [b], b}] = 0.

m
The free-boson Hamiltonian reads H = Z Bjk(a}rbk + b}rak),
jk=1
admitting a set of mutually-commuting conserved operators

C2p) = > B (alax+ blby),
j.k=1
Cp+1) =Y B (alb.+bfay)
jk=1
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Cylindrical boundary conditions
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Toroidal boundary conditions
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Free-boson Hamiltonian spectrum

The eigenvalues of the adjacency matrix for open boundary
conditions are of the form

mJ mk .
2COS<L+1>+2COS<L+1> Jyke{l,... L}

The eigenvalues of the adjacency matrix for cylindrical boundary
conditions are of the form

27 mk .
2COS<L>+2COS<L+1> Jyke{l,... L}

The eigenvalues of the adjacency matrix for toroidal boundary
conditions are of the form

27§ 21k
2cos<7LU>+2cos<7Z> Jyke{l,...,L}.

These provide the single quasi-particle energies.
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The interacting Hamiltonian

Let {aj, j=1,...,myuU{b;, b}:jzl,...,m} denote
mutually commutmg sets of canonical boson operators satisfying
[a7. a}] = [b bi] = djel,
(2. a] =[], a}] = [b;. b = [b]. bl] =0.
0 | B

For adjacency matrix A = | — — | the Hamiltonian reads
B | 0

m
H=U(N,— Nb)2 + Z Bjk(a}bk + bjak)
k=1

m m
where N, = Za}raj, Ny = Z bJTbJ-. The Hamiltonian admits a
j=1 j=1
set of mutually-commuting conserved operators.
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Conserved operators
Explicitly, [C(y), C(z)] = 0 where

C(2p) = > Bif(alax + b]by).
jk=1

C2p+1) = UZsz,/)+ZB2"“ alby + blay)
Jj,k=1

with

Z 82p a JERE] ak + bTb bTbk) i even,

D(2p,i) = "W
Z (B; sz ’+B2p ‘B )a}aqbibk, i odd.
j,k,r,qg=1

Summary
00
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Classical Yang-Baxter equation and classical integrability

n
For r(u,v) = Z r(u, v)f,f;ek ® ef the classical YBE reads
Jrk,p,q=1

[ri2(u, v), r3(v, w)] = [ra1(v, u), n3(u, w)] + [r3(u, w), r3(v, w)] = 0.

We define the associated Poisson algebra

{TH(w), TE(W)} = Z( o (u, V)TEV) = b,V TR(v))

n

(r”f v, u)TH(u) — rgf(v u)TJ(u)) )

m
pn=1
If B(u) satisfies [B2(v), ra(u, v)] = [Bi(u), mi(v, u)] we may
realise this Poisson algebra through the dual g/(n)* of g/(n), with
Poisson brackets {&}, £F} = 0,6 — 0LEL.
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Classical Yang-Baxter equation and classical integrability

The homomorphism is

Ti () = Bl + > P (u,vim)EL.

p,q=1

Set (TOY () =" T/ ()T (w),
I=1

(TUDY () =3 (TOY ()T (u),
=1

) =Y (TN () = (), ()} =0

j=1

Expanding t()(u) = th(-s)uj leads to “Poisson-commuting”

J
functions {tj(-r), tf)} =0.
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Quantisation

The problem to “quantise” Poisson invariants to form a
commutative subalgebra of U(gl/(n)) is well-studied. Towards this
goal, note the Lie algebra g/(n) is canonically embedded in
P(gl(n)*) as Pi(gl(n)*), in that the mapping &, — Ej between
basis elements provides a Lie algebra isomorphism. For

Xi,..., X € gl(n)* let the corresponding images under this
isomorphism be denoted Xi,..., Yx € gl(n). Let Sy denote the
symmetric group on k objects. Define the vector space
isomorphism ¢ : Px(gl(n)*) — U(gl(n)) via the following action on
products of elements in g/(n)*

and extended linearly to all of P(gl(n)*). Set
Uk(gl(n)) = t(Pk(gl(n)*)). It follows U(gl(n)) = Br—o Uk(gl(n).
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Let P denote the permutation operator such that

P(x®y)=y®x, x,yeC"

1 1
Set r(u,v)=| —I®I+ —A® A) P. It may be checked
u—v u+v
that the classical YBE
[ri2(u, v), r3(v, w)] = [ra(v, u), riz(u, w)] + [n3(u, w), r3(v,w)] =0
holds provided A? = I. Moreover, setting B(u) = uB then
[B2(v), ria(u, v)] = [Bi(u), ra1(v, u)]

holds provided AB = —BA. These conditions are satisfied by
choosing n=2mand A=0*® I, B = 0% ® B for arbitrary

B € End(C™). This solution leads to the conserved operators for
the integrable system described earlier.



o Using r(u, v) from the earlier slide, construct the realisation of
the Poisson algebra (with 2v = U~1):

T (u) = Bl(u)l + Y P (u,v)E]

p,q=1
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o Using r(u, v) from the earlier slide, construct the realisation of
the Poisson algebra (with 2v = U~1):

Ti (u) = Bl (u)l + Z
p,q=1
o From higher-order “transfer matrix” analogues t(*)(u), take /in-
ear and quadratic Poisson-commuting elements for s = 2,...,2m+
1

tgs_)l, s odd, tgs_)Q S even.
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o Using r(u, v) from the earlier slide, construct the realisation of
the Poisson algebra (with 2v = U~1):

Tw) = B+ Y o

p,q=1

o From higher-order “transfer matrix” analogues t(*)(u), take /in-

ear and quadratic Poisson-commuting elements for s = 2,...,2m+
1
25)1, s odd, tgs_)2 S even.

o Generalising the results of Vinberg (1991) shows that these
operators quantise to commuting elements of U(g/(2m)).
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o Using r(u, v) from the earlier slide, construct the realisation of
the Poisson algebra (with 2v = U~1):

Tw) = B+ Y o

p,q=1

o From higher-order “transfer matrix” analogues t(*)(u), take /in-

ear and quadratic Poisson-commuting elements for s = 2,...,2m+
1
tgs_)l, s odd, tgs_)2 S even.

o Generalising the results of Vinberg (1991) shows that these
operators quantise to commuting elements of U(g/(2m)).

o Map the elements E] of g/(2m) to operators on Fock space
through the Jordan-Schwinger map

El — ala,, jkodd, E/~ alb, jodd, keven,
Ei — b}rbk, J, k even, Ei — b}Lak, j even, k odd.
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Conserved operators
Explicitly, [C(y), C(z)] = 0 where

C(2p) = > Bif(alax + b]by).
jk=1

C2p+1) = UZsz,/)+ZB2"“ alby + blay)
Jj,k=1

with

Z 82p a JERE] ak + bTb bTbk) i even,

D(2p,i) = "W
Z (B; sz ’+B2p ‘B )a}aqbibk, i odd.
j,k,r,qg=1

Summary
00
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Canonical transformation

Let X denote a unitary operator that dlagonallses B, viz.
Z Xpk = Ojk Z GpBpaXak = Ejdjks
p,q=1
with {&; : j =1,..., m} the spectrum of B. Introducing

m m m
=D Xy be=3 Xgd, al =3 X, b =3 Xid].
j=1 j=1 j=1 j=1
leads to No =Y cfj = Ne, Ny =Y _ dfd; = Ny and
=1 j=1
H = U(Ne = Nog)> + Y &i(c] d; + df ).
j=1
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Canonical transformation

Let X denote a unitary operator that dlagonallses B, viz.

Z Xpk = Ojk Z ipBpaXak = Ejdj

p,q=1
with {&; : j =1,..., m} the spectrum of B. Introducing

m m m
=D Xy be=3 Xgd, al =3 X, b =3 Xid].
=1 =1

j=1 j=1

leads to No =Y cfj = Ne, Ny =Y _ dfd; = Ny and

=l j=1
H = U(Nc — Ng)> + Y &(c/d; + df ;). Note that
j=1
N; = CJTCJ' + dJTdJ are conserved operators; let N; denote their
m

eigenvalues. Then Z N; = N is the total number of particles.
j=1
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Bethe Ansatz results

For {Ny, ..., N : N; € Zso} set [Ny, ..., Np) = (df )™ ... (df)N»|0)
where |0) denotes the vacuum. The energy eigenvalues are

E= UN2+4UZZ

j=1 n=1

N H(Vn o EJ?)NJ m

o =M1y
m7n 16 U2 H — V)

m#n
for n=1,..., N. The Bethe eigenstates read

subJect to
Vi .

N52

N
Vi, .ooyvn; Nyy ooy Np) = H C(vp)|Nay.ooy N,

m

1 2¢; t
Jj=1
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Summary

©

Motivated by an optical lattice set-up in a cavity, a model was
introduced for bosons on the square lattice with global-range
interaction.

o The Hamiltonian, conserved operators, Bethe Ansatz solution
follow from the formulation of system through a solution of
the classical Yang-Baxter equation.

o Yang-Baxter integrability holds for open, cylindrical, and
toroidal boundary conditions.

o The system generalises to models on general bipartite graphs,
e.g. hexagonal (a.k.a honeycomb) lattice.
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